黄河流域阿特拉津的水质基准研究

刘萌硕, 王召丁, 马云龙, 刘梦洁, 高曌, 李宛星, 王莉. 黄河流域阿特拉津的水质基准研究[J]. 生态毒理学报, 2022, 17(6): 400-408. doi: 10.7524/AJE.1673-5897.20210901002
引用本文: 刘萌硕, 王召丁, 马云龙, 刘梦洁, 高曌, 李宛星, 王莉. 黄河流域阿特拉津的水质基准研究[J]. 生态毒理学报, 2022, 17(6): 400-408. doi: 10.7524/AJE.1673-5897.20210901002
Liu Mengshuo, Wang Zhaoding, Ma Yunlong, Liu Mengjie, Gao Zhao, Li Wanxing, Wang Li. Water Quality Criteria for Atrazine in the Yellow River Basin[J]. Asian journal of ecotoxicology, 2022, 17(6): 400-408. doi: 10.7524/AJE.1673-5897.20210901002
Citation: Liu Mengshuo, Wang Zhaoding, Ma Yunlong, Liu Mengjie, Gao Zhao, Li Wanxing, Wang Li. Water Quality Criteria for Atrazine in the Yellow River Basin[J]. Asian journal of ecotoxicology, 2022, 17(6): 400-408. doi: 10.7524/AJE.1673-5897.20210901002

黄河流域阿特拉津的水质基准研究

    作者简介: 刘萌硕(1997-),女,硕士研究生,研究方向为水质基准与水生态评价,E-mail:mengshuoliu@126.com
    通讯作者: 王莉, E-mail: xiawangli@zzu.edu.cn
  • 基金项目:

    国家水体污染控制与治理科技重大专项(2015ZX07204-002-05);河南省高等学校重点科研项目(19B610004);郑州大学大学生创新创业训练项目(20202cxcy127)

  • 中图分类号: X171.5

Water Quality Criteria for Atrazine in the Yellow River Basin

    Corresponding author: Wang Li, xiawangli@zzu.edu.cn
  • Fund Project:
  • 摘要: 为保护我国黄河流域的水生生物,基于文献整理了黄河流域的水生生物清单,并采用物种敏感度分布法和毒性百分数排序法对阿特拉津水生生物水质基准进行推导。首先通过比较分析,将毒性百分数排序法推导得出的短期水质基准值14.20 μg·L-1和长期水质基准值2.85 μg·L-1作为黄河流域阿特拉津的水生生物水质基准推荐值。其次通过分析相关水质标准中阿特拉津的限值,发现推导出的长期水质基准值与《中国地表水环境质量标准》阿特拉津的浓度阈值十分接近。研究结果可以为黄河流域水生生物保护和农业高质量发展提供数据支撑。
  • 加载中
  • Lin Z, Zhen Z, Liang Y Q, et al. Changes in atrazine speciation and the degradation pathway in red soil during the vermiremediation process[J]. Journal of Hazardous Materials, 2019, 364:710-719
    Yue L, Ge C J, Feng D, et al. Adsorption-desorption behavior of atrazine on agricultural soils in China[J]. Journal of Environmental Sciences (China), 2017, 57:180-189
    Sass J B, Colangelo A. European Union bans atrazine, while the United States negotiates continued use[J]. International Journal of Occupational and Environmental Health, 2006, 12(3):260-267
    Tortella G R, Rubilar O, Cea M, et al. Sorption parameters of carbendazim and iprodione in the presence of copper nanoparticles in two different soils[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(3):469-476
    Mudhoo A, Garg V K S. Sorption, transport and transformation of atrazine in soils, minerals and composts:A review[J]. Pedosphere, 2011, 21(1):11-25
    李晓宇, 任仲宇, 李芳春, 等. 两种吸附模型对阿特拉津在壤质砂土中的模拟效果分析[J]. 农业环境科学学报, 2020, 39(1):191-200

    Li X Y, Ren Z Y, Li F C, et al. Analysis of simulated migration of atrazine in a type of loamy sand based on two adsorption models[J]. Journal of Agro-Environment Science, 2020, 39(1):191-200(in Chinese)

    Wu B, Arnold W A, Ma L M. Photolysis of atrazine:Role of triplet dissolved organic matter and limitations of sensitizers and quenchers[J]. Water Research, 2021, 190:116659
    Aggelopoulos C A, Tataraki D, Rassias G. Degradation of atrazine in soil by dielectric barrier discharge plasma-Potential singlet oxygen mediation[J]. Chemical Engineering Journal, 2018, 347:682-694
    Niu B L, Cai J Z, Song W J, et al. Intermediate accumulation and toxicity reduction during the selective photoelectrochemical process of atrazine in complex water bodies[J]. Water Research, 2021, 205:117663
    Zhou R, Liu R, Li W X, et al. The use of different sublethal endpoints to monitor atrazine toxicity in nematode Caenorhabditis elegans[J]. Chemosphere, 2021, 274:129845
    Castro G, Rodríguez I, Ramil M, et al. Evaluation of nitrate effects in the aqueous photodegradability of selected phenolic pollutants[J]. Chemosphere, 2017, 185:127-136
    Albanito L, Lappano R, Madeo A, et al. G-protein-coupled receptor 30 and estrogen receptor-alpha are involved in the proliferative effects induced by atrazine in ovarian cancer cells[J]. Environmental Health Perspectives, 2008, 116(12):1648-1655
    Ohlson C G. Testicular cancer and occupational exposures with a focus on xenoestrogens in polyvinyl chloride plastics[J]. Chemosphere, 2000, 40(9-11):1277-1282
    Xie H J, Wang X P, Chen J W, et al. Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China[J]. The Science of the Total Environment, 2019, 656:946-951
    Xue Y, Zhang Z M, Zhang R R, et al. Aquaculture-derived distribution, partitioning, migration, and transformation of atrazine and its metabolites in seawater, sediment, and organisms from a typical semi-closed mariculture bay[J]. Environmental Pollution, 2021, 271:116362
    梁霞. 长江三角洲流域溴氰菊酯和莠去津水生生物基准研究[D]. 南京:南京师范大学, 2015:53-68 Liang X. The aquatic organism criteria deltamethrin and atrazine in the Yangtze River Delta region[D]. Nanjing:Nanjing Normal University, 2015:53

    -68(in Chinese)

    Chen Y P, Fu B J, Zhao Y, et al. Sustainable development in the Yellow River Basin:Issues and strategies[J]. Journal of Cleaner Production, 2020, 263:121223
    徐雄, 李春梅, 孙静, 等. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016, 11(2):347-354

    Xu X, Li C M, Sun J, et al. Residue characteristics and ecological risk assessment of twenty-nine pesticidesin surface water of major river-basin in China[J]. Asian Journal of Ecotoxicology, 2016, 11(2):347-354(in Chinese)

    王婷, 张红, 史雅娟, 等. 我国硒淡水水生生物水质基准值推导[J]. 环境科学学报, 2020, 40(4):1278-1285

    Wang T, Zhang H, Shi Y J, et al. Derivation of freshwater quality criteria of selenium for protection of aquatic organisms in China[J]. Acta Scientiae Circumstantiae, 2020, 40(4):1278-1285(in Chinese)

    曾勇, 孙霄, 赖雨薇, 等. 基于物种敏感性分布的多环芳烃水生态系统风险评价方法与应用[J]. 生态毒理学报, 2020, 15(5):235-243

    Zeng Y, Sun X, Lai Y W, et al. Aquatic ecosystem risk assessment of polycyclic aromatic hydrocarbons based on species sensitivity distribution[J]. Asian Journal of Ecotoxicology, 2020, 15(5):235-243(in Chinese)

    汪贞, 杨先海, 范德玲, 等. 应用物种敏感性分布评估三氯卡班对我国淡水环境的生态风险[J]. 生态与农村环境学报, 2017, 33(10):921-927

    Wang Z, Yang X H, Fan D L, et al. Ecological risk assessment of triclocarban in fresh water of China by species sensitivity distribution[J]. Journal of Ecology and Rural Environment, 2017, 33(10):921-927(in Chinese)

    郑磊, 杨文龙, 董亮, 等. 扑草净水环境质量基准及风险评估[J]. 中国环境科学, 2021, 41(8):3825-3831

    Zheng L, Yang W L, Dong L, et al. Derivation of water quality criteria and ecological risk assessment for prometryn[J]. China Environmental Science, 2021, 41(8):3825-3831(in Chinese)

    陈曲, 郭继香, 孙乾耀, 等. 甲萘威的淡水水生生物水质基准研究[J]. 环境科学研究, 2016, 29(1):84-91

    Chen Q, Guo J X, Sun Q Y, et al. Aquatic life ambient freshwater quality criteria for carbaryl in China[J]. Research of Environmental Sciences, 2016, 29(1):84-91(in Chinese)

    郭文景, 张志勇, 符志友, 等. 锑的淡水水质基准及其对我国水质标准的启示[J]. 中国环境科学, 2020, 40(4):1628-1636

    Guo W J, Zhang Z Y, Fu Z Y, et al. Derivation of aquatic life water quality criteria for antimonyin freshwater and its implication for water quality standard in China[J]. China Environmental Science, 2020, 40(4):1628-1636(in Chinese)

    Botelho R G, Santos J B D, Fernandes K M, et al. Effects of atrazine and picloram on grass carp:Acute toxicity and histological assessment[J]. Toxicological & Environmental Chemistry, 2012, 94(1):121-127
    Bathe R, Sachsse K, Ullmann L, et al. The evaluation of fish toxicity in the laboratory, proceedings of the european society of toxicology[J]. European Societies, 1975, 16(1):113-124
    Birge W J, Black J A, Westerman A G, et al. Fish and amphibian embryos-A model system for evaluating teratogenicity[J]. Fundamental and Applied Toxicology, 1983, 3(4):237-242
    Mayer F, Ellersieck M. Manual of acute toxicity:Interpretation and data base for 410 chemicals and 66 species of freshwater animals[R]. Washington DC:United States Department of the Interior, Fish and Wildlife Service (USA), 1986
    Elderberry T, Jonathan A, Thurman N, et al. Pesticide Ecotoxicity Database (Formerly:Environmental Effects Database (EEDB))[R]. Washington DC:Office of Pesticide Programs, Environmental Fate and Effects Division, 2000
    韩英, 赵荣伟, 郝其睿, 等. 阿特拉津和毒死蜱对鲤胚胎发育的影响[J]. 东北农业大学学报, 2015, 46(7):76-82

    , 89 Han Y, Zhao R W, Hao Q R, et al. Effect of atrazine and chlorpyrifos on embryonic of common carp (Cyprinus carpio L.)[J]. Journal of Northeast Agricultural University, 2015, 46(7):76-82, 89(in Chinese)

    王坡, 王芳, 张瑞华, 等. 阿特拉津对泥鳅性腺及性别分化相关基因的影响[J]. 河南师范大学学报(自然科学版), 2017, 45(3):109-117 Wang P, Wang F, Zhang R H, et al. Effects of atrazine on sex differentiation and expression pattern of related genes in loach[J]. Journal of Henan Normal University (Natural Science Edition), 2017, 45(3):109-117(in Chinese)
    曹慧. 阿特拉津对黑斑侧褶蛙免疫毒效应及机理研究[D]. 杭州:杭州师范大学, 2012:9-13 Cao H. Immunotoxicity and mechanisms induced by atrazine on the frog (Pelophylax nigromaculata)[D]. Hangzhou:Hangzhou Normal University, 2012:9

    -13(in Chinese)

    Palma P, Palma V L, Fernandes R M, et al. Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, relative to their concentrations in surface waters from the Alentejo region of Portugal[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(5):485-489
    Rosa R, Materatski P, Moreira-Santos M, et al. A scaled-up system to evaluate zooplankton spatial avoidance and the population immediate decline concentration[J]. Environmental Toxicology and Chemistry, 2012, 31(6):1301-1305
    Choi H J, Kim D, Lee T J. Photochemical degradation of atrazine in UV and UV/H2O2 process:Pathways and toxic effects of products[J]. Journal of Environmental Science and Health, Part B, 2013, 48(11):927-934
    Moreira R A, da Silva Mansano A, da Silva L C, et al. A comparative study of the acute toxicity of the herbicide atrazine to cladocerans Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera[J]. Acta Limnologica Brasiliensia, 2014, 26(1):1-8
    Sengupta N. The HR96 activator, atrazine, reduces sensitivity of D. magna to triclosan and DHA[J]. Chemosphere, 2015, 128:299-306
    Macek K J, Buxton K S, Sauter S, et al. Chronic toxicity of atrazine to selected aquatic invertebrates and fishes[R]. Washington DC:United States Environmental Protection Agency, 1976
    Marchini S, Passerini L, Cesareo D, et al. Herbicidal triazines:Acute toxicity on Daphnia, fish, and plants and analysis of its relationships with structural factors[J]. Ecotoxicology and Environmental Safety, 1988, 16(2):148-157
    Johnson I C, Keller A E, Zam S G. Method for conducting acute toxicity tests with the early life stages of freshwater mussels[J]. ASTM Special Technical Publication, 1993, 1(1):381-396
    He H Z, Yu J, Chen G K, et al. Acute toxicity of butachlor and atrazine to freshwater green alga Scenedesmus obliquus and cladoceran Daphnia carinata[J]. Ecotoxicology and Environmental Safety, 2012, 80:91-96
    Phyu Y L, Warne M S J, Lim R P. Toxicity of atrazine and molinate to the cladoceran Daphnia carinata and the effect of river water and bottom sediment on their bioavailability[J]. Archives of Environmental Contamination and Toxicology, 2004, 46(3):308-315
    Larras F, Keck F, Montuelle B, et al. Linking diatom sensitivity to herbicides to phylogeny:A step forward for biomonitoring?[J]. Environmental Science & Technology, 2014, 48(3):1921-1930
    Larras F, Montuelle B, Bouchez A. Assessment of toxicity thresholds in aquatic environments:Does benthic growth of diatoms affect their exposure and sensitivity to herbicides?[J]. The Science of the Total Environment, 2013, 463-464:469-477
    Seguin F, Leboulanger C, Rimet F, et al. Effects of atrazine and nicosulfuron on phytoplankton in systems of increasing complexity[J]. Archives of Environmental Contamination and Toxicology, 2001, 40(2):198-208
    Bérard A, Dorigo U, Mercier I, et al. Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva[J]. Chemosphere, 2003, 53(8):935-944
    Larras F, Bouchez A, Rimet F, et al. Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms[J]. PLoS One, 2012, 7(8):e44458
    Chamsi O, Pinelli E, Faucon B, et al. Effects of herbicide mixtures on freshwater microalgae with the potential effect of a safener[J]. Annales de Limnologie-International Journal of Limnology, 2019, 55:3
    Schäfer H, Wenzel A, Fritsche U, et al. Long-term effects of selected xenobiotica on freshwater green algae:Development of a flow-through test system[J]. Science of the Total Environment, 1993, 134:735-740
    Schäfer H, Hettler H, Fritsche U, et al. Biotests using unicellular algae and ciliates for predicting long-term effects of toxicants[J]. Ecotoxicology and Environmental Safety, 1994, 27(1):64-81
    Fernández-Naveira A, Rioboo C, Cid A, et al. Atrazine induced changes in elemental and biochemical composition and nitrate reductase activity in Chlamydomonas reinhardtii[J]. European Journal of Phycology, 2016, 51(3):338-345
    Shitanda I, Takada K, Sakai Y, et al. Compact amperometric algal biosensors for the evaluation of water toxicity[J]. Analytica Chimica Acta, 2005, 530(2):191-197
    Fairchild J F, Ruessler D S, Carlson A R. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor[J]. Environmental Toxicology and Chemistry, 1998, 17(9):1830-1834
    Ma J Y, Xu L, Wang S, et al. Toxicity of 40 herbicides to the green alga Chlorella vulgaris[J]. Ecotoxicology and Environmental Safety, 2002, 51(2):128-132
    Khan A, Shah N, Muhammad M, et al. Quantitative determination of lethal concentration LC50 of atrazine on biochemical parameters; total protein and serum albumin of freshwater fish grass carp (Ctenopharyngodon idella)[J]. Polish Journal of Environmental Studies, 2016, 25(4):1555-1561
    Brüggemann R. Applying Hasse diagram technique for the evaluation of toxicological fish tests[J]. Chemosphere, 1995, 30(9):1767-1780
    陈丽红, 张瑜, 丁婷婷, 等. 红霉素水生生物基准推导和对中国部分水体生态风险初步评估[J]. 生态环境学报, 2020, 29(8):1610-1616

    Chen L H, Zhang Y, Ding T T, et al. Development of aquatic life criteria for erythromycin and preliminary assessment for the ecological risk of some water bodies in China[J]. Ecology and Environmental Sciences, 2020, 29(8):1610-1616(in Chinese)

    陈莉, 蔡文倩, 韩雪萌, 等. 镉对渤海本地种的急性毒性效应及其海水水质基准推导[J]. 中国海洋大学学报(自然科学版), 2021, 51(9):93-102 Chen L, Cai W Q, Han X M, et al. Acute effect of cadmium on native species and seawater quality criteria derivation in the Bohai Sea[J]. Periodical of Ocean University of China, 2021, 51(9):93-102(in Chinese)
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.8 %DOWNLOAD: 5.8 %HTML全文: 86.0 %HTML全文: 86.0 %摘要: 8.2 %摘要: 8.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 86.2 %其他: 86.2 %Ashburn: 1.2 %Ashburn: 1.2 %Beijing: 2.7 %Beijing: 2.7 %Beiwenquan: 0.1 %Beiwenquan: 0.1 %Chengdu: 0.2 %Chengdu: 0.2 %Guangzhou Shi: 0.1 %Guangzhou Shi: 0.1 %Guiyang: 0.1 %Guiyang: 0.1 %Hangzhou: 0.1 %Hangzhou: 0.1 %Hohhot Shi: 0.1 %Hohhot Shi: 0.1 %Jinrongjie: 0.2 %Jinrongjie: 0.2 %Kunshan: 0.1 %Kunshan: 0.1 %Montreal: 0.1 %Montreal: 0.1 %Mountain View: 0.3 %Mountain View: 0.3 %Nanjing: 0.1 %Nanjing: 0.1 %Nanyang: 0.1 %Nanyang: 0.1 %Newark: 0.6 %Newark: 0.6 %Ningbo: 0.1 %Ningbo: 0.1 %Qingdao: 0.1 %Qingdao: 0.1 %Shanghai: 0.1 %Shanghai: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Shizishan: 0.2 %Shizishan: 0.2 %Suzhou: 0.1 %Suzhou: 0.1 %Syracuse: 0.1 %Syracuse: 0.1 %Tianjin Municipality: 0.1 %Tianjin Municipality: 0.1 %Wuhan: 0.3 %Wuhan: 0.3 %Xi'an: 0.1 %Xi'an: 0.1 %Xingfeng: 0.4 %Xingfeng: 0.4 %Xintai: 0.1 %Xintai: 0.1 %Xuzhou: 0.1 %Xuzhou: 0.1 %XX: 4.2 %XX: 4.2 %Yuncheng: 0.1 %Yuncheng: 0.1 %上海: 0.1 %上海: 0.1 %丽水: 0.1 %丽水: 0.1 %亚特兰大: 0.1 %亚特兰大: 0.1 %北京: 0.3 %北京: 0.3 %北海: 0.1 %北海: 0.1 %张家口: 0.1 %张家口: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.1 %深圳: 0.1 %衢州: 0.1 %衢州: 0.1 %贵阳: 0.1 %贵阳: 0.1 %郑州: 0.4 %郑州: 0.4 %金华: 0.1 %金华: 0.1 %长沙: 0.1 %长沙: 0.1 %其他AshburnBeijingBeiwenquanChengduGuangzhou ShiGuiyangHangzhouHohhot ShiJinrongjieKunshanMontrealMountain ViewNanjingNanyangNewarkNingboQingdaoShanghaiShenzhenShijiazhuangShizishanSuzhouSyracuseTianjin MunicipalityWuhanXi'anXingfengXintaiXuzhouXXYuncheng上海丽水亚特兰大北京北海张家口武汉济南深圳衢州贵阳郑州金华长沙Highcharts.com
计量
  • 文章访问数:  1989
  • HTML全文浏览数:  1989
  • PDF下载数:  43
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-09-01
刘萌硕, 王召丁, 马云龙, 刘梦洁, 高曌, 李宛星, 王莉. 黄河流域阿特拉津的水质基准研究[J]. 生态毒理学报, 2022, 17(6): 400-408. doi: 10.7524/AJE.1673-5897.20210901002
引用本文: 刘萌硕, 王召丁, 马云龙, 刘梦洁, 高曌, 李宛星, 王莉. 黄河流域阿特拉津的水质基准研究[J]. 生态毒理学报, 2022, 17(6): 400-408. doi: 10.7524/AJE.1673-5897.20210901002
Liu Mengshuo, Wang Zhaoding, Ma Yunlong, Liu Mengjie, Gao Zhao, Li Wanxing, Wang Li. Water Quality Criteria for Atrazine in the Yellow River Basin[J]. Asian journal of ecotoxicology, 2022, 17(6): 400-408. doi: 10.7524/AJE.1673-5897.20210901002
Citation: Liu Mengshuo, Wang Zhaoding, Ma Yunlong, Liu Mengjie, Gao Zhao, Li Wanxing, Wang Li. Water Quality Criteria for Atrazine in the Yellow River Basin[J]. Asian journal of ecotoxicology, 2022, 17(6): 400-408. doi: 10.7524/AJE.1673-5897.20210901002

黄河流域阿特拉津的水质基准研究

    通讯作者: 王莉, E-mail: xiawangli@zzu.edu.cn
    作者简介: 刘萌硕(1997-),女,硕士研究生,研究方向为水质基准与水生态评价,E-mail:mengshuoliu@126.com
  • 郑州大学生态与环境学院,郑州 450001
基金项目:

国家水体污染控制与治理科技重大专项(2015ZX07204-002-05);河南省高等学校重点科研项目(19B610004);郑州大学大学生创新创业训练项目(20202cxcy127)

摘要: 为保护我国黄河流域的水生生物,基于文献整理了黄河流域的水生生物清单,并采用物种敏感度分布法和毒性百分数排序法对阿特拉津水生生物水质基准进行推导。首先通过比较分析,将毒性百分数排序法推导得出的短期水质基准值14.20 μg·L-1和长期水质基准值2.85 μg·L-1作为黄河流域阿特拉津的水生生物水质基准推荐值。其次通过分析相关水质标准中阿特拉津的限值,发现推导出的长期水质基准值与《中国地表水环境质量标准》阿特拉津的浓度阈值十分接近。研究结果可以为黄河流域水生生物保护和农业高质量发展提供数据支撑。

English Abstract

参考文献 (58)

返回顶部

目录

/

返回文章
返回