多杀菌素菌渣无害化处理与肥料化利用研究

刘之豪, 惠雪松, 刘惠玲, 关小红, 戴小虎. 多杀菌素菌渣无害化处理与肥料化利用研究[J]. 环境保护科学, 2023, 49(4): 50-56. doi: 10.16803/j.cnki.issn.1004-6216.202306034
引用本文: 刘之豪, 惠雪松, 刘惠玲, 关小红, 戴小虎. 多杀菌素菌渣无害化处理与肥料化利用研究[J]. 环境保护科学, 2023, 49(4): 50-56. doi: 10.16803/j.cnki.issn.1004-6216.202306034
LIU Zhihao, HUI Xuesong, LIU Huiling, GUAN Xiaohong, DAI Xiaohu. Experimental study on composting for fertilization utilization and harmless treatment of spinosad residues[J]. Environmental Protection Science, 2023, 49(4): 50-56. doi: 10.16803/j.cnki.issn.1004-6216.202306034
Citation: LIU Zhihao, HUI Xuesong, LIU Huiling, GUAN Xiaohong, DAI Xiaohu. Experimental study on composting for fertilization utilization and harmless treatment of spinosad residues[J]. Environmental Protection Science, 2023, 49(4): 50-56. doi: 10.16803/j.cnki.issn.1004-6216.202306034

多杀菌素菌渣无害化处理与肥料化利用研究

    作者简介: 刘之豪(1997—),男,硕士研究生。研究方向:固废无害化与资源化。E-mail:1046628350@qq.com
    通讯作者: 刘惠玲(1964—),女,博士、教授。研究方向:固体废物无害化处理与资源化利用。E-mail:hlliu2002@163.com
  • 基金项目:
    国家自然科学基金(51978497)
  • 中图分类号: X787

Experimental study on composting for fertilization utilization and harmless treatment of spinosad residues

    Corresponding author: LIU Huiling, hlliu2002@163.com
  • 摘要: 针对抗生素发酵生产残余菌渣所引发的环境危害问题,以多杀菌素菌渣为研究对象,通过好氧堆肥工艺探究其资源化的可行性,设定不同的初始C/N,分析了反应过程中堆体pH、电导率(EC)、三维荧光图谱(3D-EEMs)等指标变化规律,并用初始C/N=20组的堆肥样品进行土壤模拟试验,以评估多杀菌素菌渣肥在使用过程中对土壤环境和微生物的影响。堆肥实验结果表明:多杀菌素去除率达到90%以上,堆体理化指标均处于适宜范围;3D-EEMs表明:堆肥过程中色氨酸类物质被微生物充分利用,腐殖酸类物质累积,堆体达到较好的腐熟效果;土壤模拟实验结果表明:1%和6%的抗生素残留低于检测限(多杀菌素A 2.0 µg/kg,多杀菌素D 1.5 µg/kg)。此外,投加了菌渣肥使土壤的微生物多样性提升。以上结果表明,多杀菌素菌渣经过堆肥化处理有助于改善土壤性能。
  • 我国是世界上畜禽养殖第一大国,畜禽养殖业排放化学需氧量(chemical oxygen demand, COD)、氨氮和总氮的量占农业污染排放总量的比例分别达到了95.2%、76.8%和62.4%[1]。畜禽养殖过程产生大量高氨氮有机废水,已成为水体污染的最主要来源,对这部分废水的有效处理成为畜禽养殖业污染控制的关键[2]。对于畜禽养殖废水的处理通常采用除碳+脱氮的耦合工艺,其中除碳过程通过厌氧消化将有机物转化为甲烷回收,而脱氮过程往往采用生物脱氮方法。传统的生物脱氮技术需要结合自养菌的好氧硝化作用和异养菌的缺氧反硝化作用,但是,当硝化和反硝化在2个独立单元中进行时(如A/O工艺),需要进行混合液回流,通常具有占地面积大和建设投资成本高等缺点。虽然当硝化和反硝化在同一个反应器内(SBR工艺)进行时,能够节省占地和成本,但需要分时段控制曝气和投加碳源,增加了操作复杂性。在处理畜禽养殖废水的厌氧消化液时,一方面,高氨氮质量浓度易对自养硝化产生抑制;另一方面,厌氧消化处理后出水中仍会残留很多有机物,这将进一步抑制自养硝化效果。因此,十分有必要开发更适宜的高氨氮有机废水处理技术。

    异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification, HN-AD)菌能够适应高质量浓度的氨氮和有机物,通过异养硝化与好氧反硝化作用的耦合,在好氧条件下能够将废水中的氨氮转化为氮气,实现高效脱氮,整个代谢过程几乎没有亚硝态氮/硝态氮的积累,同时有机物也得到了降解和去除。1984年,ROBERTSON等[3]将首株HN-AD菌Thiosphaera pantotropha从硫氧化脱硝废水处理装置中分离出来。近年来,越来越多的HN-AD菌被发现,它们大多具有世代时间短和耐受性强等优势,对高质量浓度的氨氮和有机物有较好的耐受和处理效果[4]。HN-AD菌Comamonas WXZ-17可耐受817 mg·L−1的氨氮质量浓度,Acinetobacter sp. TN-14能在氨氮质量浓度高达1 200 mg·L−1的环境下生长[5]。HN-AD菌耐受高氨氮的同时能实现对其转化脱除,如Thauera sp. SND5的平均氮去除速率约为2.85 mg·(L·h)−1[6]Bacillus methylotrophicus L7在初始氨氮质量浓度为1 121.2 mg·L−1的条件下,总氮去除速率可达3.8 mg·(L·h)−1[7]。因此,HN-AD技术可以适应高氨氮有机废水的脱氮处理,反应速率高、处理时间短,同时能够在同一个处理单元中在好氧条件下实现有机物和氨氮、总氮的同步去除,降低工艺复杂度,有望为高氨氮有机废水提供一种具有更高效率和更低成本的新技术。目前相关的研究以纯菌HN-AD系统较多,而实际工程中很难做到纯菌环境,那么具有HN-AD功能的污泥驯化就非常重要,是实现技术应用的关键,然而相关的研究仍然较为缺乏。SONG等[8]针对高盐榨菜废水的处理,经过105 d驯化建立了HN-AD混菌系统,COD和总氮去除率分别达到了93.2%和82.4%。但是,上述方法的驯化时间长,系统启动较慢,迫切需要一种在实际应用场景中低成本、快速、有效驯化具有HN-AD功能活性污泥的方法以及有机碳源对系统运行的影响及其优化相关的研究。

    因此,本研究考察了在固定C/N比条件下驯化HN-AD活性污泥的方法,并进行了HN-AD效果验证,选择了3种碳源以探究碳源种类和C/N比对系统运行效果的影响,分析了系统中有机物降解和脱氮的动力学特征,揭示了系统中的优势功能菌,以期为实际工程中畜禽养殖废水厌氧消化液等高氨氮有机废水的高效处理提供技术支撑。

    本研究采用间歇式反应器,材质为有机玻璃,内径为150 mm,主体高170 mm,有效容积为3.0 L。在反应器底部放置曝气盘,外接空气曝气泵,同时,在反应器上方设搅拌桨充分混合活性污泥和废水,以确保溶解氧(DO)分布均匀。反应器中插有pH和DO电极,用于在线监测pH和DO。

    实验用水选用模拟配水,以NH4Cl(100~600 mg·L−1, 以氮浓度计)作为氮源,添加KH2PO4(20 mg·L−1, 以磷浓度计)补充磷源,添加微量元素(1 mL·L−1),添加乙酸钠、柠檬酸钠、丁二酸钠的混合碳源(溶液中三者的COD比=1:1:1)作为生物可利用有机碳源(2 000~12 000 mg·L−1,以COD计)。通过调整进水碳源和氮源质量浓度以控制配水的碳氮比。

    反应器采用序批式运行模式,每个周期分为5个阶段:进水(10 min)、曝气加搅拌运行、沉降(20 min)、出水(10 min)、空闲(1 h)。反应在室温下运行,通过实时监测DO来控制曝气阶段的运行时长,采用蠕动泵进水和排水,出水阶段排水比为0.25。实验装置共运行175 d,设置了系统启动、进水负荷提升和C/N比优化3个阶段。

    第Ⅰ阶段:启动HN-AD系统,将北京某污水厂二沉池的活性污泥投入反应器,通过定期排泥(污泥龄12~15 d)排出部分死菌和细胞分泌物,以维持微生物的新陈代谢活性。初始进水COD和氨氮质量浓度分别为2 000 mg·L−1 和100 mg·L−1。根据自养氨氧化过程,每氧化1 g氨氮需要消耗7.14 g碱度(以碳酸钙计),在进水中投加NaHCO3补充至所需碱度。保持C/N比为20,逐步提高进水氨氮质量浓度(每5个周期提升100 mg·L−1)来驯化HN-AD菌群。验证HN-AD系统,当系统启动成功后不再额外补充碱度。第Ⅱ阶段:HN-AD系统的进水氨氮质量浓度进一步提升到300 mg·L−1,待系统运行稳定后,每5个周期提升100 mg·L−1,逐步将进水氨氮提升至600 mg·L−1。第Ⅲ阶段:保持进水氨氮质量浓度为600 mg·L−1,探究不同C/N比(15、20、25)对HN-AD系统脱氮效率的影响,优化出最佳运行条件。

    从反应器中取出50 mL活性污泥,移至250 mL锥形瓶,随后加入50 mL模拟配水进行实验。设置模拟配水中C/N=20,采用混合碳源(乙酸钠、丁二酸钠和柠檬酸钠的COD比=1:1:1)。模拟配水中进水氨氮质量浓度为100 mg·L−1。在实验组中添加自养硝化抑制剂3,4-二甲基吡唑磷酸盐(C5H8N2·H3O4P,DMPP),于25 ℃、160 r·min−1振荡培养36 h,每间隔一段时间取水样测试氨氮、硝态氮、亚硝态氮的质量浓度。

    相比于糖类等大分子物质,乙酸钠、柠檬酸钠和丁二酸钠等小分子更容易被HN-AD菌所利用,能够直接参与三羧酸循环代谢过程。考虑到畜禽养殖废水厌氧消化液中常含有小分子挥发性脂肪酸的特点,因此,本研究选用乙酸钠、柠檬酸钠和丁二酸钠作为实验所用碳源,以研究碳源种类的影响。

    从反应器中取出50 mL活性污泥,移至250 mL锥形瓶,随后加入50 mL模拟配水(含氨氮200 mg·L−1)进行实验。在模拟配水中,分别采用乙酸钠、丁二酸钠、柠檬酸钠及3种有机物作为混合碳源,以确保锥形瓶内在进水后的初始COD和氨氮质量浓度分别为2 000 mg·L−1和100 mg·L−1,于25 ℃、160 r·min−1振荡培养36 h,每间隔一段时间取水样测试氨氮、硝态氮、亚硝态氮的质量浓度。

    HN-AD系统启动成功并稳定运行后,在初始有机物和氨氮质量浓度分别为3 000 mg·L−1和150 mg·L−1的单个周期,实时监测COD值、氮质量浓度变化。采用修正的Gompertz模型[9](式(1))对底物去除过程进行拟合,解析底物质量浓度与反应时间的关系。

    stringUtils.convertMath(!{formula.content}) (1)

    式中:St时刻底物质量浓度,mg·L−1S0为初始底物质量浓度,mg·L−1Rm为最大去除速率,mg·(L·h)−1t0为迟滞时间,h。

    1)常规水质分析方法。COD值和各种氮化合物的质量浓度用标准方法测定。用纳氏分光光度法在425 nm处测定氨氮,用比色法在540 nm处测定亚硝态氮,用紫外分光光度法在220 nm和275 nm处测量硝态氮。用手持便携式分析仪测量pH和溶解氧(德国WTW Multi 3320)。铵(NH4+-N)由于水解反应会转化为分子态氨,也称为游离氨(free ammonia, FA),FA质量浓度由NH4+-N、pH和温度确定,根据式(2)[10]进行计算。

    stringUtils.convertMath(!{formula.content}) (2)

    式中:ρFA为游离氨质量浓度,mg·L−1CNH+4-N为氨氮质量浓度,mg·L−1;pH为溶液的酸碱度;T为温度, ℃。

    2)微生物群落结构测定。从反应器中取一定量的活性污泥,根据E.Z.N.A.® soil DNA kit(Omega Bio-tek, Norcross,美国)说明书进行微生物群落总DNA抽提,用NanoDrop2000(赛默飞世尔科技,美国)测定DNA的浓度和纯度。使用引物338F(5’-ACTCCTACGGGAGGCAGCAG-3’)和806R(5’-GGACTACHVGGGTWTCTAAT-3’)对16S rRNA基因V3~V4可变区进行PCR扩增,并用琼脂糖凝胶电泳检测PCR结果。使用Illumina MiSeq平台(美吉生物医药科技有限公司,上海)对纯化的聚合酶链反应产物进行测序。

    在C/N比为20的条件下,通过进水氨氮质量浓度的梯度提升来驯化活性污泥,增加HN-AD菌的相对丰度,进而构建HN-AD脱氮系统,结果如图1所示。结果表明,系统启动初始,进水氨氮质量浓度为100 mg·L−1,逐步提升进水氨氮质量浓度,在1~10周期(进水氨氮≤200 mg·L−1),氨氮去除率(>95%)较高,出水中亚硝态氮质量浓度(<0.1 mg·L−1)较低,但积累了一定质量浓度的硝态氮(>20 mg·L−1),推测系统中发生了以自养硝化为主的硝化过程,此时总氮去除率只有约38%。由图2(a)可见,在系统启动初期(第7周期)的反应过程可以看出,随着氨氧化的进行,亚硝态氮质量浓度先升高后降低,硝态氮质量浓度逐步升高并出现积累。在该周期的反应过程中,游离氨质量浓度在6 h时升至20 mg·L−1,高于抑制亚硝酸盐氧化菌(nitrite oxidizing bacteria, NOB)的FA阈值(0.1~5.0 mg·L−1),亚硝态氮出现积累且质量浓度到达峰值(9 mg·L−1),但随着反应的进行,FA质量浓度迅速降低至5 mg·L−1以下,亚硝态氮积累消失且硝态氮质量浓度不断上升。

    图 1  HN-AD系统启动过程的脱氮效果
    Figure 1.  The efficiency of nitrogen removal at the start-up of the HN-AD process
    图 2  HN-AD系统成功启动前后的单周期过程特征
    Figure 2.  Characteristics of a single-cycle before and after the successful start-up of the HN-AD system

    图1可见,在第11周期,将进水氨氮质量浓度提升至300 mg·L−1,对应进水FA达到76.8 mg·L−1,已高于大多数研究报道的自养氨氧化菌(ammonia oxidizing bacteria, AOB)和NOB的抑制阈值。虽然该周期氨氮去除率降低至76%,但出水中不再有硝态氮累积(<2 mg·L−1),总氮去除率达到67.8%,从这一周期开始,系统不再额外补充碱度。当FA质量浓度为20~40 mg·L−1时,自养AOB的氨氧化性能会受到严重影响[11],而HN-AD菌属,如Acinetobacter YB、Bacillus WXZ-8和Zobellella DN-7等,在较高质量浓度FA时(>100 mg·L−1)仍能正常发挥氨氧化功能[12-13]。由此可知,异养硝化菌对FA的耐受能力远高于自养硝化菌,推断此时系统中较高质量浓度的FA抑制了自养AOB,硝化作用主要由HN-AD菌贡献。随着反应器运行,HN-AD系统脱氮性能不断提升。由图2(b)可见,第15周期的氨氮去除率和总氮去除率分别提升至92%和83%,有机物和氨氮实现了同步降解,并且未出现硝态氮和亚硝态氮的积累。在该周期FA质量浓度始终维持在40 mg·L−1以上,且在6 h时达到70.5 mg·L−1,从而较稳定地实现对自养AOB和NOB的抑制,有利于HN-AD菌的富集。当第16周期进水氨氮质量浓度进一步提升至400 mg·L−1,氨氮去除率和总氮去除率依然保持在91%和85%,至此认为HN-AD系统启动成功。

    通过投加抑制剂DMPP抑制自养硝化,根据氨氮转化性能验证了系统中发生的主要硝化反应类型。由图3(a)可知,驯化前,投加DMPP实验组氨氮质量浓度基本没有下降,而空白组则正常进行氨氧化过程,这表明抑制剂显著抑制了氨氮的转化。由图3(b)可知,驯化后,投加DMPP实验组与空白组的氨氮质量浓度呈现相似下降趋势,表明氨氧化过程并未受到抑制。综上所述,系统启动成功后,体系中硝化反应的主要类型是异养硝化。

    图 3  硝化抑制剂对异养硝化脱氮系统的影响
    Figure 3.  Effect of nitrification inhibitors on the heterotrophic nitrification and denitrification system

    选择合适的碳源有利于实现最佳的菌体生长和脱氮性能,可以提高反应效率并缩短反应时间。本研究选用乙酸钠、柠檬酸钠和丁二酸钠作为实验所用碳源,在混菌系统中研究了有机碳源种类的影响。从图4可以看出,用乙酸钠、柠檬酸钠、丁二酸钠作唯一碳源时,48 h的氨氮去除率分别达到了79.5%、83.3%和87.9%;而将上述3种碳源混合使用时,48 h的氨氮去除率达到了96.1%。不同种类碳源的分子构成和氧化还原电位存在差异,因此,HN-AD菌对他们的利用程度各不相同[13]。有研究表明,以丁二酸钠为碳源时,Thauera sp. SND5菌株对氮的去除效果较好[6];利用柠檬酸钠为碳源时,Alcaligenes faecalis C16菌株的脱氮效率最高[14];而对于Paracoccus pantotrophus菌株,乙酸钠是发挥最佳脱氮性能的碳源[15]。因此,在本研究的HN-AD系统中,不同的单一碳源会表现出脱氮性能的差异,而混合碳源可以更好地满足混菌体系中不同种HN-AD菌属的需求,从而使系统具有更好的脱氮性能。由于畜禽养殖废水中存在大量乙酸等小分子有机酸,所以当用HN-AD系统处理该类废水时,有望能够保证较高的脱氮效率。

    图 4  不同有机碳源下的氨氮去除效果
    Figure 4.  Removal efficiency of ammonium with different organic carbon sources

    在HN-AD系统采用混合碳源的基础上,进一步研究了系统进水C/N比的影响。结果表明,C/N比对HN-AD菌的脱氮效率有显著影响。

    图5(a)所示,当C/N比为15时,系统的氨氮去除率为80.3%,同时出水中几乎没有硝态氮或亚硝态氮积累;将C/N比提升为20后,HN-AD系统脱氮效率明显上升,随着系统运行,HN-AD系统运行稳定,氨氮去除率提高到了95%;将C/N比提高到25后,脱氮性能有所下降,氨氮去除率降低为90%。总氮的去除率也随着C/N比的优化而发生变化,在C/N比为20时,总氮去除率达到了89.6%,之后继续提升C/N比并不能显著提升总氮去除率。不同HN-AD菌的最优C/N比不同,Aliidiomarina在C/N比为9时,氨氮去除率达到93.7%[16]Thauera sp.TN9在C/N比为22时氮去除效率最高,达到99.2%[17]Paracoccus versutus LYM在C/N比为20时,氮去除率达到97.09%[18]。一方面,C/N比过低会导致碳源不足,使得细胞生长受限以及缺乏电子供体,进而导致脱氮效率下降;另一方面,C/N比过高可在一定程度上抑制脱氮效果[19]。因此,合适的C/N比对于HN-AD系统的低耗高效运行至关重要,后续可将C/N比设为20~25进一步优化,以确定HN-AD系统的最佳C/N比。

    图 5  不同C/N比对模拟废水中NH4+-N、TN、COD的去除效果
    Figure 5.  Removal efficiencies of NH4+-N, TN and COD from the simulated wastewater at different C/N ratios

    图5(b)所示,随着进水C/N比的提高,系统出水的COD值不断增加,由于出水中没有检测到进水所用碳源,因此推测出水中的COD来源于微生物的细胞分泌物。对出水进行三维荧光测试,结果显示较明显的荧光峰(Ex/Em=260~300 nm/300~370 nm)为色氨酸荧光蛋白峰,同时,另一个较明显的荧光峰(Ex/Em=330~370 nm/400~475 nm)为类腐殖酸的峰,表明蛋白质和腐殖酸是出水中有机物的组成部分。这可能是由于高C、N质量浓度环境刺激了微生物产生大量细胞代谢产物,形成高浓度的胞外聚合物(extracellular polymeric substances, EPS),EPS主要由多糖和蛋白质组成,可分为溶解态和结合态2种形态,其中大部分溶解态EPS可以随出水排出系统[20]。WANG等[21]研究表明,在微生物处于极端的生存环境时,EPS中色氨酸和芳香类蛋白荧光强度会显著增强。

    本研究进一步对出水中的蛋白质和多糖进行了测定,结果如图6(b)所示,发现其含量随着C/N比提高而不断增加,换算成COD当量后发现,蛋白质和多糖分别占出水总COD的60%~70%。当对高碳质量浓度有机废水进行脱氮处理时,HN-AD菌的繁殖速度远远快于自养硝化菌,但其生长过程产生的大量溶解态EPS很可能导致出水有机物超标,后续可以通过增加膜组件构成膜-生物反应器对这些大分子物质截留,从而保证出水水质达到排放标准。

    图 6  反应器出水三维荧光图及不同C/N比出水蛋白质和多糖质量浓度
    Figure 6.  Three-dimensional fluorescence pattern of reactor effluent and protein and polysaccharide concentrations of effluent at different C/N ratios

    HN-AD系统具有同步除碳脱氮的特性,通过修正的Gompertz模型[9]来进一步解析底物去除过程。针对典型周期,分别对COD和氨氮质量浓度随时间的变化进行动力学拟合,结果如图7所示。COD的最大去除速率为174.1 mg·(L·h)−1(R2=0.992),氨氮的最大去除速率为8.66 mg·(L·h)−1 (R2=0.999)。已有研究[22]表明,大部分HN-AD纯菌的氨氮去除速率为3~8 mg·(L·h)−1,而本研究所构建HN-AD系统显示出比纯菌体系更高的氨氮去除速率。此外,对典型周期各时间点的COD和氨氮质量浓度进行相关性拟合。如图7(c)所示,反应过程中两者呈现出较好的相关性(R2=0.997),从而间接证明了HN-AD过程氨氮转化需要碳源,有助于实现碳氮协同降解。上述拟合结果有助于深入了解系统性能,并优化HN-AD系统在实际应用时的设计和运行参数,以实现高质量浓度含氮有机废水处理过程高效稳定的除碳脱氮。

    图 7  异养硝化系统COD和氨氮去除的动力学拟合曲线
    Figure 7.  Kinetic fitting curves of the removal of COD and ammonium in the heterotrophic nitrification and denitrification system

    在属水平上的污泥物种组成分析结果如图8所示,HN-AD系统中的优势菌为Thauera(69.7%),而自养硝化菌的丰度较低(<1%)。已有研究[6,17]表明,Thauera细菌可以参与氮循环过程,具有异养硝化-好氧反硝化功能,通常存在于极端环境中,对高COD和高氨氮环境具有较强的适应能力,Thauera细菌具有降解有机物的能力,特别是一些具有环境污染潜力的有机污染物,如芳香烃类化合物和氯化有机化合物,其代谢能力可以用于生物修复和废水处理等环境应用。相对丰度第2高的Propioniciclava(8.3%),该菌属是一种潜在聚磷菌,能够在厌氧阶段完成聚磷代谢[23]。属水平微生物群落分析结果表明,在驯化过程中,Thauera相对丰度显著增加,成为主导性的菌种。以上结果对于深入了解HN-AD系统的微生物群落动态和功能特性具有重要意义。

    图 8  HN-AD系统在0、90和180 d细菌属水平的相对丰度
    Figure 8.  Relative abundances of microbes in the HN-AD system at genus levels on the 0, 90 and 180 d

    1)通过逐渐提升进水COD和氨氮质量浓度的方法可以快速实现HN-AD污泥的驯化,并通过单个周期的COD和氨氮质量浓度监测证实了HN-AD功能的启动。

    2)有机碳源对系统的脱氮效果有重要影响,柠檬酸钠、乙酸钠和丁二酸钠的混合碳源更有利于异养硝化脱氮,当C/N比为20时,HN-AD系统的脱氮效率最高。采用Gompertz动力学模型分别拟合了氨氮和COD底物的去除过程,模型相关系数R2均在0.9以上,证实了氨氮去除和有机物去除的相关性。

    3)在优化条件下,HN-AD系统实现了95%的氨氮去除率、89.6%的总氮去除效率和92%的COD去除率,这表明该工艺可同步实现高效脱氮和有机物的去除。高通量分析结果表明,Thauera相对丰度显著增加,并成为了HN-AD系统中的优势菌种。

  • 图 1  好氧堆肥装置

    Figure 1.  Aerobic composting unit

    图 2  好氧堆肥中堆体温度的变化

    Figure 2.  Variation of pile temperature in aerobic composting

    图 3  好氧堆肥过程中各组pH和EC变化规律

    Figure 3.  Changes in pH and conductivity of each group during aerobic composting process

    图 4  好氧堆肥过程中多杀菌素A、多杀菌素D的变化规律

    Figure 4.  Change pattern of spinosad A (a) and spinosad D (b) during aerobic composting

    图 5  好氧堆肥过程中C/N=15(A)、C/N=20(B)、C/N=25(C)的三维荧光图谱

    Figure 5.  Three-dimensional fluorescence profiles of A (C/N=15), B (C/N=20) and C (C/N=25) during aerobic composting

    图 6  好氧堆肥过程中种子发芽率的变化

    Figure 6.  Changes in seed germination during aerobic composting

    图 7  好氧堆肥过程中B组的Alpha指数变化

    Figure 7.  Variation of Alpha index during aerobic composting

    图 8  土壤模拟实验中土壤酶活变化

    Figure 8.  Changes of soil enzyme activity in soil simulation experiments

    图 9  土壤模拟实验中phylum门水平上细菌相对丰度变化

    Figure 9.  Changes in relative abundance of bacteria at the phylum level in soil simulation experiments

    表 1  多杀菌素菌渣的理化性质

    Table 1.  Physicochemical properties of SFR

    参数数值
    pH 7.93±0.02
    含水率/% 5.61±0.71
    有机质/% 41.52±3.15
    多杀菌素A/ mg·kg−1 2.19×103±238
    多杀菌素D/ mg·kg−1 2.89×102±196
    P/%(by P2O5 1.02±0.09
    K/%(by K2O) 0.25±0.05
    As/mg·kg−1 0.41±0.04
    Cd/mg·kg−1 0.048±0.001
    Cr/mg·kg−1 48.61±0.12
    Hg/mg·kg−1 0.39±0.17
    Pb/mg·kg−1 15.47±3.84
    C/N 6.45±0.66
    参数数值
    pH 7.93±0.02
    含水率/% 5.61±0.71
    有机质/% 41.52±3.15
    多杀菌素A/ mg·kg−1 2.19×103±238
    多杀菌素D/ mg·kg−1 2.89×102±196
    P/%(by P2O5 1.02±0.09
    K/%(by K2O) 0.25±0.05
    As/mg·kg−1 0.41±0.04
    Cd/mg·kg−1 0.048±0.001
    Cr/mg·kg−1 48.61±0.12
    Hg/mg·kg−1 0.39±0.17
    Pb/mg·kg−1 15.47±3.84
    C/N 6.45±0.66
    下载: 导出CSV

    表 2  实验土壤的理化性质

    Table 2.  Physicochemical properties of experimental soil

    指标数值
    pH 7.2±0.1
    电导率/μS·cm−1 155.2±2.1
    含水率/% 12.05±0.14
    土壤有机质含量/% 1.6±0.1
    总磷含量/mg·kg−1 15.5±0.1
    总钾含量/mg·kg−1 100.9±0.7
    指标数值
    pH 7.2±0.1
    电导率/μS·cm−1 155.2±2.1
    含水率/% 12.05±0.14
    土壤有机质含量/% 1.6±0.1
    总磷含量/mg·kg−1 15.5±0.1
    总钾含量/mg·kg−1 100.9±0.7
    下载: 导出CSV

    表 3  荧光区域与对应物质类别

    Table 3.  Fluorescence regions and corresponding substance classes

    荧光区域对应物质类别Ex/nmEm/nm
    酪氨酸类200~250250~330
    色氨酸类200~250330~380
    富里酸类200~250380~500
    腐殖酸类250~500380~500
    溶解性微生物代谢产物250~500250~380
    荧光区域对应物质类别Ex/nmEm/nm
    酪氨酸类200~250250~330
    色氨酸类200~250330~380
    富里酸类200~250380~500
    腐殖酸类250~500380~500
    溶解性微生物代谢产物250~500250~380
    下载: 导出CSV

    表 4  多杀菌素A和D在土壤残留变化

    Table 4.  Changes in spinosad residues in soil

    t/dCK1%菌渣肥6%菌渣肥12%菌渣肥1%鲜菌渣
    ADADADADAD
    02.246.7412.531 863.93402.65
    34.007.321 443.80347.38
    72.355.84741.23171.73
    122.683.69725.64156.42
    202.173.16705.47141.42
    302.723.73593.68137.01
    423.42499.0796.44
      注:多杀菌素A检测限:2.0 μg·kg−1;多杀菌素D检测限:1.5 μg·kg−1;“—”表示低于检测限。
    t/dCK1%菌渣肥6%菌渣肥12%菌渣肥1%鲜菌渣
    ADADADADAD
    02.246.7412.531 863.93402.65
    34.007.321 443.80347.38
    72.355.84741.23171.73
    122.683.69725.64156.42
    202.173.16705.47141.42
    302.723.73593.68137.01
    423.42499.0796.44
      注:多杀菌素A检测限:2.0 μg·kg−1;多杀菌素D检测限:1.5 μg·kg−1;“—”表示低于检测限。
    下载: 导出CSV
  • [1] MORETTI E A, TAYLOR A G, WICKINGS K, et al. Insights into How Spinosad Seed Treatment Protects Onion From Onion Maggot (Diptera: Anthomyiidae)[J]. Journal of Economic Entomology, 2021, 114(2): 694 − 701. doi: 10.1093/jee/toaa332
    [2] HERRON G A, GUNNING R V, COTTAGE E L, et al. Spinosad resistance, esterase isoenzymes and temporal synergism in Frankliniella occidentalis (Pergande) in Australia[J]. Pesticide Biochemistry and Physiology, 2014, 114: 32 − 37. doi: 10.1016/j.pestbp.2014.07.006
    [3] ZHAO F, ZHANG C, YIN J, et al. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method[J]. Applied Biochemistry and Biotechnology, 2015, 176(8): 2144 − 2156. doi: 10.1007/s12010-015-1704-1
    [4] CAI C, LIU H. Performance of microwave treatment for disintegration of cephalosporin mycelial dreg (CMD) and degradation of residual cephalosporin antibiotics[J]. Journal of Hazardous Materials, 2017, 331: 265 − 272. doi: 10.1016/j.jhazmat.2017.02.034
    [5] JIANG M, SONG S, LIU H, et al. Effect of gentamicin mycelial residues disintegration by microwave-alkaline pretreatment on methane production and gentamicin degradation during anaerobic digestion[J]. Chemical Engineering Journal, 2021, 414(8): 128790.
    [6] ZHANG Y, LIU H, XIN Y, et al. Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation[J]. Chemical Engineering Journal, 2019, 358: 1446 − 1453. doi: 10.1016/j.cej.2018.10.157
    [7] GONG P, LIU H, CAI C, et al. Alkaline-thermally treated penicillin V mycelial residue amendment improved the soil properties without triggering antibiotic resistance[J]. Waste Management, 2020, 105: 248 − 255. doi: 10.1016/j.wasman.2020.02.008
    [8] LI Y, ZHONG W, NING Z, et al. Effect of biochar on antibiotic resistance genes in the anaerobic digestion system of antibiotic mycelial dreg[J]. Bioresource Technology, 2022, 364: 128052. doi: 10.1016/j.biortech.2022.128052
    [9] SHA G, ZHANG L, WU X, et al. Integrated meta-omics study on rapid tylosin removal mechanism and dynamics of antibiotic resistance genes during aerobic thermophilic fermentation of tylosin mycelial dregs[J]. Bioresource Technology, 2022, 351: 127010. doi: 10.1016/j.biortech.2022.127010
    [10] LIU Y, FENG Y, CHENG D, et al. Gentamicin degradation and changes in fungal diversity and physicochemical properties during composting of gentamicin production residue [J]. Bioresource Technology, 2017: 905-912.
    [11] YANG B, MENG L, XUE N. Removal of five fluoroquinolone antibiotics during broiler manure composting[J]. Environmental Technology, 2018, 39(3): 373 − 381. doi: 10.1080/09593330.2017.1301568
    [12] ZHANG Y, LIU H, DAI X, et al. Impact of application of heat-activated persulfate oxidation treated erythromycin fermentation residue as a soil amendment: Soil chemical properties and antibiotic resistance[J]. Science of The Total Environment, 2020, 736: 139668. doi: 10.1016/j.scitotenv.2020.139668
    [13] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography-Methods, 2008, 6: 572 − 579. doi: 10.4319/lom.2008.6.572
    [14] 肖进红. 利普司他汀菌渣的无害化及菌渣有机肥对土壤性能的影响研究 [D].上海: 上海电力大学, 2022.
    [15] AWASTHI M K, PANDEY A K, KHAN J, et al. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting[J]. Bioresource Technology, 2014, 168: 214 − 221. doi: 10.1016/j.biortech.2014.01.048
    [16] WEI L, SHUTAO W, JIN Z, et al. Biochar influences the microbial community structure during tomato stalk composting with chicken manure[J]. Bioresource Technology, 2014, 154: 148 − 154. doi: 10.1016/j.biortech.2013.12.022
    [17] EZZARIAI A, BARRET M, MERLINA G, et al. Evaluation of the antibiotics effects on the physical and chemical parameters during the co-composting of sewage sludge with palm wastes in a bioreactor[J]. Waste Management, 2017, 68: 388 − 397. doi: 10.1016/j.wasman.2017.06.036
    [18] HUANG G F, WONG J W, WU Q T, et al. Effect of C/N on composting of pig manure with sawdust[J]. Waste Management, 2004, 24(8): 805 − 813. doi: 10.1016/j.wasman.2004.03.011
    [19] AULINAS MASO M, BONMATI BLASI A. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua[J]. Bioresource Technology, 2008, 99(11): 5120 − 5124. doi: 10.1016/j.biortech.2007.09.083
    [20] SOUMARE M, DEMEYER A, TACK F M G, et al. Chemical characteristics of Malian and Belgian solid waste composts[J]. Bioresource Technology, 2002, 81(2): 97 − 101. doi: 10.1016/S0960-8524(01)00125-0
    [21] LV B, XING M, YANG J, et al. Chemical and spectroscopic characterization of water extractable organic matter during vermicomposting of cattle dung[J]. Bioresource Technology, 2013, 132: 320 − 326. doi: 10.1016/j.biortech.2013.01.006
    [22] TIQUIA S M. Reduction of compost phytotoxicity during the process of decomposition[J]. Chemosphere, 2010, 79(5): 506 − 512. doi: 10.1016/j.chemosphere.2010.02.040
    [23] XIAO J, WANG G, LIU H, et al. Application of composted lipstatin fermentation residue as organic fertilizer: Temporal changes in soil characteristics and bacterial community[J]. Chemosphere, 2022, 306: 135637. doi: 10.1016/j.chemosphere.2022.135637
    [24] BURKE D J, WEINTRAUB M N, HEWINS C R, et al. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest[J]. Soil Biology and Biochemistry, 2011, 43(4): 795 − 803. doi: 10.1016/j.soilbio.2010.12.014
  • 加载中
图( 9) 表( 4)
计量
  • 文章访问数:  1497
  • HTML全文浏览数:  1497
  • PDF下载数:  10
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-01-15
  • 录用日期:  2023-02-26
  • 刊出日期:  2023-08-20
刘之豪, 惠雪松, 刘惠玲, 关小红, 戴小虎. 多杀菌素菌渣无害化处理与肥料化利用研究[J]. 环境保护科学, 2023, 49(4): 50-56. doi: 10.16803/j.cnki.issn.1004-6216.202306034
引用本文: 刘之豪, 惠雪松, 刘惠玲, 关小红, 戴小虎. 多杀菌素菌渣无害化处理与肥料化利用研究[J]. 环境保护科学, 2023, 49(4): 50-56. doi: 10.16803/j.cnki.issn.1004-6216.202306034
LIU Zhihao, HUI Xuesong, LIU Huiling, GUAN Xiaohong, DAI Xiaohu. Experimental study on composting for fertilization utilization and harmless treatment of spinosad residues[J]. Environmental Protection Science, 2023, 49(4): 50-56. doi: 10.16803/j.cnki.issn.1004-6216.202306034
Citation: LIU Zhihao, HUI Xuesong, LIU Huiling, GUAN Xiaohong, DAI Xiaohu. Experimental study on composting for fertilization utilization and harmless treatment of spinosad residues[J]. Environmental Protection Science, 2023, 49(4): 50-56. doi: 10.16803/j.cnki.issn.1004-6216.202306034

多杀菌素菌渣无害化处理与肥料化利用研究

    通讯作者: 刘惠玲(1964—),女,博士、教授。研究方向:固体废物无害化处理与资源化利用。E-mail:hlliu2002@163.com
    作者简介: 刘之豪(1997—),男,硕士研究生。研究方向:固废无害化与资源化。E-mail:1046628350@qq.com
  • 同济大学,上海 200092
基金项目:
国家自然科学基金(51978497)

摘要: 针对抗生素发酵生产残余菌渣所引发的环境危害问题,以多杀菌素菌渣为研究对象,通过好氧堆肥工艺探究其资源化的可行性,设定不同的初始C/N,分析了反应过程中堆体pH、电导率(EC)、三维荧光图谱(3D-EEMs)等指标变化规律,并用初始C/N=20组的堆肥样品进行土壤模拟试验,以评估多杀菌素菌渣肥在使用过程中对土壤环境和微生物的影响。堆肥实验结果表明:多杀菌素去除率达到90%以上,堆体理化指标均处于适宜范围;3D-EEMs表明:堆肥过程中色氨酸类物质被微生物充分利用,腐殖酸类物质累积,堆体达到较好的腐熟效果;土壤模拟实验结果表明:1%和6%的抗生素残留低于检测限(多杀菌素A 2.0 µg/kg,多杀菌素D 1.5 µg/kg)。此外,投加了菌渣肥使土壤的微生物多样性提升。以上结果表明,多杀菌素菌渣经过堆肥化处理有助于改善土壤性能。

English Abstract

  • 多杀菌素是一种发酵产生的无公害农药[1],属于农用抗生素,因其杀虫效率高,在农业上的应用前景广阔[2]。多杀菌素菌渣是抗生素发酵提取后残留菌丝体和培养基的混合物,若直接进入环境可能造成潜在环境危害。因此,多杀菌素菌渣在2008年被列入中国的危险废物管理清单。考虑到菌渣有机物含量丰富[3],有效地处理多杀菌素菌渣以实现无害化和资源化具有巨大潜力。

    抗生素发酵菌渣无害化方法很多,包括微波分解[4-5]、热水解[6]、高级氧化工艺[7]、厌氧堆肥[8]和好氧堆肥[9],其中好氧堆肥处理以其低成本、技术成熟和可推广性受到企业的青睐。LIU et al[10]将庆大霉素残留物和洛伐他汀发酵残留物混合堆肥,实现了庆大霉素最大降解率96.7%。YANG et al[11]将肉鸡粪便堆肥42 d,去除粪便中75.4%的诺氟沙星。因此,抗生素残留物的肥料化是一个很有前景的资源利用途径。目前,暂无关于多杀菌素菌渣无害化和资源化的相关研究。

    本文通过好氧发酵对多杀菌素菌渣进行无害化与稳定化处理,系统研究其堆肥化效能。通过土壤模拟试验,从土壤中多杀菌素残留降、土壤理化性质及微生物活性与多样性等多层面分析多杀菌素菌渣的肥料化应用效果,以期为多杀菌素菌渣的无害化与资源化提供理论与技术支持。

    • 实验用多杀菌素菌渣取自山东省某生物制药公司,经脱水处理,含水率(5.61±0.71)%。菌渣样品采用已消毒的塑料桶收集,并在运回实验室后立刻放置于4 ℃冰箱内冷藏储存。实验用土壤取自江苏省某农场纯天然田园土。在进行土壤模拟实验前,已将土壤阴干14 d,并过2 mm筛网以去除石块和植物根系。实验用菌渣和土壤的理化性质,见表1表2

    • 实验取稻草秸秆作为碳源,控制堆体C/N分别约为15、20、25进行堆肥,控制堆体含水率控制在60%。考虑到多杀菌素菌渣含有的微生物种类较为单一,单独堆肥难达理想效果,故投加约2%的高效菌(即EM菌,属混合菌,含光合菌、乳酸菌、酵母菌等)。同时堆体内投加约5%的腐殖酸,一方面能为堆体提供碳源,另一方面也能减少堆肥过程中的氮素损失。堆体体积约为15 L。机械曝气量为0.4 L/(min·kg),采用间歇式曝气法,曝气2 h,暂停1 h。与此同时,每天进行人工翻堆保证有机质能够被微生物充分利用。堆肥一共42 d,取样日期分别为0,1,2,3,4,6,8,10,14,18,22,32,42 d,每次取样均从堆体内上、中、下以及发酵罐相应截面的中心、四周均匀取样50 g,取出样品装袋标记后立刻放进−20 ℃的冰箱内进行冷冻保存,以备后续指标检测。发酵设备见图1

    • 本研究通过实验室土壤模拟试验法,研究了菌渣有机肥对土壤性能的影响。参考文献[12],本文设置1%、6%、12%的质量比,并另设空白组和1%鲜菌渣投加组进行对比。每组土壤模拟实验使用土壤量约为1 kg,设置3组平行对照,放置于直径17.5 cm、高16 cm的花盆中培养,定期浇水保证土壤湿度约为10%。在0、3、7、12、20、30、42 d取样(约50 g)。每组样品分为2部分,一部分储存于−20 ℃用于检测残留多杀菌素残留量,另一部分储存于4 ℃以检测相关理化性质。

    • pH和EC的检测分别参考《土壤检测 第2部分:土壤pH的测定:NY/T 1121.2—2006》和《土壤 电导率的测点 电极法:HJ 802—2016》。堆体三维荧光光谱检测:使用质量比1∶10的超纯水提取土壤样品5 g,在水平振动器中震荡24 h,10 000 r/min离心20 min后过0.45 μm滤膜,用于三维激发发射矩阵(3D-EEMs)荧光光谱分析,检测数据进行拉曼归一化[13]。土壤酶活采用比色法进行测定[14]。利用生物工业微生物测序仪对细菌群落进行16S基因测序。GI的检测参考了《有机肥料:NY/T 525—2021》。

      抗生素残留检验检测方法:(1)流动相为甲醇:1%乙酸铵=7∶3(V/V),流速0.3 mL/min;(2)使用C18柱色谱柱,柱温30 ℃,进样量10 μL;(3)质谱选择采集多级反应监测模式,电喷雾离子源电压4.5 kV,雾化气流流速700 L/h,锥孔气流流速35 L/h;(4)多杀菌素A母离子质荷比(m/z)732.5,子离子质荷比(m/z)142.2;多杀菌素D母离子质荷比(m/z)746.5,子离子质荷比(m/z)142.2。

      预处理方法:称取样品2.0 g(精确至0.01 g)于50 mL离心管中,加入饱和氯化钙溶液10 mL,同时再加入2.0 mL乙酸乙酯,将混合液摇匀后置于多管涡旋仪上以2 000 r/min的转速充分振荡20 min,4 000 r/min离心10 min之后,取1.0 mL乙酸乙酯相液体在氮吹仪上吹干,之后使用1 mL流动相复溶,过0.22 µm滤膜待测。

    • 温度反映出好氧堆肥中微生物的新陈代谢水平,是判定堆肥成品达到无害化的重要指标。图2可知,3组实验的初始温度基本一致,在0—3 d内从室温快速升至50 ℃左右。在此阶段,水溶性糖类、淀粉类等易降解的可溶性有机物及大分子有机质被微生物利用,并产生热量上的累积。在4—10 d,堆体温度维持在50 ℃以上,嗜热微生物大量繁殖,有效地分解大分子蛋白质、纤维素、木质素等在升温过程难分解的有机物。到了降温期(11—42 d),嗜温性微生物开始进一步分解残余难降解有机物,温度进一步降低至室温。

      pH是影响体系中微生物活性和堆肥性能的重要参数,大多数微生物最适宜生长代谢的pH环境为中性或弱碱性[15],pH过高或过低均会影响到堆肥腐熟的进程。图3可知,在堆肥过程中A、B、C 3组的初始pH均为6.8左右,这主要是因为添加物料中含有一定量的腐殖酸,中和了菌渣等物料本身的碱度。在0—3 d内堆体pH迅速上升,大量含氮有机物被微生物利用产生氨气[16]以及小分子有机酸的降解[17]。在10—22 d进入降温期,功能微生物群落发生转变,堆体内有机物被进一步分解,小分子有机酸和部分盐基离子被合成大分子腐殖质(胡敏酸)[18],3组的pH缓慢下降并趋于稳定,这一点与图3中电导率后期呈现下降趋势相吻合。堆肥结束后,3组的pH稳定在堆肥适宜的7.5~8.5[19],EC稳定在<3 000 μS/cm范围内[20]

    • 在多杀菌素菌渣好氧堆肥过程中,多杀菌素残留量是评价菌渣无害化水平的重要指标。多杀菌素包含2种成分,即多杀菌素A和多杀菌素D。在C/N为15、20、25条件下,多杀菌素A和D残留量的变化曲线,见图4。反应至22 d时,C/N为15、20、25实验组的多杀菌素A去除率分别为81.71%、87.16%、79.13%,多杀菌素D的降解率分别为84.40%、84.64%、78.59%。其中,B组其内抗生素残留量最快,多杀菌素A 26.30 mg/kg,多杀菌素D 2.73 mg/kg。到42 d时,3组的多杀菌素降解率均达90%以上。另外,图4可知,在0—10 d内,3组多杀菌素去除率均可达70%以上,这表明多杀菌素的降解主要发生在升温期和高温期。以上结果表明,通过堆肥进行多杀菌素的降解是可行的。

    • 三维荧光光谱(3D-EEMs)可以直观地展示与微生物活动相关的蛋白质类物质的光谱信息及堆肥过程中形成的腐殖质类物质的结构信息。在数据处理过程中,将空白样品数据扣除并进行拉曼归一化处理,见图5。在堆肥过程中Peak Ⅰ(225/370 nm Ex/Em)代表的色氨酸类物质峰荧光强度下降,说明好氧堆肥过程中类蛋白物质逐渐发生降解,到堆肥后期基本降解完全。Peak Ⅱ(275/370 nm Ex/Em)表示堆肥初期就存在溶解性微生物代谢产物,这是因为菌渣是由微生物经发酵作用而产生的,菌渣内会残留一定的微生物代谢产物。Peak Ⅲ和Peak Ⅳ在高温期同时出现,Ex/Em波长分别为275/449和325/424 nm。Peak Ⅲ和Ⅳ均和腐殖酸类物质相关。LV et al[21]在牛粪蚯蚓堆肥过程中的第60 d检测到与腐殖酸相关的320/416 nm Ex/Em波长对的峰值Peak Ⅲ和Peak Ⅳ的出现表明在堆肥过程中产生了腐殖质的积累,标志着堆体不断腐熟,趋于稳定,见表3

    • 种子发芽指数(GI)综合反映生物性安全,广泛用于堆肥中物料的植物毒性评价,GI受到多种因素的影响,包括残留物浓度、重金属离子浓度等。图6可知,在堆肥初期,3个堆体的GI相对较低,表明植物毒性相对较高。随着时间推进,GI均有所提升,表明植物毒性大幅降低。第42 d C/N=20、25的GI分别为98.29%和90.70%,而C/N=15的GI为82.34%。这一现象的原因可能与C/N=15组含盐量较大有关[22]。总体上,GI在高温期实现较大提升,原因在于在高温阶段,氨气固定和挥发,有机质分解,毒性化合物降解,堆体开始稳定。通常认为好氧堆肥处理GI>80%说明产品无植物毒性且达到腐熟状态,结果表明3组均达到了GI层面的腐熟状态,较为理想。

    • 作为一个生物反应过程,微生物群落结构的变化会直接影响堆肥过程中的物质转化以及堆体的稳定性。结合2.1.1至2.1.4节数据分析,我们初步判断B组(C/N=20)堆肥较为理想,并对B组0、6、14、22 d的样品进行16S rRNA高通量测序。Alpha多样性可以反映微生物群落的丰度和多样性。C/N=15、20、25 3组的Alpha指数变化见图7。在整个堆肥过程中,Shannon指数和Shannoneven指数呈上升趋势,Simpson指数呈下降趋势,表明细菌多样性有所提高,同时群落分布均匀度有所提升。而Chao指数先下降后上升,说明群落丰富度先下降后上升。原因可能在于堆肥使用的EM菌种较为复杂,其中存在一些不适于堆肥条件下生存的微生物种类。综合C/N=20组的微生物群落分析,可初步判定其达到理想的堆肥效果。

    • 土壤酶作为一类在土壤中广泛存在的酶类物质,能够催化包括有机质分解、养分循环等过程在内的土壤中的化学反应。土壤酶活性可以用来衡量土壤生态系统功能,具有重要的意义和作用[23]。通过分析土壤酶活性的变化可以反映出菌渣肥对土壤生物活动、土壤物质循环以及土壤生物区系的影响,进而明确对土壤肥力的作用效果。将各检测结果以雷达图的形式展示,各组分所占据面积即可表示土壤酶活性的整体水平,见图8。菌渣肥的投加促进了土壤酶活性,反观鲜菌渣,其投加对酶活促进效果较弱。

      磷酸酶在有机磷矿化中起着重要作用,其通过水解有机分子中磷酸基团的磷酸酯键来催化磷酸盐的释放,可表征土壤的供磷能力。图8可知,在模拟前期,磷酸酶的活性随着施肥量的增加而增强,这可能是因为前期高浓度菌渣肥对土壤微生物活性有一定的促进作用,导致土壤酶活性升高;在土壤模拟实验中,不同施肥浓度下的磷酸酶活性均高于空白值且,随着施肥浓度的增加而增加。这与菌渣肥中大量有机质和营养物质的供应有关。

      土壤脲酶能促进土壤中有机化合物尿素分子酰胺碳氮键的水解,其产物是植物最重要的土壤速效氮,在氮肥利用和土壤氮素代谢方面有着重要的意义[24]。不同施肥比条件下菌渣肥均显著提高了土壤脲酶的活性,且随着施肥比的提升有进一步的增强。在第12 d时,脲酶活性达到峰值,而后随着含氮有机物的消耗,脲酶活性逐渐降低,并在第30 d后趋于稳定。培养结束后,施加1%、6%、12%菌渣肥土壤的脲酶活性则显著高于菌渣施肥土壤的脲酶活性,表明多杀菌素菌渣肥增强土壤脲酶活性效果优于菌渣效果。

    • 通过考察多杀菌素在土壤中的降解规律,分析了菌渣肥土壤施用过程中多杀菌素在土壤中的稳定性及累积的可能性。土壤模拟施肥实验过程中各土壤样品中多杀菌素的含量变化,见表4。在鲜菌渣施入土壤后,显著提高了土壤中多杀菌素的含量。随着培养时间的延长,多杀菌素的含量逐渐降低,分别经过12、20、30 d后,鲜菌渣施加比例为1%、6%的土壤中的多杀菌素已低于检测值,表明多杀菌素在土壤中难以稳定存在,可以被有效降解,不存在累积的风险。而在多杀菌素菌渣肥施入土壤后,在各时期的土壤中多杀菌素残留量均远高于菌渣肥组,表明经过无害化处理后,施肥过程中多杀菌素剩余量大大减少。另外,在《食品安全国家标准 食品中农药最大残留限量:GB 2763—2021》中,多杀菌素在坚果和马铃薯中的最大残留量分别为10和70 μg/kg,这也说明了该结果的安全性。

    • 土壤细菌群落结构对土壤理化性质以及物质循环的意义重大:(1)土壤细菌群落结构与土壤养分的循环和分布密切相关。一些细菌可以将氮、磷等元素固定,促进土壤养分循环,为植物的生长提供了必要的物质条件。同时,细菌还可以促进有机质的分解,释放出养分为植物利用。(2)土壤细菌群落结构对土壤结构的稳定作用明显。某些细胞产生的胞外多糖物质能够促进土壤结构的形成和稳定,提高土壤的水分保持能力和抗侵蚀能力。(3)土壤细菌群落结构对植物生长影响重大,除了提供营养物质徐进植物生长之外,细菌还可以产生包括植物生长素在内的生长因子,促进植物生长发育,提升免疫力和抗逆性。

      空白对照组、1%、6%、12%菌渣肥投加组和1%菌渣投加组土壤模拟过程中门水平上相对丰度变化,见图9。在对照组中,变形菌(Proteobacteria)和拟杆菌(Bacteroidetes)占比极大,在42 d占比分别为57.52%和40.09%,而菌渣投加组则相对更加均匀,土壤质量得到明显提升。放线菌(Actinobacteria)、厚壁菌门(Firmicutes)、酸杆菌门(Acidobacteria)的相对丰度有明显的提。另外,1%鲜菌渣投加组相对丰度变化更大,放线菌(Actinobacteria)、厚壁菌门(Firmicutes)相对丰度提升的原因并非因为菌种数量有所上升,而是因为变形菌门(Proteobacteria)等原本在土壤中的占比较大的细菌数量大幅下降所导致的。因此,结合以上分析可以认为下鲜菌渣投加组的土壤细菌群落结构在不同程度上得到了优化,而鲜菌渣的影响结果相反,不利于细菌的生长。

    • 本文通过好氧堆肥工艺探究了多杀菌素菌渣的无害化与稳定化的可行性,同时进一步分析了多杀菌素菌渣肥料对土壤性能的影响效果。(1)好氧堆肥结果表明,C/N=20的条件下对多杀菌素进行好氧堆肥处理,堆体pH、EC等理化指标达适宜范围,三维荧光数据表明堆体已达腐熟状态,多杀菌素降解率达90%以上;(2)土壤模拟实验结果表明,土壤酶活水平明显提升,多杀菌素残留低于检测水平,而微生物多样性总体也呈上升趋势。总体而言,好氧堆肥工艺可以有效去除菌渣中的残留多杀菌素,并且制备而成的多杀菌素菌渣肥能够改善土壤肥力。后续仍应进行相关田间种植试验,以进一步探究多杀菌素菌渣无害化处理的可行性。

    参考文献 (24)

返回顶部

目录

/

返回文章
返回