杀虫剂阿维菌素、伊维菌素对斜生栅藻和大型蚤的毒性作用
Toxic Effects of Avermectin and Ivermectin on Scenedesmus obliquus and Daphnia magna
-
摘要: 阿维菌素(avermectin, AVM)作为一种高效生物杀虫剂,是中国农药领域中发展最快的品种;其衍生物伊维菌素(ivermectin, IVM)对多种家畜、宠物体内外寄生虫以及农业节肢动物害虫都有极好的杀灭效果。AVM类药物是高脂溶性的,进入动物体内后残留时间长且代谢很少,大部分是以原药的形式经粪尿排出而进入到环境中。其对非靶标生物的毒性效应及其生态风险值得关注。本研究以AVM和IVM为研究对象,在考察其对水环境初级生产者淡水藻类和浮游动物大型蚤急性毒性的基础上,重点探究2种药物对大型蚤生长繁殖等慢性毒性效应。结果表明,最高暴露浓度640 mg·L-1 AVM和IVM对斜生栅藻生长抑制率分别为55.73%和41.84%;对大型蚤的48 h急性毒性LC50值分别为1.43 μg·L-1和0.51 μg·L-1,表明2种药物对淡水绿藻的生长抑制作用不大,但对大型蚤均为剧毒。0.08、0.16 μg·L-1 AVM和0.015~0.06 μg·L-1 IVM暴露21 d后,大型蚤体长显著降低;而大型蚤产卵数、净生殖率和内禀增长率等生殖指标对2种药物的响应较体长变化更为敏感。Abstract: As a highly effective biological insecticide, abamectin (AVM) is the fastest developing variety in pesticide field in China. Its derivative ivermectin (IVM) has excellent killing effect on internal and external parasites of domestic animals, pets, and agricultural arthropod pests. AVM drugs are highly fat soluble and remain in animals for a long time with little metabolism. Most of them are discharged into the environment in the form of raw drugs through feces and urine. Its toxic effects on non-target organisms and ecological risks deserve attention. Taking AVM and IVM as the research objects, based on the acute toxicity of the two drugs to freshwater algae and Daphnia magna, the chronic toxicity effects of the two drugs on the growth and reproduction of Daphnia magna were investigated. The results showed that the inhibition rates of AVM and IVM at the highest exposure concentration of 640 mg·L-1 were 55.73% and 41.84%, respectively. The LC50 values of 48 h acute toxicity to Daphnia magna were 1.43 μg·L-1 and 0.51 μg·L-1, respectively, indicating that the two drugs had little inhibitory effect on the growth of fresh water green algae, but they were highly toxic to Daphnia magna. After exposure to 0.08, 0.16 μg·L-1 AVM and 0.015~0.06 μg·L-1 IVM for 21 d, the body length of Daphnia magna was significantly reduced after. The response of reproductive indexes, such as spawning number, net reproductive rate and intrinsic growth rate, to the two drugs was more sensitive than the change of body length.
-
Key words:
- avermectin /
- ivermectin /
- Daphnia magna /
- Scenedesmus obliquus /
- toxicity
-
-
Miller T W, Chaiet L, Cole D J, et al. Avermectins, new family of potent anthelmintic agents:Isolation and chromatographic properties[J]. Antimicrobial Agents and Chemotherapy, 1979, 15(3):368-371 付炎, 王于方, 李力更, 等. 天然药物化学史话:阿维菌素和伊维菌素[J]. 中草药, 2017, 48(17):3453-3462 Fu Y, Wang Y F, Li L G, et al. Historical story on natural medicinal chemistry:Avermectin and ivermectin[J]. Chinese Traditional and Herbal Drugs, 2017, 48(17):3453-3462(in Chinese)
Page A P. The sensory amphidial structures of Caenorhabditis elegans are involved in macrocyclic lactone uptake and anthelmintic resistance[J]. International Journal for Parasitology, 2018, 48(13):1035-1042 Lozano I E, Piazza Y G, Babay P, et al. Ivermectin:A multilevel approach to evaluate effects in Prochilodus lineatus (Valenciennes, 1836) (Characiformes, Prochilodontidae), an inland fishery species[J]. The Science of the Total Environment, 2021, 800:149515 吴昊, 江敏, 彭章晓, 等. 伊维菌素在环境中的降解及其对七种水生生物的急性毒性研究[J]. 水生生物学报, 2012, 36(5):965-970 Wu H, Jiang M, Peng Z X, et al. Research on the degradation of ivermectin and its acute toxicity to seven aquatic organisms[J]. Acta Hydrobiologica Sinica, 2012, 36(5):965-970(in Chinese)
Tišler T, Eržen N K. Abamectin in the aquatic environment[J]. Ecotoxicology, 2006, 15(6):495-502 Zhang P, Ni H F, Zhang Y, et al. Ivermectin confers its cytotoxic effects by inducing AMPK/mTOR-mediated autophagy and DNA damage[J]. Chemosphere, 2020, 259:127448 Croce R, Cinà F, Lombardo A, et al. Aquatic toxicity of several textile dye formulations:Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata[J]. Ecotoxicology and Environmental Safety, 2017, 144:79-87 Heckmann L H, Sibly R M, Connon R, et al. Systems biology meets stress ecology:Linking molecular and organismal stress responses in Daphnia magna[J]. Genome Biology, 2008, 9(2):R40 Zhang Y X, Guo P Y, Wu Y M, et al. Evaluation of the acute effects and oxidative stress responses of phenicol antibiotics and suspended particles in Daphnia magna[J]. Environmental Toxicology and Chemistry, 2021, 40(9):2463-2473 中国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 化学农药环境安全评价试验准则第14部分:藻类生长抑制试验:GB/T 31270.14-2014[S]. 北京:中国标准出版社, 2015 International Organization for Standardization (ISO). Water quality. Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)[S]. Geneva:ISO, 1996 杨晓凡, 陆光华, 刘建超, 等. 环境相关浓度下的药物对大型蚤的多代慢性毒性[J]. 中国环境科学, 2013, 33(3):538-545 Yang X F, Lu G H, Liu J C, et al. Multigenerational chronic effects of pharmaceuticals on Daphnia magna at environmentally relevant concentrations[J]. China Environmental Science, 2013, 33(3):538-545(in Chinese)
张卫卫, 符贵红, 王元, 等. 阿维菌素在模拟水产养殖生态系统中的蓄积与消除规律[J]. 中国水产科学, 2016, 23(1):225-232 Zhang W W, Fu G H, Wang Y, et al. Accumulation and elimination of avermectin in a simulated aquaculture ecosystem[J]. Journal of Fishery Sciences of China, 2016, 23(1):225-232(in Chinese)
王萌, 杨叶, 吉哲蓉, 等. 吡虫啉和阿维菌素淋溶土壤对蚯蚓及其淋出液对浮萍急性毒性和生理生化指标的影响[J]. 农药, 2017, 56(6):437-442 Wang M, Yang Y, Ji Z R, et al. Effects of imidacloprid and abamectin leaching soil on earthworm and these leaching solution on the physiological and biochemical indices of duckweed[J]. Agrochemicals, 2017, 56(6):437-442(in Chinese)
董加沙, 何绪刚, 邓闵, 等. 阿维菌素对池塘水质和浮游生物群落结构的短期影响[J]. 水产科学, 2015, 34(9):546-554 Dong J S, He X G, Deng M, et al. Short-term effects of abamectin on water quality and community structure of plankton in freshwater aquaculture ponds[J]. Fisheries Science, 2015, 34(9):546-554(in Chinese)
Macar T K. Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L.[J]. Environmental Science and Pollution Research, 2021, 28(2):2391-2399 Muhammad S, Tan J G, Deng P C, et al. Pesticide application has little influence on coding and non-coding gene expressions in rice[J]. BMC Genomics, 2019, 20(1):1009 中国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 化学农药环境安全评价试验准则第21部分:大型甲壳类生物毒性试验:GB/T 31270.21-2014[S]. 北京:中国标准出版社, 2015 Raftery T D, Volz D C. Abamectin induces rapid and reversible hypoactivity within early zebrafish embryos[J]. Neurotoxicology and Teratology, 2015, 49:10-18 王锡珍, 陆宏达. 阿维菌素对几种淡水水生动物的急性毒性作用[J]. 环境与健康杂志, 2009, 26(7):593-597 Wang X Z, Lu H D. Acute toxic effect of abamectin on fresh-water aquatic animals[J]. Journal of Environment and Health, 2009, 26(7):593-597(in Chinese)
邢跃楠, 王诗跃. 敌百虫和伊维菌素对近邻剑水蚤的急性毒性[J]. 现代畜牧兽医, 2014(3):41-43 Xing Y N, Wang S Y. The acute toxicity of dipterex and ivermectin on Cyclops vicinus[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2014 (3):41-43(in Chinese)
张欣, 赵文, 徐峰. 三种除草剂对大型溞Daphnia magna存活、生长和繁殖的影响[J]. 农药学学报, 2009, 11(1):121-125 Zhang X, Zhao W, Xu F. Effects of three herbicides on the survival, growth and reproduction of Daphnia magna[J]. Chinese Journal of Pesticide Science, 2009, 11(1):121-125(in Chinese)
Yuan S L, Li H, Dang Y, et al. Effects of triphenyl phosphate on growth, reproduction and transcription of genes of Daphnia magna[J]. Aquatic Toxicology, 2018, 195:58-66 Lopes C, Charles S, Vollat B, et al. Toxicity of ivermectin on cladocerans:Comparison of toxic effects on Daphnia and Ceriodaphnia species[J]. Environmental Toxicology and Chemistry, 2009, 28(10):2160-2166 吴慧明, 陈颖, 胡婷婷, 等. 农药和重金属复合污染物对大型溞的毒性效应[J]. 农药学学报, 2017, 19(6):716-722 Wu H M, Chen Y, Hu T T, et al. Combined toxicity of pesticide and heavy metal to Daphnia magna[J]. Chinese Journal of Pesticide Science, 2017, 19(6):716-722(in Chinese)
Seyoum A, Pradhan A, Jass J, et al. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna[J]. The Science of the Total Environment, 2020, 737:139682 Mahmoud H K. The stress of abamectin toxicity reduced water quality, growth performance, immunity and antioxidant capacity of Oreochromis niloticus fish:Modulatory role of Simmondsia chinensis extract as a dietary supplement[J]. Aquaculture, 2021, 534:736247 Huang Y, Hong Y H, Huang Z Q, et al. Cytotoxicity induced by abamectin exposure in haemocytes of Chinese mitten crab, Eriocheir sinensis[J]. Environmental Toxicology and Pharmacology, 2020, 77:103384 期刊类型引用(13)
1. 陈思琪,段晓虎,肖书虎,杜丛,颜秉斐,韩璐. 碱性生物炭强化脱氮效能及定向调控机制. 环境科学与技术. 2024(09): 13-22 . 百度学术
2. 冯思琪,郭媛,权晨妍,李家科,张冰,时文歆. 稻田土强化好氧颗粒污泥同步除污资源化的效果与机制. 环境工程学报. 2024(10): 2908-2917 . 本站查看
3. 陈希,胡彬,曹旭,宫延哲,张媛媛,王瀚. 好氧颗粒污泥对活性黑5染料的降解. 西安工程大学学报. 2023(02): 32-39 . 百度学术
4. 毕豪华,高春娣,刘奕伟,邢一言,彭永臻. pH值调控方法对剩余污泥厌氧发酵的影响. 中国环境科学. 2023(09): 4648-4657 . 百度学术
5. 郑于聪,杨乾,杨丹,刘营,孙转转,王晓昌. 芦苇和香蒲种间竞争对混合种植人工湿地污染河水净化特性的影响. 环境科学学报. 2022(02): 156-163 . 百度学术
6. 张克峰,王琪琨,丁万德,吕东晓. 香茅/聚砜缓释碳源SBR反应器脱氮效能研究. 工业水处理. 2022(12): 128-135 . 百度学术
7. 郑力,江鹰,程晓夏. 铁屑耦合固相反硝化对低碳氮比废水中总氮的处理. 环境工程学报. 2022(11): 3716-3727 . 本站查看
8. 王维红,包文婷,王燕杉. 粒径对番茄酱废水好氧颗粒污泥性能的影响. 精细化工. 2021(02): 380-386 . 百度学术
9. 付雪,毛佩玥,赵鑫磊,邢嘉伟,秦彦荣,陈永志. 曝气量和盐度对硝化型颗粒污泥脱氮速率及粒径分布的影响. 环境科学学报. 2021(04): 1293-1302 . 百度学术
10. 孔德枫,赵雅光. 好氧颗粒污泥形成机制及影响因素研究. 科技创新与应用. 2021(26): 82-85 . 百度学术
11. 陈颖,陈垚,李聪,袁绍春. 好氧颗粒污泥结构特点及稳定性研究进展. 工业水处理. 2021(10): 28-35 . 百度学术
12. 包文婷,康增彦,王维红. 好氧颗粒污泥研究进展及处理新疆番茄酱废水的应用前景. 应用化工. 2021(10): 2861-2865 . 百度学术
13. 王维红,董星辽,肖飞,包文婷. 颗粒污泥与絮体污泥占比对番茄酱废水降解效能的影响. 工程科学学报. 2020(10): 1381-1387 . 百度学术
其他类型引用(17)
-

计量
- 文章访问数: 2282
- HTML全文浏览数: 2282
- PDF下载数: 83
- 施引文献: 30