纳米材料的非毒性环境效应研究进展

马晓琳, 何恩静, 肖翔. 纳米材料的非毒性环境效应研究进展[J]. 生态毒理学报, 2021, 16(1): 15-27. doi: 10.7524/AJE.1673-5897.20201004001
引用本文: 马晓琳, 何恩静, 肖翔. 纳米材料的非毒性环境效应研究进展[J]. 生态毒理学报, 2021, 16(1): 15-27. doi: 10.7524/AJE.1673-5897.20201004001
Ma Xiaolin, He Enjing, Xiao Xiang. Research Progress on Non-toxic Environmental Effects of Nanomaterials[J]. Asian journal of ecotoxicology, 2021, 16(1): 15-27. doi: 10.7524/AJE.1673-5897.20201004001
Citation: Ma Xiaolin, He Enjing, Xiao Xiang. Research Progress on Non-toxic Environmental Effects of Nanomaterials[J]. Asian journal of ecotoxicology, 2021, 16(1): 15-27. doi: 10.7524/AJE.1673-5897.20201004001

纳米材料的非毒性环境效应研究进展

    作者简介: 马晓琳(1995-),女,硕士研究生,研究方向为纳米材料环境效应,E-mail:2211809014@stmail.ujs.edu.cn
    通讯作者: 肖翔, E-mail: xiaox@ustc.edu.cn
  • 基金项目:

    国家重点研发计划资助项目(2020YFC1808204);国家自然科学基金资助项目(51878317)

  • 中图分类号: X171.5

Research Progress on Non-toxic Environmental Effects of Nanomaterials

    Corresponding author: Xiao Xiang, xiaox@ustc.edu.cn
  • Fund Project:
  • 摘要: 纳米材料的广泛应用使其不可避免地释放到环境中,并对生态环境产生潜在不利影响。但是纳米材料的实际环境浓度较低,是否会对生态安全造成严重毒性危害依然存在争议。因此,近年来纳米材料对生物体无明显生长抑制或毒性胁迫表型情况下的非毒性环境效应逐渐引起人们的关注。笔者综述了近年来纳米材料非毒性环境效应研究的最新进展,探讨了纳米材料对植物及微生物的非毒性胁迫影响机制,旨在加深人们对纳米材料实际环境效应的理解,并为相关领域的科学研究提供新的思路。
  • Wang Y, Chou S, Zhang Z. Nanomaterials innovation[J]. Small, 2019, 15(32):1902246
    Rezvani E, Rafferty A, McGuinness C, et al. Adverse effects of nanosilver on human health and the environment[J]. Acta Biomaterialia, 2019, 94:145-159
    Sun T Y,Bornhöft N A, Hungerbühler K, et al. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials[J]. Environmental Science & Technology, 2016, 50(9):4701-4711
    Leareng S K, Ubomba-Jaswa E, Musee N. Toxicity of zinc oxide and iron oxide engineered nanoparticles to Bacillus subtilis in river water systems[J]. Environmental Science:Nano, 2020, 7(1):172-185
    Zhao J, Lin M Q, Wang Z Y, et al. Engineered nanomaterials in the environment:Are they safe?[J]. Critical Reviews in Environmental Science and Technology, 2020:1-36. doi:10.1080/10643389.2020.1764279
    Ganguly P, Breen A, Pillai S C. Toxicity of nanomaterials:Exposure, pathways, assessment, and recent advances[J]. ACS Biomaterials Science & Engineering, 2018, 4(7):2237-2275
    韩雪, 马晓琳, 晁韶良, 等. 纳米材料对环境抗生素抗性基因污染扩散影响的研究进展[J]. 生态毒理学报, 2019, 14(5):46-54

    Han X, Ma X L, Chao S L, et al. Influence of nanomaterials on the spread of environmental antibiotic resistance genes:A review[J]. Asian Journal of Ecotoxicology, 2019, 14(5):46-54(in Chinese)

    Wang D L, Lin Z F, Wang T, et al. Where does the toxicity of metal oxide nanoparticles come from:The nanoparticles, the ions, or a combination of both?[J]. Journal of Hazardous Materials, 2016, 308:328-334
    Gottschalk F, Sun T Y, Nowack B. Environmental concentrations of engineered nanomaterials:Review of modeling and analytical studies[J]. Environmental Pollution, 2013, 181:287-300
    Pérez-De-luque A. Interaction of nanomaterials with plants:What do we need for real applications in agriculture?[J]. Frontiers in Environmental Science, 2017, 5:12
    Rifna E J, Ratish Ramanan K, Mahendran R. Emerging technology applications for improving seed germination[J]. Trends in Food Science & Technology, 2019, 86:95-108
    Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, et al. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil[J]. Science of the Total Environment, 2015, 515-516:60-69
    Acharya P, Jayaprakasha G K, Crosby K M, et al. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in texas[J]. Scientific Reports, 2020, 10(1):5037
    Zhang M, Gao B, Chen J J, et al. Effects of graphene on seed germination and seedling growth[J]. Journal of Nanoparticle Research, 2015, 17(2):78
    Kumar V, Guleria P, Kumar V, et al. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana[J]. Science of the Total Environment, 2013, 461-462:462-468
    文双喜, 王毅力. 水培实验中不同粒径纳米TiO2对芦苇种子发芽和植株生长和生理的影响[J]. 生态毒理学报, 2017, 12(2):71-80

    Wen S X, Wang Y L. Effect of nano titanium dioxide with different particle size on the seed germination and plant growth and physiology of Phragmites australis in hydroponic experiments[J]. Asian Journal of Ecotoxicology, 2017, 12(2):71-80(in Chinese)

    Pandey K, Lahiani M H, Hicks V K, et al. Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops[J]. PLoS One, 2018, 13(8):e0202274
    Khodakovskaya M, Dervishi E, Mahmood M, et al. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth[J]. ACS Nano, 2009, 3(10):3221-3227
    Oleszczuk P, Czech B, Kończak M, et al. Impact of ZnO and ZnS nanoparticles in sewage sludge-amended soil on bacteria, plant and invertebrates[J]. Chemosphere, 2019, 237:124359
    Liu R Q, Zhang H Y, Lal R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination:Nanotoxicants or nanonutrients?[J]. Water, Air, & Soil Pollution, 2016, 227(1):1-14
    Seddighinia F S, Iranbakhsh A, Oraghi Ardebili Z, et al. Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in bitter melon (Momordica charantia)[J]. Journal of Plant Growth Regulation, 2020, 39(1):87-98
    Wang Y Y, Zhang P, Li M S, et al. Alleviation of nitrogen stress in rice (Oryza sativa) by ceria nanoparticles[J]. Environmental Science:Nano, 2020, 7(10):2930-2940
    Ye Y, Cota-Ruiz K, Hernández-Viezcas J A, et al. Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming:A sustainable approach for agriculture[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3):1427-1436
    Kim J H, Oh Y, Yoon H, et al. Iron nanoparticle-induced activation of plasma membrane H(+)-ATPase promotes stomatal opening in Arabidopsis thaliana[J]. Environmental Science & Technology, 2015, 49(2):1113-1119
    Rizwan M, Ali S, Ali B, et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat[J]. Chemosphere, 2019, 214:269-277
    Dai Y, Chen F, Yue L, et al. Uptake, transport, and transformation of CeO2 nanoparticles by strawberry and their impact on the rhizosphere bacterial community[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(12):4792-4800
    Wan J P, Wang R L, Bai H R, et al. Comparative physiological and metabolomics analysis reveals that single-walled carbon nanohorns and ZnO nanoparticles affect salt tolerance in Sophora alopecuroides[J]. Environmental Science:Nano, 2020, 7(10):2968-2981
    Zhao D Q, Fang Z W, Tang Y H, et al. Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to Paeonia ostii without toxicity[J]. Environmental Science & Technology, 2020, 54(13):8269-8279
    Rizwan M, Ali S, Zia Ur Rehman M, et al. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil[J]. Environmental Pollution, 2019, 248:358-367
    孙耀琴, 申聪聪, 葛源. 典型纳米材料的土壤微生物效应研究进展[J]. 生态毒理学报, 2016, 11(5):2-13

    Sun Y Q, Shen C C, Ge Y. Review on microbiological effects of typical nanomaterials in soil ecosystem[J]. Asian Journal of Ecotoxicology, 2016, 11(5):2-13(in Chinese)

    Guan X Y, Gao X Y, Avellan A, et al. CuO nanoparticles alter the rhizospheric bacterial community and local nitrogen cycling for wheat grown in a calcareous soil[J]. Environmental Science & Technology, 2020, 54(14):8699-8709
    Shang H P, Ma C X, Li C Y, et al. Copper sulfide nanoparticles suppress Gibberella fujikuroi infection in rice (Oryza sativa L.) by multiple mechanisms:Contact-mortality, nutritional modulation and phytohormone regulation[J]. Environmental Science:Nano, 2020, 7(9):2632-2643
    Xu J B, Luo X S, Wang Y L, et al. Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community[J]. Environmental Science and Pollution Research International, 2018, 25(6):6026-6035
    Rico C M, Barrios A C, Tan W J, et al. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles[J]. Environmental Science and Pollution Research International, 2015, 22(14):10551-10558
    Wu H H, Shabala L, Shabala S, et al. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention[J]. Environmental Science:Nano, 2018, 5(7):1567-1583
    Rui M M, Ma C X, Hao Y, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea)[J]. Frontiers in Plant Science, 2016, 7:815
    Adhikari T, Sarkar D, Mashayekhi H, et al. Growth and enzymatic activity of maize (Zea mays L.) plant:Solution culture test for copper dioxide nano particles[J]. Journal of Plant Nutrition, 2016, 39(1):99-115
    Tian L Y, Zhang H L, Zhao X P, et al. CdS nanoparticles in soil induce metabolic reprogramming in broad bean (Vicia faba L.) roots and leaves[J]. Environmental Science:Nano, 2020, 7(1):93-104
    Abdulla Abdulaziz Alshehddi L, Bokhari N. Influence of gold and silver nanoparticles on the germination and growth of Mimusops laurifolia seeds in the South-Western regions in Saudi Arabia[J]. Saudi Journal of Biological Sciences, 2020, 27(1):574-580
    Wang L K, Sun J Z, Lin L M, et al. Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division[J]. Ecotoxicology and Environmental Safety, 2020, 190:110072
    Hernández H H, Benavides-Mendoza A, Ortega-Ortiz H, et al. Cu nanoparticles in chitosan-PVA hydrogels as promoters of growth, productivity and fruit quality in tomato[J]. Emirates Journal of Food and Agriculture, 2017, 29(8):573-580
    Rahmani N, Radjabian T, Soltani B M. Impacts of foliar exposure to multi-walled carbon nanotubes on physiological and molecular traits of Salvia verticillata L., as a medicinal plant[J]. Plant Physiology and Biochemistry, 2020, 150:27-38
    Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13):4944-4949
    Liu X M, Tang J C, Song B R, et al. Exposure to Al2O3 nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces[J]. Nanotoxicology, 2019, 13(10):1422-1436
    Lu J, Wang Y, Jin M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Research, 2020, 169:115229
    Han X, Lv P, Wang L G, et al. Impact of nano-TiO2 on horizontal transfer of resistance genes mediated by filamentous phage transduction[J]. Environmental Science:Nano, 2020, 7(4):1214-1224
    Li G Y, Chen X F, Yin H L, et al. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes[J]. Environment International, 2020, 136:105497
    Zhang Y R, Yang Z H, Xiang Y P, et al. Evolutions of antibiotic resistance genes (ARGs), class 1integron-integrase (intⅠ1) and potential hosts of ARGs during sludge anaerobic digestion with the iron nanoparticles addition[J]. Science of the Total Environment, 2020, 724:138248
    Xiang Y P, Yang Z H, Zhang Y R, et al. Influence of nanoscale zero-valent iron and magnetite nanoparticles on anaerobic digestion performance and macrolide, aminoglycoside, β-lactam resistance genes reduction[J]. Bioresource Technology, 2019, 294:122139
    Chen Y R, Guo X P, Feng J N, et al. Impact of ZnO nanoparticles on the antibiotic resistance genes (ARGs) in estuarine water:ARG variations and their association with the microbial community[J]. Environmental Science:Nano, 2019, 6(8):2405-2419
    Hu X J, Yang B, Zhang W, et al. Plasmid binding to metal oxide nanoparticles inhibited lateral transfer of antibiotic resistance genes[J]. Environmental Science:Nano, 2019, 6(5):1310-1322
    Ding C S, Pan J, Jin M, et al. Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina[J]. Nanotoxicology, 2016, 10(8):1051-1060
    Zhang Y, Gu A Z, Cen T, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment[J]. Environmental Pollution, 2018, 237:74-82
    Huang H N, Chen Y G, Yang S Y, et al. CuO and ZnO nanoparticles drive the propagation of antibiotic resistance genes during sludge anaerobic digestion:Possible role of stimulated signal transduction[J]. Environmental Science:Nano, 2019, 6(2):528-539
    陆贤, 郭美婷, 张伟贤. 纳米零价铁对耐四环素菌耐药特性的影响[J]. 中国环境科学, 2017, 37(1):381-385

    Lu X, Guo M T, Zhang W X. Influence of nanoscale zero-valent iron (nZVI) on resistance character of tetracycline resistant bacteria[J]. China Environmental Science, 2017, 37(1):381-385(in Chinese)

    Zhang S, Wang Y, Song H L, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera[J]. Environment International, 2019, 129:478-487
    Wang X L, Yang F X, Zhao J, et al. Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes[J]. NanoImpact, 2018, 10:61-67
    Guo M T, Zhang G S. Graphene oxide in the water environment could affect tetracycline-antibiotic resistance[J]. Chemosphere, 2017, 183:197-203
    Zou W, Li X K, Lai Z Y, et al. Graphene oxide inhibits antibiotic uptake and antibiotic resistance gene propagation[J]. ACS Applied Materials & Interfaces, 2016, 8(48):33165-33174
    Yu W C, Zhan S H, Shen Z Q, et al. Efficient removal mechanism for antibiotic resistance genes from aquatic environments by graphene oxide nanosheet[J]. Chemical Engineering Journal, 2017, 313:836-846
    Dickschat J S. Quorum sensing and bacterial biofilms[J]. Natural Product Reports, 2010, 27(3):343-369
    Ouyang K, Mortimer M, Holden P A, et al. Towards a better understanding of Pseudomonas putida biofilm formation in the presence of ZnO nanoparticles (NPs):Role of NP concentration[J]. Environment International, 2020, 137:105485
    Yang Y, Alvarez P J J. Sublethal concentrations of silver nanoparticles stimulate biofilm development[J]. Environmental Science & Technology Letters, 2015, 2(8):221-226
    Xiao X, Zhu W W, Liu Q Y, et al. Impairment of biofilm formation by TiO2 photocatalysis through quorum quenching[J]. Environmental Science & Technology, 2016, 50(21):11895-11902
    Chen Y, Zhang G M, Wang H J. Enhancement of photosynthetic bacteria biomass production and wastewater treatment efficiency by zero-valent iron nanoparticles[J]. Journal of Bioscience and Bioengineering, 2020, 130(3):306-310
    Wang C, Liu S Q, Hou J, et al. Effects of silver nanoparticles on coupled nitrification-denitrification in suspended sediments[J]. Journal of Hazardous Materials, 2020, 389:122130
    Li Z W, Wang X J, Ma B R, et al. Long-term impacts of titanium dioxide nanoparticles (TiO2 NPs) on performance and microbial community of activated sludge[J]. Bioresource Technology, 2017, 238:361-368
    Peng M W, Yu X L, Guan Y, et al. Underlying promotion mechanism of high concentration of silver nanoparticles on anammox process[J]. ACS Nano, 2019, 13(12):14500-14510
    Amen T W M, Eljamal O, Khalil A M E, et al. Wastewater degradation by iron/copper nanoparticles and the microorganism growth rate[J]. Journal of Environmental Sciences, 2018, 74:19-31
    Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, et al. Application of magnetic nanoparticles in smart enzyme immobilization[J]. Biotechnology Letters, 2016, 38(2):223-233
    Zhang Y F, Shen J Q. Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater[J]. International Journal of Hydrogen Energy, 2007, 32(1):17-23
    Beckers L, Hiligsmann S, Lambert S D, et al. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum[J]. Bioresource Technology, 2013, 133:109-117
    Engliman N S, Abdul P M, Wu S Y, et al. Influence of iron (Ⅱ) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation[J]. International Journal of Hydrogen Energy, 2017, 42(45):27482-27493
    Mohanraj S, Kodhaiyolii S, Rengasamy M, et al. Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae:Evaluation and comparison of the effects[J]. International Journal of Hydrogen Energy, 2014, 39(23):11920-11929
    Cervantes-Avilés P, Ida J, Toda T, et al. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge[J]. Journal of Environmental Management, 2018, 222:227-233
    Aguilar-Moreno G S, Navarro-Cerón E, Velázquez-Hernández A, et al. Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles[J]. Renewable Energy, 2020, 147:204-213
    Ambuchi J J, Zhang Z H, Shan L L, et al. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment[J]. Water Research, 2017, 117:87-94
    Yang C H, Aslan H, Zhang P, et al. Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement[J]. Nature Communications, 2020, 11(1):1379
    Kim C, Kim J R,Heo J. Enhancement of bioelectricity generation by a microbial fuel cell using Ti nanoparticle-modified carbon electrode[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(5):1622-1627
  • 期刊类型引用(5)

    1. 孟晓山,汤子健,陈琳,呼和涛力,周政忠. 厌氧消化系统酸化预警及调控技术研究进展. 化工进展. 2023(03): 1595-1605 . 百度学术
    2. 赵昕悦,张拓实,孟祥伟,马歆远,张淑清,金鸣,李春艳. 畜禽废水资源化与能源化利用研究进展——以养猪废水为例. 东北农业大学学报. 2023(05): 88-96 . 百度学术
    3. 张靖楠,昌行行,张嘉祺,何培新,张志平,宋丽丽,杨旭,魏涛. 微波辐射预处理菌源对生物暗发酵制氢的影响. 轻工学报. 2022(02): 30-37 . 百度学术
    4. 蒋滔,邓良伟,韦秀丽,贺静,王冰,向远勇. 牛粪厌氧发酵产气动力学与加热策略研究. 干旱地区农业研究. 2020(03): 188-194 . 百度学术
    5. 郁达伟,孟晓山,魏源送. 高负荷厌氧生物反应器的三元酸碱缓冲体系特征与调控. 环境科学学报. 2019(02): 279-289 . 百度学术

    其他类型引用(3)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.3 %DOWNLOAD: 3.3 %HTML全文: 77.1 %HTML全文: 77.1 %摘要: 19.6 %摘要: 19.6 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 98.0 %其他: 98.0 %XX: 1.0 %XX: 1.0 %北京: 0.3 %北京: 0.3 %南昌: 0.2 %南昌: 0.2 %吉安: 0.1 %吉安: 0.1 %大连: 0.1 %大连: 0.1 %成都: 0.1 %成都: 0.1 %泰州: 0.1 %泰州: 0.1 %鄂尔多斯: 0.1 %鄂尔多斯: 0.1 %长治: 0.1 %长治: 0.1 %其他XX北京南昌吉安大连成都泰州鄂尔多斯长治Highcharts.com
计量
  • 文章访问数:  4381
  • HTML全文浏览数:  4381
  • PDF下载数:  112
  • 施引文献:  8
出版历程
  • 收稿日期:  2020-10-04
马晓琳, 何恩静, 肖翔. 纳米材料的非毒性环境效应研究进展[J]. 生态毒理学报, 2021, 16(1): 15-27. doi: 10.7524/AJE.1673-5897.20201004001
引用本文: 马晓琳, 何恩静, 肖翔. 纳米材料的非毒性环境效应研究进展[J]. 生态毒理学报, 2021, 16(1): 15-27. doi: 10.7524/AJE.1673-5897.20201004001
Ma Xiaolin, He Enjing, Xiao Xiang. Research Progress on Non-toxic Environmental Effects of Nanomaterials[J]. Asian journal of ecotoxicology, 2021, 16(1): 15-27. doi: 10.7524/AJE.1673-5897.20201004001
Citation: Ma Xiaolin, He Enjing, Xiao Xiang. Research Progress on Non-toxic Environmental Effects of Nanomaterials[J]. Asian journal of ecotoxicology, 2021, 16(1): 15-27. doi: 10.7524/AJE.1673-5897.20201004001

纳米材料的非毒性环境效应研究进展

    通讯作者: 肖翔, E-mail: xiaox@ustc.edu.cn
    作者简介: 马晓琳(1995-),女,硕士研究生,研究方向为纳米材料环境效应,E-mail:2211809014@stmail.ujs.edu.cn
  • 1. 江苏大学环境与安全工程学院, 镇江 212013;
  • 2. 安徽大学物质科学与信息技术研究院, 合肥 230601
基金项目:

国家重点研发计划资助项目(2020YFC1808204);国家自然科学基金资助项目(51878317)

摘要: 纳米材料的广泛应用使其不可避免地释放到环境中,并对生态环境产生潜在不利影响。但是纳米材料的实际环境浓度较低,是否会对生态安全造成严重毒性危害依然存在争议。因此,近年来纳米材料对生物体无明显生长抑制或毒性胁迫表型情况下的非毒性环境效应逐渐引起人们的关注。笔者综述了近年来纳米材料非毒性环境效应研究的最新进展,探讨了纳米材料对植物及微生物的非毒性胁迫影响机制,旨在加深人们对纳米材料实际环境效应的理解,并为相关领域的科学研究提供新的思路。

English Abstract

参考文献 (79)

返回顶部

目录

/

返回文章
返回