过量硒-L-蛋氨酸对青鳉鱼胚胎的毒性作用及与氧化应激机制的关联

周旖妮, 王欢, 杨景峰, 于永利, 董武. 过量硒-L-蛋氨酸对青鳉鱼胚胎的毒性作用及与氧化应激机制的关联[J]. 生态毒理学报, 2022, 17(6): 365-375. doi: 10.7524/AJE.1673-5897.20220207001
引用本文: 周旖妮, 王欢, 杨景峰, 于永利, 董武. 过量硒-L-蛋氨酸对青鳉鱼胚胎的毒性作用及与氧化应激机制的关联[J]. 生态毒理学报, 2022, 17(6): 365-375. doi: 10.7524/AJE.1673-5897.20220207001
Zhou Yini, Wang Huan, Yang Jingfeng, Yu Yongli, Dong Wu. Toxicity of Excess Selenium-L-methionine on Medaka Embryos and Its Relationship with Oxidative Stress Mechanism[J]. Asian journal of ecotoxicology, 2022, 17(6): 365-375. doi: 10.7524/AJE.1673-5897.20220207001
Citation: Zhou Yini, Wang Huan, Yang Jingfeng, Yu Yongli, Dong Wu. Toxicity of Excess Selenium-L-methionine on Medaka Embryos and Its Relationship with Oxidative Stress Mechanism[J]. Asian journal of ecotoxicology, 2022, 17(6): 365-375. doi: 10.7524/AJE.1673-5897.20220207001

过量硒-L-蛋氨酸对青鳉鱼胚胎的毒性作用及与氧化应激机制的关联

    作者简介: 周旖妮(1996-),女,硕士研究生,研究方向为生态毒理学,E-mail:zhouyini96@163.com
    通讯作者: 于永利, E-mail: 707928940@qq.com 董武, E-mail: dongwu@imun.edu.cn
  • 基金项目:

    内蒙古自治区自然科学基金资助项目(2021LHMS02007,2020MS08103);内蒙古自治区高等学校科学研究项目(NJZC17203);内蒙古自治区高等学校科学研究项目(NJZY22462);内蒙古民族大学科学研究项目(NMDYB18019);内蒙古民族大学博士科研启动基金项目(BS555)

  • 中图分类号: X171.5

Toxicity of Excess Selenium-L-methionine on Medaka Embryos and Its Relationship with Oxidative Stress Mechanism

    Corresponding authors: Yu Yongli, 707928940@qq.com ;  Dong Wu, dongwu@imun.edu.cn
  • Fund Project:
  • 摘要: 采矿和农业经营过程中硒(Se)会释放到水生生态系统中造成环境污染。本研究使用日本青鳉鱼(Oryzias latipes)胚胎作为模式动物研究硒代蛋氨酸(SeMet)的发育毒性和潜在的氧化应激机制。给6~7 hpf (hours post-fertilization, hpf)的青鳉鱼胚胎暴露0 (对照)、0.1、10、100、500和1 000 μmol·L-1的SeMet,并检测胚胎存活率、孵化率、形态学和基因表达,并考察氧化应激关联代谢物质的变化。ICP-MS数据显示有机硒通过绒毛膜影响发育中的胚胎。10~1 000 μmol·L-1 SeMet显著降低了青鳉胚胎的存活率(32.1%~0%),100~1 000 μmol·L-1 SeMet显著减少了孵化率(58%~0%),例外的是10 μmol·L-1浓度组的死亡率与最高浓度组的相当。10~500 μmol·L-1 SeMet造成血液色素强度显著降低(50%~87.5%,P<0.05),此外,SeMet暴露造成部分胚胎的心囊水肿、鱼鳔缺失等表型,总发生率超过51%(P<0.05),也造成游泳行为变化,但差异不显著(P>0.05)。100 μmol·L-1 SeMet也引起氧化应激遗传标记物Nrf2 mRNA(2.1倍,P<0.05)和GPx4 mRNA基因表达的显著增加(3.7倍,P<0.05)。此外发现10~100 μmol·L-1的SeMet引起超氧化物歧化酶(SOD)活性的降低(31%~32.8%,P<0.05),也同时引起活性氧(ROS)(1.37倍~1.23倍,P<0.05)和丙二醛(MDA)(1.39倍~1.40倍,P<0.05)含量的升高。研究表明,SeMet暴露造成青鳉鱼的胚胎毒性(包括形态学和行为学变化)可能与硒造成的氧化应激相关,也可推知有机硒的过量摄入可能会影响人体健康,尤其是在怀孕期间。
  • 加载中
  • Rayman M P. Selenium intake, status, and health:A complex relationship[J]. Hormones, 2020, 19(1):9-14
    Lü Q Z, Liang X M, Nong K Y, et al. Advances in research on the toxicological effects of selenium[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(5):715-726
    Lemly A D. Protocol for Aquatic Hazard Assessment[M]//Selenium Assessment in Aquatic Ecosystems. New York, NY:Springer New York, 2002:61-88
    Lemly A D. Symptoms and implications of selenium toxicity in fish:The Belews Lake case example[J]. Aquatic Toxicology, 2002, 57(1-2):39-49
    Lemly A D. Teratogenic effects and monetary cost of selenium poisoning of fish in Lake Sutton, North Carolina[J]. Ecotoxicology and Environmental Safety, 2014, 104:160-167
    Rigby M C, Lemly A D, Gerads R. Fish toxicity testing with selenomethionine spiked feed:What's the real question being asked?[J]. Environmental Science Processes & Impacts, 2014, 16(3):511-517
    Woock S E, Garrett W R, Partin W E, et al. Decreased survival and teratogenesis during laboratory selenium exposures to bluegill, Lepomis macrochirus[J]. Bulletin of Environmental Contamination and Toxicology, 1987, 39(6):998-1005
    Chapman P, Adams W, Brooks M, et al. Ecological assessment of selenium in the aquatic environment[R]. Pensacola:SETAC Pellston Workshop, 2009
    Chernick M, Ware M, Albright E, et al. Parental dietary seleno-L-methionine exposure and resultant offspring developmental toxicity[J]. Aquatic Toxicology, 2016, 170:187-198
    Mu J L, Wang J Y, Jin F, et al. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma)[J]. Marine Pollution Bulletin, 2014, 85(2):505-515
    Janz D M, DeForest D K, Brooks M L, et al. Selenium Toxicity to Aquatic Organisms[M]. CRC Press, 2010:141-231
    Kupsco A, Schlenk D. Mechanisms of selenomethionine developmental toxicity and the impacts of combined hypersaline conditions on Japanese medaka (Oryzias latipes)[J]. Environmental Science & Technology, 2014, 48(12):7062-7068
    Kupsco A, Schlenk D. Stage susceptibility of Japanese medaka (Oryzias latipes) to selenomethionine and hypersaline developmental toxicity[J]. Environmental Toxicology and Chemistry, 2016, 35(5):1247-1256
    Maier K J, Knight A W. Ecotoxicology of selenium in freshwater systems[J]. Reviews of Environmental Contamination and Toxicology, 1994, 134:31-48
    Unsal V, Cicek M, Sabancilarⅰ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants[J]. Reviews on Environmental Health, 2021, 36(2):279-295
    Agalakova N I, Gusev G P. Fluoride induces oxidative stress and ATP depletion in the rat erythrocytes in vitro[J]. Environmental Toxicology and Pharmacology, 2012, 34(2):334-337
    Ma Q. Advances in mechanisms of anti-oxidation[J]. Discovery Medicine, 2014, 17(93):121-130
    Ma Q. Role of Nrf2 in oxidative stress and toxicity[J]. Annual Review of Pharmacology and Toxicology, 2013, 53:401-426
    Lavado R, Shi D L, Schlenk D. Effects of salinity on the toxicity and biotransformation of L-selenomethionine in Japanese medaka (Oryzias latipes) embryos:Mechanisms of oxidative stress[J]. Aquatic Toxicology, 2012, 108:18-22
    Spallholz J E, Hoffman D J. Selenium toxicity:Cause and effects in aquatic birds[J]. Aquatic Toxicology, 2002, 57(1-2):27-37
    Yoo M H, Gu X L, Xu X M, et al. Delineating the role of glutathione peroxidase 4 in protecting cells against lipid hydroperoxide damage and in Alzheimer's disease[J]. Antioxidants & Redox Signaling, 2010, 12(7):819-827
    Arnold M C, Forte J E, Osterberg J S, et al. Antioxidant rescue of selenomethionine-induced teratogenesis in zebrafish embryos[J]. Archives of Environmental Contamination and Toxicology, 2016, 71(3):311-320
    Cheung N K M, Hinton D E, Au D W T. A high-throughput histoarray for quantitative molecular profiling of multiple, uniformly oriented medaka (Oryzias latipes) embryos[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2012, 155(1):18-25
    Belanger S E, Rawlings J M, Carr G J. Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals[J]. Environmental Toxicology and Chemistry, 2013, 32(8):1768-1783
    Dong W, Matsumura F, Kullman S W. TCDD induced pericardial edema and relative COX-2 expression in medaka (Oryzias latipes) embryos[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2010, 118(1):213-223
    Iwamatsu T. Stages of normal development in the medaka Oryzias latipes[J]. Mechanisms of Development, 2004, 121(7-8):605-618
    Kinoshita M, Murata K, Naruse K, et al. Medaka:Biology, Management, and Experimental Protocols[M]. John Wiley and Sons Ltd, 2009:345-388
    Belfiore N M, Anderson S L. Effects of contaminants on genetic patterns in aquatic organisms:A review[J]. Mutation Research, 2001, 489(2-3):97-122
    Cheng K C, Hinton D E, Mattingly C J, et al. Aquatic models, genomics and chemical risk management[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2012, 155(1):169-173
    Dong W, Hinton D E, Kullman S W. TCDD disrupts hypural skeletogenesis during medaka embryonic development[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2012, 125(1):91-104
    Villalobos S A, Hamm J T, Teh S J, et al. Thiobencarb-induced embryotoxicity in medaka (Oryzias latipes):Stage-specific toxicity and the protective role of chorion[J]. Aquatic Toxicology, 2000, 48(2-3):309-326
    Karber G. Determination of LD50[J]. Archiv fur Experimentalle Pathologie und Pharmakologie, 1931, 162:480
    Rao X Y, Huang X L, Zhou Z C, et al. An improvement of the 2(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis[J]. Biostatistics, Bioinformatics and Biomathematics, 2013, 3(3):71-85
    González-Doncel M, Larrea M, Sánchez-Fortún S, et al. Influence of water hardening of the chorion on cadmium accumulation in medaka (Oryzias latipes) eggs[J]. Chemosphere, 2003, 52(1):75-83
    Conley J M, Watson A T, Xie L T, et al. Dynamic selenium assimilation, distribution, efflux, and maternal transfer in Japanese medaka fed a diet of se-enriched mayflies[J]. Environmental Science & Technology, 2014, 48(5):2971-2978
    Kalishwaralal K, Jeyabharathi S, Sundar K, et al. A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(2):471-477
    Wiecinski P N, Metz K M, King Heiden T C, et al. Toxicity of oxidatively degraded quantum dots to developing zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2013, 47(16):9132-9139
    Ma Y, Wu M, Li D, et al. Embryonic developmental toxicity of selenite in zebrafish (Danio rerio) and prevention with folic acid[J]. Food and Chemical Toxicology:An International Journal Published for the British Industrial Biological Research Association, 2012, 50(8):2854-2863
    Kim J H, Kang J C. The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium[J]. Ecotoxicology and Environmental Safety, 2014, 104:96-102
    Haratake M, Fujimoto K, Ono M, et al. Selenium binding to human hemoglobin via selenotrisulfide[J]. Biochimica et Biophysica Acta, 2005, 1723(1-3):215-220
    Thisse C, Degrave A, Kryukov G V, et al. Spatial and temporal expression patterns of selenoprotein genes during embryogenesis in zebrafish[J]. Gene Expression Patterns, 2003, 3(4):525-532
    Suzuki K T, Ogra Y. Metabolic pathway for selenium in the body:Speciation by HPLC-ICP MS with enriched Se[J]. Food Additives and Contaminants, 2002, 19(10):974-983
    Maruyama K, Yasumasu S, Iuchi I. Characterization and expression of embryonic and adult globins of the teleost Oryzias latipes (medaka)[J]. Journal of Biochemistry, 2002, 132(4):581-589
    Penglase S, Hamre K, Rasinger J D, et al. Selenium status affects selenoprotein expression, reproduction, and F1 generation locomotor activity in zebrafish (Danio rerio)[J]. The British Journal of Nutrition, 2014, 111(11):1918-1931
    Marty G D, Hinton D E, Cech J J Jr. Notes:Oxygen consumption by larval Japanese medaka with inflated or uninflated swim bladders[J]. Transactions of the American Fisheries Society, 1995, 124(4):623-627
    Johnson J A, Johnson D A, Kraft A D, et al. The Nrf2-ARE pathway[J]. Annals of the New York Academy of Sciences, 2008, 1147(1):61-69
    Thomas J P, Maiorino M, Ursini F, et al. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides[J]. The Journal of Biological Chemistry, 1990, 265(1):454-461
    Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases[J]. Free Radical Biology & Medicine, 1999, 27(9-10):951-965
  • 加载中
计量
  • 文章访问数:  1878
  • HTML全文浏览数:  1878
  • PDF下载数:  66
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-02-07
周旖妮, 王欢, 杨景峰, 于永利, 董武. 过量硒-L-蛋氨酸对青鳉鱼胚胎的毒性作用及与氧化应激机制的关联[J]. 生态毒理学报, 2022, 17(6): 365-375. doi: 10.7524/AJE.1673-5897.20220207001
引用本文: 周旖妮, 王欢, 杨景峰, 于永利, 董武. 过量硒-L-蛋氨酸对青鳉鱼胚胎的毒性作用及与氧化应激机制的关联[J]. 生态毒理学报, 2022, 17(6): 365-375. doi: 10.7524/AJE.1673-5897.20220207001
Zhou Yini, Wang Huan, Yang Jingfeng, Yu Yongli, Dong Wu. Toxicity of Excess Selenium-L-methionine on Medaka Embryos and Its Relationship with Oxidative Stress Mechanism[J]. Asian journal of ecotoxicology, 2022, 17(6): 365-375. doi: 10.7524/AJE.1673-5897.20220207001
Citation: Zhou Yini, Wang Huan, Yang Jingfeng, Yu Yongli, Dong Wu. Toxicity of Excess Selenium-L-methionine on Medaka Embryos and Its Relationship with Oxidative Stress Mechanism[J]. Asian journal of ecotoxicology, 2022, 17(6): 365-375. doi: 10.7524/AJE.1673-5897.20220207001

过量硒-L-蛋氨酸对青鳉鱼胚胎的毒性作用及与氧化应激机制的关联

    通讯作者: 于永利, E-mail: 707928940@qq.com ;  董武, E-mail: dongwu@imun.edu.cn
    作者简介: 周旖妮(1996-),女,硕士研究生,研究方向为生态毒理学,E-mail:zhouyini96@163.com
  • 1. 内蒙古自治区毒物监控及毒理学重点实验室,内蒙古民族大学动物科技学院,通辽028000;
  • 2. 内蒙古民族大学生命科学与食品学院,通辽 028000
基金项目:

内蒙古自治区自然科学基金资助项目(2021LHMS02007,2020MS08103);内蒙古自治区高等学校科学研究项目(NJZC17203);内蒙古自治区高等学校科学研究项目(NJZY22462);内蒙古民族大学科学研究项目(NMDYB18019);内蒙古民族大学博士科研启动基金项目(BS555)

摘要: 采矿和农业经营过程中硒(Se)会释放到水生生态系统中造成环境污染。本研究使用日本青鳉鱼(Oryzias latipes)胚胎作为模式动物研究硒代蛋氨酸(SeMet)的发育毒性和潜在的氧化应激机制。给6~7 hpf (hours post-fertilization, hpf)的青鳉鱼胚胎暴露0 (对照)、0.1、10、100、500和1 000 μmol·L-1的SeMet,并检测胚胎存活率、孵化率、形态学和基因表达,并考察氧化应激关联代谢物质的变化。ICP-MS数据显示有机硒通过绒毛膜影响发育中的胚胎。10~1 000 μmol·L-1 SeMet显著降低了青鳉胚胎的存活率(32.1%~0%),100~1 000 μmol·L-1 SeMet显著减少了孵化率(58%~0%),例外的是10 μmol·L-1浓度组的死亡率与最高浓度组的相当。10~500 μmol·L-1 SeMet造成血液色素强度显著降低(50%~87.5%,P<0.05),此外,SeMet暴露造成部分胚胎的心囊水肿、鱼鳔缺失等表型,总发生率超过51%(P<0.05),也造成游泳行为变化,但差异不显著(P>0.05)。100 μmol·L-1 SeMet也引起氧化应激遗传标记物Nrf2 mRNA(2.1倍,P<0.05)和GPx4 mRNA基因表达的显著增加(3.7倍,P<0.05)。此外发现10~100 μmol·L-1的SeMet引起超氧化物歧化酶(SOD)活性的降低(31%~32.8%,P<0.05),也同时引起活性氧(ROS)(1.37倍~1.23倍,P<0.05)和丙二醛(MDA)(1.39倍~1.40倍,P<0.05)含量的升高。研究表明,SeMet暴露造成青鳉鱼的胚胎毒性(包括形态学和行为学变化)可能与硒造成的氧化应激相关,也可推知有机硒的过量摄入可能会影响人体健康,尤其是在怀孕期间。

English Abstract

参考文献 (48)

返回顶部

目录

/

返回文章
返回