农林废弃物生物炭钝化典型土壤重金属的机制研究进展

宗大鹏, 田稳, 李韦钰, 张梦妍, 徐武美, 向萍. 农林废弃物生物炭钝化典型土壤重金属的机制研究进展[J]. 生态毒理学报, 2023, 18(1): 232-245. doi: 10.7524/AJE.1673-5897.20220407001
引用本文: 宗大鹏, 田稳, 李韦钰, 张梦妍, 徐武美, 向萍. 农林废弃物生物炭钝化典型土壤重金属的机制研究进展[J]. 生态毒理学报, 2023, 18(1): 232-245. doi: 10.7524/AJE.1673-5897.20220407001
Zong Dapeng, Tian Wen, Li Weiyu, Zhang Mengyan, Xu Wumei, Xiang Ping. Mechanisms of Heavy Metals Passivation in Soils by Biochar Derived from Agricultural and Forestry Wastes: A Review[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 232-245. doi: 10.7524/AJE.1673-5897.20220407001
Citation: Zong Dapeng, Tian Wen, Li Weiyu, Zhang Mengyan, Xu Wumei, Xiang Ping. Mechanisms of Heavy Metals Passivation in Soils by Biochar Derived from Agricultural and Forestry Wastes: A Review[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 232-245. doi: 10.7524/AJE.1673-5897.20220407001

农林废弃物生物炭钝化典型土壤重金属的机制研究进展

    作者简介: 宗大鹏(1996—),男,硕士研究生,研究方向为土壤健康与农产品安全,E-mail:dapengzong163@163.com
    通讯作者: 向萍, E-mail: xiangping@swfu.edu.cn
  • 基金项目:

    云南省农业联合专项重点项目(202101BD070001-023);国家林业和草原局林草科技创新青年拔尖人才项目(2020132613);国家自然科学基金资助项目(41967026);云南省高层次人才引进计划青年人才项目(YNQR-QNRC-2018-049)

  • 中图分类号: X171.5

Mechanisms of Heavy Metals Passivation in Soils by Biochar Derived from Agricultural and Forestry Wastes: A Review

    Corresponding author: Xiang Ping, xiangping@swfu.edu.cn
  • Fund Project:
  • 摘要: 土壤重金属污染成为食品安全的重大隐患,农林废弃物生物炭来源广泛,成本低,已被广泛用于土壤重金属污染修复。本文综述了农林废弃物生物炭的制备方法及影响其性能的关键因素,并重点探讨了利用农林废弃物生物炭钝化土壤典型重金属的作用机制。发现木质、竹、秸秆、稻壳和动物粪便等材料被广泛用于生物炭制备,热解温度、热解停留时间以及原材料种类均会影响生物炭的性能,其中植物生物炭比表面积的增加、吸附性能和重金属固定性能的提高均高于牛粪生物炭,在300 ℃高温热解制得的生物炭含有更多的含氧官能团,而在500~700 ℃高温热解制得的生物炭含有更多的微孔和更大的表面积,高热解温度下适当的停留时间有助于生物炭结构的形成。此外,生物炭还可以影响土壤微生物的多样性和种类来提高吸附能力,通过络合沉淀固定汞(Hg)、镉(Cd)和铜(Cu),通过静电吸附、络合作用和阳离子交换来固定铬(Cr)、砷(As)、锌(Zn)和铅(Pb)。最后,为确保生物炭的安全生产和可持续利用提出了未来的研究方向。
  • 加载中
  • Mandal S, Pu S Y, Adhikari S, et al. Progress and future prospects in biochar composites: Application and reflection in the soil environment [J]. Critical Reviews in Environmental Science and Technology, 2021, 51(3): 219-271
    Li C F, Zhou K H, Qin W Q, et al. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques [J]. Soil and Sediment Contamination: An International Journal, 2019, 28(4): 380-394
    Huang Y, Wang L Y, Wang W J, et al. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis [J]. The Science of the Total Environment, 2019, 651(Pt 2): 3034-3042
    Wang Y, Wang H S, Tang C S, et al. Remediation of heavy-metal-contaminated soils by biochar: A review [J]. Environmental Geotechnics, 2020, 9(3): 135-148
    Qiu B, Tao X, Wang H, et al. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review [J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105081
    Xu D Y, Zhao Y, Sun K, et al. Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: Impact of bulk and surface properties [J]. Chemosphere, 2014, 111: 320-326
    Liu Z G, Zhang F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass [J]. Journal of Hazardous Materials, 2009, 167(1-3): 933-939
    Nzediegwu C, Arshad M, Ulah A, et al. Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature [J]. Bioresource Technology, 2021, 320(Pt A): 124282
    Li S M, Harris S, Anandhi A, et al. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses [J]. Journal of Cleaner Production, 2019, 215: 890-902
    Hopkins D, Hawboldt K. Biochar for the removal of metals from solution: A review of lignocellulosic and novel marine feedstocks [J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103975
    Zhang C T, Zhang Z M, Zhang L J, et al. Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range [J]. Bioresource Technology, 2020, 304: 123002
    Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J]. Bioresource Technology, 2010, 101(14): 5222-5228
    Cantrell K B, Hunt P G, Uchimiya M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar [J]. Bioresource Technology, 2012, 107: 419-428
    Zhang J Z, Hou D Y, Shen Z T, et al. Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity [J]. Environmental Research, 2020, 183: 109152
    Park J H, Wang J J, Kim S H, et al. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures [J]. Journal of Colloid and Interface Science, 2019, 553: 298-307
    Williams P T, Besler S. The influence of temperature and heating rate on the slow pyrolysis of biomass [J]. Renewable Energy, 1996, 7(3): 233-250
    Braadbaart F, Poole I. Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts [J]. Journal of Archaeological Science, 2008, 35(9): 2434-2445
    Zhao B, Xu X Y, Zeng F Q, et al. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(Ⅱ) adsorption kinetics [J]. Environmental Science and Pollution Research, 2018, 25(20): 19423-19435
    Li Y L, Yu H, Liu L N, et al. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates [J]. Journal of Hazardous Materials, 2021, 420: 126655
    Wang A O, Ptacek C J, Blowes D W, et al. Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments [J]. The Science of the Total Environment, 2019, 652: 549-561
    Xing Y, Wang J X, Xia J C, et al. A pilot study on using biochars as sustainable amendments to inhibit rice uptake of Hg from a historically polluted soil in a Karst Region of China [J]. Ecotoxicology and Environmental Safety, 2019, 170: 18-24
    Man Y, Wang B, Wang J X, et al. Use of biochar to reduce mercury accumulation in Oryza sativa L.: A trial for sustainable management of historically polluted farmlands [J]. Environment International, 2021, 153: 106527
    Chen J Q, Dong J, Chang J J, et al. Characterization of an Hg(Ⅱ)-volatilizing Pseudomonas sp. strain, DC-B1, and its potential for soil remediation when combined with biochar amendment [J]. Ecotoxicology and Environmental Safety, 2018, 163: 172-179
    Xu Y, Luo G Q, He S W, et al. Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe(NO3)3-laden wood and polyvinyl chloride waste [J]. Fuel, 2019, 239: 982-990
    Wang Y J, Dang F, Zheng X M, et al. Biochar amendment to further reduce methylmercury accumulation in rice grown in selenium-amended paddy soil [J]. Journal of Hazardous Materials, 2019, 365: 590-596
    Jia L, Yu Y, Li Z P, et al. Study on the Hg(0) removal characteristics and synergistic mechanism of iron-based modified biochar doped with multiple metals [J]. Bioresource Technology, 2021, 332: 125086
    Guo X L, Li M H, Liu A C, et al. Adsorption mechanisms and characteristics of Hg2+ removal by different fractions of biochar [J]. Water, 2020, 12(8): 2105
    Rahmani-Sani A, Singh P, Raizada P, et al. Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions [J]. Bioresource Technology, 2020, 297: 122452
    Dai Z M, Brookes P C, He Y, et al. Increased agronomic and environmental value provided by biochars with varied physiochemical properties derived from swine manure blended with rice straw [J]. Journal of Agricultural and Food Chemistry, 2014, 62(44): 10623-10631
    Song J P, Zhang S S, Li G X, et al. Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal [J]. Journal of Hazardous Materials, 2020, 391: 121692
    Deng J, Li X, Wei X, et al. Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism [J]. Chemical Engineering Journal, 2020, 387: 124097
    Wu P, Cui P X, Alves M E, et al. Interactive effects of rice straw biochar and γ-Al2O3 on immobilization of Zn [J]. Journal of Hazardous Materials, 2019, 373: 250-257
    Ahmad M, Ok Y S, Kim B Y, et al. Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil [J]. Journal of Environmental Management, 2016, 166: 131-139
    Kazak O, Tor A. In situ preparation of magnetic hydrochar by co-hydrothermal treatment of waste vinasse with red mud and its adsorption property for Pb(Ⅱ) in aqueous solution [J]. Journal of Hazardous Materials, 2020, 393: 122391
    Gao Y, Jiang Z, Li J J, et al. A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust [J]. Environmental Research, 2019, 172: 561-568
    Igalavithana A D, Kwon E E, Vithanage M, et al. Soil lead immobilization by biochars in short-term laboratory incubation studies [J]. Environment International, 2019, 127: 190-198
    Lan J R, Zhang S S, Dong Y Q, et al. Stabilization and passivation of multiple heavy metals in soil facilitating by pinecone-based biochar: Mechanisms and microbial community evolution [J]. Journal of Hazardous Materials, 2021, 420: 126588
    Gao R L, Fu Q L, Hu H Q, et al. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate [J]. Journal of Hazardous Materials, 2019, 371: 191-197
    Zhao M, Dai Y, Zhang M Y, et al. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies [J]. The Science of the Total Environment, 2020, 717: 136894
    Yu W C, Lian F, Cui G N, et al. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution [J]. Chemosphere, 2018, 193: 8-16
    Meier S, Curaqueo G, Khan N, et al. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil [J]. Journal of Soils and Sediments, 2017, 17(3): 741-750
    Rechberger M V, Kloss S, Wang S L, et al. Enhanced Cu and Cd sorption after soil aging of woodchip-derived biochar: What were the driving factors? [J]. Chemosphere, 2019, 216: 463-471
    Zhang C, Shan B Q, Zhu Y Y, et al. Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments [J]. Environmental Pollution, 2018, 242(Pt B): 1768-1776
    Chen Y N, Liu Y H, Li Y P, et al. Novel magnetic pomelo peel biochar for enhancing Pb(Ⅱ) and Cu(Ⅱ) adsorption: Performance and mechanism [J]. Water, Air, & Soil Pollution, 2020, 231(8): 404
    Deng H, Li Q Y, Huang M J, et al. Removal of Zn(Ⅱ), Mn(Ⅱ) and Cu(Ⅱ) by adsorption onto banana stalk biochar: Adsorption process and mechanisms [J]. Water Science and Technology, 2020, 82(12): 2962-2974
    Liang J, Li X, Yu Z, et al. Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(Ⅱ) and Cd(Ⅱ) [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5049-5058
    Yin D X, Wang X, Peng B, et al. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system [J]. Chemosphere, 2017, 186: 928-937
    Gao X, Peng Y T, Zhou Y Y, et al. Effects of magnesium ferrite biochar on the cadmium passivation in acidic soil and bioavailability for packoi (Brassica chinensis L.) [J]. Journal of Environmental Management, 2019, 251: 109610
    Li J H, Xia C G, Cheng R, et al. Passivation of multiple heavy metals in lead-zinc tailings facilitated by straw biochar-loaded N-doped carbon aerogel nanoparticles: Mechanisms and microbial community evolution [J]. The Science of the Total Environment, 2022, 803: 149866
    Huang F, Gao L Y, Wu R R, et al. Qualitative and quantitative characterization of adsorption mechanisms for Cd2+ by silicon-rich biochar [J]. The Science of the Total Environment, 2020, 731: 139163
    Tan Z X, Yuan S N, Hong M F, et al. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd [J]. Journal of Hazardous Materials, 2020, 384: 121370
    Chen D, Wang X B, Wang X L, et al. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil [J]. The Science of the Total Environment, 2020, 714: 136550
    Xiang J X, Lin Q T, Yao X S, et al. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in situ remediation of Cd-contaminated soil [J]. Environmental Research, 2021, 195: 110650
    Mandal S, Sarkar B, Bolan N, et al. Enhancement of chromate reduction in soils by surface modified biochar [J]. Journal of Environmental Management, 2017, 186(Pt 2): 277-284
    Choppala G, Bolan N, Kunhikrishnan A, et al. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate [J]. Chemosphere, 2016, 144: 374-381
    Sun J T, Li M F, Zhang Z H, et al. Unravelling the adsorption disparity mechanism of heavy-metal ions on the biomass-derived hierarchically porous carbon [J]. Applied Surface Science, 2019, 471: 615-620
    Lian G Q, Wang B, Lee X Q, et al. Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers grains [J]. The Science of the Total Environment, 2019, 697: 134119
    Liu L H, Liu X, Wang D Q, et al. Removal and reduction of Cr(Ⅵ) in simulated wastewater using magnetic biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge [J]. Journal of Cleaner Production, 2020, 257: 120562
    Guo X F, Ji Q, Rizwan M, et al. Effects of biochar and foliar application of selenium on the uptake and subcellular distribution of chromium in Ipomoea aquatica in chromium-polluted soils [J]. Ecotoxicology and Environmental Safety, 2020, 206: 111184
    Dias D, Bernardo M, Matos I, et al. Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters [J]. Journal of Cleaner Production, 2020, 267: 121993
    Xie J X, Lin R Y, Liang Z J, et al. Effect of cations on the enhanced adsorption of cationic dye in Fe3O4-loaded biochar and mechanism [J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105744
    Yin Z B, Xu S, Liu S, et al. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium [J]. Bioresource Technology, 2020, 300: 122680
    Wang N, Xue X M, Juhasz A L, et al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic [J]. Environmental Pollution, 2017, 220(Pt A): 514-522
    Qiao J T, Li X M, Li F B. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar [J]. Journal of Hazardous Materials, 2018, 344: 958-967
    Singh P, Sarswat A, Pittman C U Jr, et al. Sustainable low-concentration arsenite removal in single and multicomponent systems using hybrid iron oxide-biochar nanocomposite adsorbents—A mechanistic study [J]. ACS Omega, 2020, 5(6): 2575-2593
    Kumar A, Bhattacharya T. Removal of arsenic by wheat straw biochar from soil [J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(3): 415-422
  • 加载中
计量
  • 文章访问数:  1297
  • HTML全文浏览数:  1297
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-04-07

农林废弃物生物炭钝化典型土壤重金属的机制研究进展

    通讯作者: 向萍, E-mail: xiangping@swfu.edu.cn
    作者简介: 宗大鹏(1996—),男,硕士研究生,研究方向为土壤健康与农产品安全,E-mail:dapengzong163@163.com
  • 1. 西南林业大学环境污染与食品安全及人体健康云南省创新团队, 昆明 650224;
  • 2. 西南林业大学生态与环境学院/环境修复与健康研究院, 昆明 650224;
  • 3. 云南师范大学能源与环境科学学院, 昆明 650500
基金项目:

云南省农业联合专项重点项目(202101BD070001-023);国家林业和草原局林草科技创新青年拔尖人才项目(2020132613);国家自然科学基金资助项目(41967026);云南省高层次人才引进计划青年人才项目(YNQR-QNRC-2018-049)

摘要: 土壤重金属污染成为食品安全的重大隐患,农林废弃物生物炭来源广泛,成本低,已被广泛用于土壤重金属污染修复。本文综述了农林废弃物生物炭的制备方法及影响其性能的关键因素,并重点探讨了利用农林废弃物生物炭钝化土壤典型重金属的作用机制。发现木质、竹、秸秆、稻壳和动物粪便等材料被广泛用于生物炭制备,热解温度、热解停留时间以及原材料种类均会影响生物炭的性能,其中植物生物炭比表面积的增加、吸附性能和重金属固定性能的提高均高于牛粪生物炭,在300 ℃高温热解制得的生物炭含有更多的含氧官能团,而在500~700 ℃高温热解制得的生物炭含有更多的微孔和更大的表面积,高热解温度下适当的停留时间有助于生物炭结构的形成。此外,生物炭还可以影响土壤微生物的多样性和种类来提高吸附能力,通过络合沉淀固定汞(Hg)、镉(Cd)和铜(Cu),通过静电吸附、络合作用和阳离子交换来固定铬(Cr)、砷(As)、锌(Zn)和铅(Pb)。最后,为确保生物炭的安全生产和可持续利用提出了未来的研究方向。

English Abstract

参考文献 (66)

目录

/

返回文章
返回