黄河流域阿特拉津的水质基准研究
Water Quality Criteria for Atrazine in the Yellow River Basin
-
摘要: 为保护我国黄河流域的水生生物,基于文献整理了黄河流域的水生生物清单,并采用物种敏感度分布法和毒性百分数排序法对阿特拉津水生生物水质基准进行推导。首先通过比较分析,将毒性百分数排序法推导得出的短期水质基准值14.20 μg·L-1和长期水质基准值2.85 μg·L-1作为黄河流域阿特拉津的水生生物水质基准推荐值。其次通过分析相关水质标准中阿特拉津的限值,发现推导出的长期水质基准值与《中国地表水环境质量标准》阿特拉津的浓度阈值十分接近。研究结果可以为黄河流域水生生物保护和农业高质量发展提供数据支撑。Abstract: In order to protect aquatic organisms of the Yellow River Basin of China, this study reviewed the catalogue of aquatic organisms in the Yellow River Basin. For atrazine, its criteria of aquatic biological water quality (ABWQ) was deduced by employing both species sensitivity distribution curve method and toxicity percentage ranking method. Firstly, the comparative analysis based on the toxicity percentage ranking method deduced the short-term and long-term ABWQ were 14.20 μg·L-1 and 2.85 μg·L-1 respectively. They were regarded as the recommend values for atrazine’s ABWQ values in the Yellow River Basin. Secondly, by comparing with the threshold values of atrazine in other relevant waters, it is found that the deduced long-term ABWQ value was extremely close to the threshold of atrazine in the Environmental Quality Standards for Surface Water of China. The research results can provide data for supporting the protection of aquatic organisms in the Yellow River Basin and the high-quality development of agriculture.
-
-
Lin Z, Zhen Z, Liang Y Q, et al. Changes in atrazine speciation and the degradation pathway in red soil during the vermiremediation process[J]. Journal of Hazardous Materials, 2019, 364:710-719 Yue L, Ge C J, Feng D, et al. Adsorption-desorption behavior of atrazine on agricultural soils in China[J]. Journal of Environmental Sciences (China), 2017, 57:180-189 Sass J B, Colangelo A. European Union bans atrazine, while the United States negotiates continued use[J]. International Journal of Occupational and Environmental Health, 2006, 12(3):260-267 Tortella G R, Rubilar O, Cea M, et al. Sorption parameters of carbendazim and iprodione in the presence of copper nanoparticles in two different soils[J]. Journal of Soil Science and Plant Nutrition, 2019, 19(3):469-476 Mudhoo A, Garg V K S. Sorption, transport and transformation of atrazine in soils, minerals and composts:A review[J]. Pedosphere, 2011, 21(1):11-25 李晓宇, 任仲宇, 李芳春, 等. 两种吸附模型对阿特拉津在壤质砂土中的模拟效果分析[J]. 农业环境科学学报, 2020, 39(1):191-200 Li X Y, Ren Z Y, Li F C, et al. Analysis of simulated migration of atrazine in a type of loamy sand based on two adsorption models[J]. Journal of Agro-Environment Science, 2020, 39(1):191-200(in Chinese)
Wu B, Arnold W A, Ma L M. Photolysis of atrazine:Role of triplet dissolved organic matter and limitations of sensitizers and quenchers[J]. Water Research, 2021, 190:116659 Aggelopoulos C A, Tataraki D, Rassias G. Degradation of atrazine in soil by dielectric barrier discharge plasma-Potential singlet oxygen mediation[J]. Chemical Engineering Journal, 2018, 347:682-694 Niu B L, Cai J Z, Song W J, et al. Intermediate accumulation and toxicity reduction during the selective photoelectrochemical process of atrazine in complex water bodies[J]. Water Research, 2021, 205:117663 Zhou R, Liu R, Li W X, et al. The use of different sublethal endpoints to monitor atrazine toxicity in nematode Caenorhabditis elegans[J]. Chemosphere, 2021, 274:129845 Castro G, Rodríguez I, Ramil M, et al. Evaluation of nitrate effects in the aqueous photodegradability of selected phenolic pollutants[J]. Chemosphere, 2017, 185:127-136 Albanito L, Lappano R, Madeo A, et al. G-protein-coupled receptor 30 and estrogen receptor-alpha are involved in the proliferative effects induced by atrazine in ovarian cancer cells[J]. Environmental Health Perspectives, 2008, 116(12):1648-1655 Ohlson C G. Testicular cancer and occupational exposures with a focus on xenoestrogens in polyvinyl chloride plastics[J]. Chemosphere, 2000, 40(9-11):1277-1282 Xie H J, Wang X P, Chen J W, et al. Occurrence, distribution and ecological risks of antibiotics and pesticides in coastal waters around Liaodong Peninsula, China[J]. The Science of the Total Environment, 2019, 656:946-951 Xue Y, Zhang Z M, Zhang R R, et al. Aquaculture-derived distribution, partitioning, migration, and transformation of atrazine and its metabolites in seawater, sediment, and organisms from a typical semi-closed mariculture bay[J]. Environmental Pollution, 2021, 271:116362 梁霞. 长江三角洲流域溴氰菊酯和莠去津水生生物基准研究[D]. 南京:南京师范大学, 2015:53-68 Liang X. The aquatic organism criteria deltamethrin and atrazine in the Yangtze River Delta region[D]. Nanjing:Nanjing Normal University, 2015:53 -68(in Chinese)
Chen Y P, Fu B J, Zhao Y, et al. Sustainable development in the Yellow River Basin:Issues and strategies[J]. Journal of Cleaner Production, 2020, 263:121223 徐雄, 李春梅, 孙静, 等. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016, 11(2):347-354 Xu X, Li C M, Sun J, et al. Residue characteristics and ecological risk assessment of twenty-nine pesticidesin surface water of major river-basin in China[J]. Asian Journal of Ecotoxicology, 2016, 11(2):347-354(in Chinese)
王婷, 张红, 史雅娟, 等. 我国硒淡水水生生物水质基准值推导[J]. 环境科学学报, 2020, 40(4):1278-1285 Wang T, Zhang H, Shi Y J, et al. Derivation of freshwater quality criteria of selenium for protection of aquatic organisms in China[J]. Acta Scientiae Circumstantiae, 2020, 40(4):1278-1285(in Chinese)
曾勇, 孙霄, 赖雨薇, 等. 基于物种敏感性分布的多环芳烃水生态系统风险评价方法与应用[J]. 生态毒理学报, 2020, 15(5):235-243 Zeng Y, Sun X, Lai Y W, et al. Aquatic ecosystem risk assessment of polycyclic aromatic hydrocarbons based on species sensitivity distribution[J]. Asian Journal of Ecotoxicology, 2020, 15(5):235-243(in Chinese)
汪贞, 杨先海, 范德玲, 等. 应用物种敏感性分布评估三氯卡班对我国淡水环境的生态风险[J]. 生态与农村环境学报, 2017, 33(10):921-927 Wang Z, Yang X H, Fan D L, et al. Ecological risk assessment of triclocarban in fresh water of China by species sensitivity distribution[J]. Journal of Ecology and Rural Environment, 2017, 33(10):921-927(in Chinese)
郑磊, 杨文龙, 董亮, 等. 扑草净水环境质量基准及风险评估[J]. 中国环境科学, 2021, 41(8):3825-3831 Zheng L, Yang W L, Dong L, et al. Derivation of water quality criteria and ecological risk assessment for prometryn[J]. China Environmental Science, 2021, 41(8):3825-3831(in Chinese)
陈曲, 郭继香, 孙乾耀, 等. 甲萘威的淡水水生生物水质基准研究[J]. 环境科学研究, 2016, 29(1):84-91 Chen Q, Guo J X, Sun Q Y, et al. Aquatic life ambient freshwater quality criteria for carbaryl in China[J]. Research of Environmental Sciences, 2016, 29(1):84-91(in Chinese)
郭文景, 张志勇, 符志友, 等. 锑的淡水水质基准及其对我国水质标准的启示[J]. 中国环境科学, 2020, 40(4):1628-1636 Guo W J, Zhang Z Y, Fu Z Y, et al. Derivation of aquatic life water quality criteria for antimonyin freshwater and its implication for water quality standard in China[J]. China Environmental Science, 2020, 40(4):1628-1636(in Chinese)
Botelho R G, Santos J B D, Fernandes K M, et al. Effects of atrazine and picloram on grass carp:Acute toxicity and histological assessment[J]. Toxicological & Environmental Chemistry, 2012, 94(1):121-127 Bathe R, Sachsse K, Ullmann L, et al. The evaluation of fish toxicity in the laboratory, proceedings of the european society of toxicology[J]. European Societies, 1975, 16(1):113-124 Birge W J, Black J A, Westerman A G, et al. Fish and amphibian embryos-A model system for evaluating teratogenicity[J]. Fundamental and Applied Toxicology, 1983, 3(4):237-242 Mayer F, Ellersieck M. Manual of acute toxicity:Interpretation and data base for 410 chemicals and 66 species of freshwater animals[R]. Washington DC:United States Department of the Interior, Fish and Wildlife Service (USA), 1986 Elderberry T, Jonathan A, Thurman N, et al. Pesticide Ecotoxicity Database (Formerly:Environmental Effects Database (EEDB))[R]. Washington DC:Office of Pesticide Programs, Environmental Fate and Effects Division, 2000 韩英, 赵荣伟, 郝其睿, 等. 阿特拉津和毒死蜱对鲤胚胎发育的影响[J]. 东北农业大学学报, 2015, 46(7):76-82 , 89 Han Y, Zhao R W, Hao Q R, et al. Effect of atrazine and chlorpyrifos on embryonic of common carp (Cyprinus carpio L.)[J]. Journal of Northeast Agricultural University, 2015, 46(7):76-82, 89(in Chinese)
王坡, 王芳, 张瑞华, 等. 阿特拉津对泥鳅性腺及性别分化相关基因的影响[J]. 河南师范大学学报(自然科学版), 2017, 45(3):109-117 Wang P, Wang F, Zhang R H, et al. Effects of atrazine on sex differentiation and expression pattern of related genes in loach[J]. Journal of Henan Normal University (Natural Science Edition), 2017, 45(3):109-117(in Chinese) 曹慧. 阿特拉津对黑斑侧褶蛙免疫毒效应及机理研究[D]. 杭州:杭州师范大学, 2012:9-13 Cao H. Immunotoxicity and mechanisms induced by atrazine on the frog (Pelophylax nigromaculata)[D]. Hangzhou:Hangzhou Normal University, 2012:9 -13(in Chinese)
Palma P, Palma V L, Fernandes R M, et al. Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, relative to their concentrations in surface waters from the Alentejo region of Portugal[J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(5):485-489 Rosa R, Materatski P, Moreira-Santos M, et al. A scaled-up system to evaluate zooplankton spatial avoidance and the population immediate decline concentration[J]. Environmental Toxicology and Chemistry, 2012, 31(6):1301-1305 Choi H J, Kim D, Lee T J. Photochemical degradation of atrazine in UV and UV/H2O2 process:Pathways and toxic effects of products[J]. Journal of Environmental Science and Health, Part B, 2013, 48(11):927-934 Moreira R A, da Silva Mansano A, da Silva L C, et al. A comparative study of the acute toxicity of the herbicide atrazine to cladocerans Daphnia magna, Ceriodaphnia silvestrii and Macrothrix flabelligera[J]. Acta Limnologica Brasiliensia, 2014, 26(1):1-8 Sengupta N. The HR96 activator, atrazine, reduces sensitivity of D. magna to triclosan and DHA[J]. Chemosphere, 2015, 128:299-306 Macek K J, Buxton K S, Sauter S, et al. Chronic toxicity of atrazine to selected aquatic invertebrates and fishes[R]. Washington DC:United States Environmental Protection Agency, 1976 Marchini S, Passerini L, Cesareo D, et al. Herbicidal triazines:Acute toxicity on Daphnia, fish, and plants and analysis of its relationships with structural factors[J]. Ecotoxicology and Environmental Safety, 1988, 16(2):148-157 Johnson I C, Keller A E, Zam S G. Method for conducting acute toxicity tests with the early life stages of freshwater mussels[J]. ASTM Special Technical Publication, 1993, 1(1):381-396 He H Z, Yu J, Chen G K, et al. Acute toxicity of butachlor and atrazine to freshwater green alga Scenedesmus obliquus and cladoceran Daphnia carinata[J]. Ecotoxicology and Environmental Safety, 2012, 80:91-96 Phyu Y L, Warne M S J, Lim R P. Toxicity of atrazine and molinate to the cladoceran Daphnia carinata and the effect of river water and bottom sediment on their bioavailability[J]. Archives of Environmental Contamination and Toxicology, 2004, 46(3):308-315 Larras F, Keck F, Montuelle B, et al. Linking diatom sensitivity to herbicides to phylogeny:A step forward for biomonitoring?[J]. Environmental Science & Technology, 2014, 48(3):1921-1930 Larras F, Montuelle B, Bouchez A. Assessment of toxicity thresholds in aquatic environments:Does benthic growth of diatoms affect their exposure and sensitivity to herbicides?[J]. The Science of the Total Environment, 2013, 463-464:469-477 Seguin F, Leboulanger C, Rimet F, et al. Effects of atrazine and nicosulfuron on phytoplankton in systems of increasing complexity[J]. Archives of Environmental Contamination and Toxicology, 2001, 40(2):198-208 Bérard A, Dorigo U, Mercier I, et al. Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva[J]. Chemosphere, 2003, 53(8):935-944 Larras F, Bouchez A, Rimet F, et al. Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms[J]. PLoS One, 2012, 7(8):e44458 Chamsi O, Pinelli E, Faucon B, et al. Effects of herbicide mixtures on freshwater microalgae with the potential effect of a safener[J]. Annales de Limnologie-International Journal of Limnology, 2019, 55:3 Schäfer H, Wenzel A, Fritsche U, et al. Long-term effects of selected xenobiotica on freshwater green algae:Development of a flow-through test system[J]. Science of the Total Environment, 1993, 134:735-740 Schäfer H, Hettler H, Fritsche U, et al. Biotests using unicellular algae and ciliates for predicting long-term effects of toxicants[J]. Ecotoxicology and Environmental Safety, 1994, 27(1):64-81 Fernández-Naveira A, Rioboo C, Cid A, et al. Atrazine induced changes in elemental and biochemical composition and nitrate reductase activity in Chlamydomonas reinhardtii[J]. European Journal of Phycology, 2016, 51(3):338-345 Shitanda I, Takada K, Sakai Y, et al. Compact amperometric algal biosensors for the evaluation of water toxicity[J]. Analytica Chimica Acta, 2005, 530(2):191-197 Fairchild J F, Ruessler D S, Carlson A R. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor[J]. Environmental Toxicology and Chemistry, 1998, 17(9):1830-1834 Ma J Y, Xu L, Wang S, et al. Toxicity of 40 herbicides to the green alga Chlorella vulgaris[J]. Ecotoxicology and Environmental Safety, 2002, 51(2):128-132 Khan A, Shah N, Muhammad M, et al. Quantitative determination of lethal concentration LC50 of atrazine on biochemical parameters; total protein and serum albumin of freshwater fish grass carp (Ctenopharyngodon idella)[J]. Polish Journal of Environmental Studies, 2016, 25(4):1555-1561 Brüggemann R. Applying Hasse diagram technique for the evaluation of toxicological fish tests[J]. Chemosphere, 1995, 30(9):1767-1780 陈丽红, 张瑜, 丁婷婷, 等. 红霉素水生生物基准推导和对中国部分水体生态风险初步评估[J]. 生态环境学报, 2020, 29(8):1610-1616 Chen L H, Zhang Y, Ding T T, et al. Development of aquatic life criteria for erythromycin and preliminary assessment for the ecological risk of some water bodies in China[J]. Ecology and Environmental Sciences, 2020, 29(8):1610-1616(in Chinese)
陈莉, 蔡文倩, 韩雪萌, 等. 镉对渤海本地种的急性毒性效应及其海水水质基准推导[J]. 中国海洋大学学报(自然科学版), 2021, 51(9):93-102 Chen L, Cai W Q, Han X M, et al. Acute effect of cadmium on native species and seawater quality criteria derivation in the Bohai Sea[J]. Periodical of Ocean University of China, 2021, 51(9):93-102(in Chinese) -

计量
- 文章访问数: 1989
- HTML全文浏览数: 1989
- PDF下载数: 43
- 施引文献: 0