-
人居自然环境,是指与人类生命活动有关的地表空间系统,是人类在大自然中赖以生存与发展的物质基础,是人们利用自然、改变自然界状态的理想主场之所[1-3]。自然环境质量的高低关乎人们生活质量的高低,同时也是一个区域能否实现健康稳定发展的关键。人居环境的研究学科交叉性强,涉及地理学、环境科学、城市规划、社会学等诸多学科。随着3S技术的广泛应用,人居自然环境也是目前地学研究的一个重要领域[2]。
目前已有诸多学者借助GIS和遥感技术,将地理学、生态学、统计学等相关学科应用于人居环境的研究中。许长军等[4]选取气温、蒸发量、海拔等多个自然环境因素,运用ArcGIS和SPSS统计分析软件进行主成分分析, 探讨了青藏高原人居环境自然适宜性特征及其空间差异。李大伟等[5]基于多源数据结合GIS技术,采用综合指数法定量评估了安徽省人居环境人文适宜性。刘海旭等[6]对长江经济带110个城市,运用层次分析法对各城市人居环境进行了测度评估,并借助GIS可视化方法揭示了城市人居环境空间格局与集聚特征。朱媛媛等[7]通过构建生产、生活、生态子系统对长江中游城市群的农村区域进行了人居自然环境质量评估。崔世华等[8]以湖北省为研究区采用熵权TOPSIS法对湖北省2013—2018年的城市人居环境质量时空分异及贡献因素进行了研究。
上述关于人居环境的研究大都仅采用层次分析法、熵权法或综合指数法进行影响因子权重的确定,未见有将其结合距离函数法和最小信息熵法的研究。而且目前的研究针对流域尺度的研究较少,尤其是地形复杂、生态空间差异明显的地区。因此,本文因循地理学视角以地貌多样、地形复杂、上下游海拔差异较大的云南金沙江流域为研究区,综合分析流域生态环境状况并参考类似研究,确定从地质地貌、气候、地表覆盖、地质灾害4个方面,通过灰色关联、熵权以及欧式距离函数等多方法相结合来评价流域2010、2015、2020年3期人居自然环境质量情况,采用空间自相关、冷热点分析等方法综合探讨人居自然环境质量的时空分异规律并分析其成因。本研究对改善流域人居自然环境现状,提高人们生活环境质量,促进流域各地区全面可持续发展具有重要意义;得出的人居自然环境质量分析方法,也可为其他具有高山峡谷特点的类似流域的人居自然环境研究提供借鉴。
-
金沙江流域(云南段),位于云南省西北部、北部和东北部边缘,地处24°30′~29°15′N与98°40′~105°15′ E之间,西北部、北部与西藏自治区、四川省相连,东北部与四川、 贵州两省毗邻,全域流经7个市州,涵盖48个区县,总面积109 984 km2,占云南省土地面积的28.94%[9]。河流主干从迪庆藏族自治州德钦县的德拉附近进入云南,经昭通市的水富县流入四川省全长1 560 km[10]。流域从上游的极高山峡谷地貌区,到中游的丘状高原、高原湖盆地貌区,再到下游的喀斯特中山丘陵地貌区,由于自然环境要素差异大,导致人类居住的自然生态环境差异明显[11]。流域的气候环境、植被情况、地形地貌等自然条件复杂特殊,导致区域内生态环境条件相对脆弱。
-
采用金沙江流域(云南段)2010、2015、2020年3期遥感影像和地形、地质、土壤、气候等基础数据进行研究。具体包括:(1)云南省1∶100万地形图、1∶25万地质图;(2)从中国科学院资源环境科学与数据中心获取云南省30 m×30 m DEM数据、1∶100万水系和土壤侵蚀数据;(3)通过历年云南省统计年鉴获得各区县的年均温度和降水数据;(4)在地理空间数据云平台下载流域范围12景Landsat系列影像,经辐射定标、波段组合、影像拼接等一系列预处理得到研究区30 m×30 m的遥感影像。
-
金沙江流域(云南段)上、中、下游各部分地区地貌差异大,地形复杂,海拔落差较大,地震、滑坡等地质灾害频发,降水、温度等气候因素也因地处位置不同有着明显变化。并且已有研究表明[12-15],虽然影响人居自然环境的因素众多,但其中发挥根本作用的主要包括地形地貌、气候条件、水文条件和土地覆盖。因此,根据流域境内的自然环境特征,结合层次分析法选择地质地貌(坡度、海拔和地貌)、地质灾害(地震烈度、断层、土壤侵蚀和岩石类型)、气候(年均降雨量和温度)、土地覆被(植被覆盖度)4大类(10小类)自然要素作为影响金沙流域人居自然环境质量的因子,根据层次分析法的原理, 将指标分为目标层 (A) 、准则层 (C) 和指标层 (P) 3层结构[16], 构建环境质量评估指标体系层次结构图,见图1。
-
确定指标因子权重的方法众多, 主要包括层次分析法 (AHP) 、主成分分析法、熵权法、标准离差法等, 这些方法又分为主观赋权法和客观赋权法[17]。为了增加权重分配的准确性和可信度, 本文通过层次分析法与熵权法组合赋权能避免前者主观确定指标相对重要性和后者极值干扰所导致的误差[18],并基于欧式距离函数法(式1)和最小信息熵原理(式2)相结合的方式来最终确定各类指标的最终的权重,见表1。
式中,Wi、Wj分别表示两种方法计算得到的权重值,n=10表示10个指标因子,A,B是权重系数,W1是距离函数法组合得到的权重,W2是最小信息熵原理得到的组合权重。
-
本研究选取的10个质量指标因子中分为定量和定性两类,其中定量因子包括土壤可蚀性、地震烈度、坡度、海拔、降水、温度和植被覆盖度7个因素,这些定量因子有具体的实测值,采用灰色关联法计算评估;断层、岩石类型和地貌3类属于定性因子,则采用专家打分法(德尔菲法)进行排序后再通过灰色关联法计算评估。其中,灰色关联度计算,见式(3):
式中:
ξ(k) 介于0和1之间,是表示第i个栅格第k个评估因子与其最优值的关联度;X∗(k) 代表第k个评估系数的最优值(各指标的最优值见表2);X'i(k) 代表第i个网格的第k个评估因子的属性值;minimink|X∗(k)−X'i(k)| 是两级极小差值;maximaxk|X∗(k)−X'i(k)| 是两级极大差值;R为分辨系数,在本研究中其值确定为0.5[19]。 -
结合表1中的权重分配,对单因子评估结果依照权重进行栅格加权叠加,实现人居自然环境质量综合度量模型构建,见图2。
得到3个时期的人居自然环境质量综合评估结果图,见式(4):
式中:i是栅格编号;k是评估因子编号;n是评估因子的总数;Si为第i个栅格单元的人居自然环境得分;Wk为第k个因子的权重;
ξ(k) 表示第i个栅格第k个评估因子与其最优值之间的相关程度[20]。 -
利用上述方法通过ArcGIS软件分别计算2010、2015和2020年3个时期的金沙江流域(云南段)人居自然环境质量评分结果,将其分段划分为好(>0.8) 、较好(0.7~0.8)、中等(0.6~0.7)、较差(0.5~0.6)、差(<0.5)5个等级, 生成空间分布图,见图3(a、b、c)。为了更加直观地呈现其整体空间分布规律,综合3期人居自然环境质量评估结果,利用渔网工具在流域空间范围内均匀抽出481个栅格点,携带属性值转换成点文件,采用ArcGIS地统计学分析模块中的趋势分析工具,经3次多项式拟合生成三维趋势图,见图3(d)。
流域人居环境质量的空间分布是自然生态环境特点的综合反映结果。从图3(a、b、c)可以看出,流域人居自然环境优劣程度总体表现为:中游>下游>上游。从图3(d)发现,从XZ平面,即东西方向预测趋势线(绿色线)来看,沿着x轴方向,评估值先逐渐增大,达到最大值后又轻微下降,然后趋于平稳,也即变化规律为:中部>东部>西部。从YZ平面,即南北方向预测趋势线(蓝色线)来看,沿着y轴方向,随着坐标值增大,评估值急剧下降,也即南部地区明显高于北部地区。区域人居最佳自然环境出现在中游以南部地区,从南到北自然环境质量下降,中下游生态环境质量优于上游。究其原因,上游迪庆州地处高山峡谷地区,断层密集,海拔较高,人居自然环境质量最差;中游大部分地区属于丘陵高原和湖盆地区,地形较为平坦、植被茂密、水源充足,生态环境相对较好;下游地区多属于中山喀斯特峡谷地区,部分地方由于植被遭到破坏,所以环境质量差异明显。
结合图4进一步分析,研究区10年来人居自然环境质量评分在0.6以上的中等偏好区域占比最多,占总像元的70%以上,像元数量先减后增;而评分小于0.5的部分仅占总体的5%左右,其像元数量轻微波动且有逐渐减少趋势,由此可见流域的整体环境质量良好,但仍然存在改善和提升的潜在空间。呈现上述变化的原因是云南省2002年全面启动退耕还林工程,持续10年的退耕还林工程使得大部分地区生态状况逐渐好转,但仍有少数区域环境质量不乐观,随着2016年新一轮退耕还林还草工作的开展,使得近年来流域的环境情况持续向好。
-
利用数据转换工具将综合叠置后的人居自然环境质量评估栅格结果转化成矢量点图层,以此为数据源,通过空间自相关分析计算全局Moran's I指数,反映各空间单元在整体区域及其周边的平均关联度,值大于0说明空间正相关,值越大,空间相关度越高。经计算得Moran's I指数大于0.5,且正态统计量Z得分(>1.65)和P值(<0.05)通过显著性检验,见表3,即流域人居自然环境质量呈正相关集聚分布,且相关性较强。
为进一步探究流域人居自然环境质量在空间上的强弱变化规律,通过热点分析,计算人居自然环境质量的Getis-Ord
Gi∗ 指数,然后将其按置信度百分比划分为7个等级,得到冷热点空间分布,见图5(a)。总体来看,区域冷热点空间分布大致表现为冷点区分布在流域上游及中下游北部;热点区出现在中游大部分地区以及中下游以南区域;流域下游和中游部分地区冷热表现不显著。结合区域地貌(b)、坡度(c)、海拔(d)对比分析得,流域人居自然环境质量会受到地质、地形地貌、植被和气候等多因素的影响,其中,受地地貌、坡度、海拔等自然条件的影响较大。上游迪庆州海拔高、坡度较大,且发育为高山峡谷地貌,因此集中出现了环境质量较差的区域,出现了置信度极高的冷点区;以丽江北部、楚雄中部以及昆明南部为代表的中游地区主要为湖盆地貌,地形相对平缓、气候温和,人居自然环境质量较高,形成了置信度极高的热点区。
-
根据3期人居自然环境质量评估结果,通过3次卷积采样形成流域48个县市地区的质量评估值统计图,见图6。
对比3期城市环境质量变化情况,可以看出10年间流域大部分地区分值波动较大,但总体呈现上升趋势,以巧家、富民、宁蒗、龙马、昆明主城区、楚雄和永善7个地区表现最为显著。其中,巧家、宁蒗和永善出现了明显下降后回升的势态,其余几个地区环境质量持续见好。这是由于云南省自2011年“十二五”规划至如今的“十四五”规划十来年的时间里,各地方政府及相关部门在自然环境保护方面做出了强有力的干预与引导工作,如开展违法土地专项整治、提出流域生态环境保护修复和绿色发展工作、抓好环保督察反馈问题整改、开展全民义务植树活动等,随着各项工作的全面落实与稳步推进,环境质量较差地区开始出现回暖,而环境质量较好的区域在保持状态的基础上越变越好,流域整体环境质量逐渐变好。
-
本研究借助GIS相关技术及模型对云南金沙江流域的人居自然环境质量时空特征进行探究,主要结论如下。
(1)流域人居自然环境质量的空间分异规律表现为中游>下游>上游,南部>北部。其中,上游迪庆州的人居自然环境质量最差,中游地区以丽江北部、楚雄州中部和昆明南部表现最好,下游地区巧家县、东川县和会泽县交界地带环境质量较差,整体来看,70%以上地区环境质量中等偏上,但仍然存在改善和提升的潜在空间。
(2)10年来,流域总体人居自然环境质量逐步转好,其中,上下游偏北地区环境质量在2015年出现略微下降,到2020年又逐步回升,中游以南地区环境质量持续向好,其中发生明显变化的地区主要是昆明主城区、楚雄市、龙马县、永善县及宁蒗县。
(3)采用熵权、距离函数以及灰色关联在内的多种方法结合来确定人居自然环境质量评估因子的权重,避免了单一方法导致的主客观性,提高了最终评估结果的精确度和可信度。
(4)研究所得的人居自然环境质量评估指标、度量模型和分析方法,不仅适用于金沙江流域,也可为其他类似地质条件复杂、地质灾害频发的高山峡谷流域地区的人居自然环境研究工作提供参考;研究结果也能为区域产业空间布局、灾害搬迁选址和环境保护治理等提供科学依据。
-
深入剖析10年来云南金沙江流域的人居自然环境质量的时空分异状况并结合地区自然、人口相关条件,本文提出以下建议。
(1)虽然上游地区人口相对较为稀少,但由于地处上游,人类产生活动带来的负面效应极易对整个河流流域产生不良影响,因此,在保持现有种群密度的情况下,应减少大规模的人为干扰活动,加强植被保护,以期逐步改善区域环境质量状况。
(2)中游大部分地区拥有良好的人居自然环境,但人口分布不均,如东川、会泽等地人口密度较大但人居自然环境相对较弱,宣威、马龙等地人口相对较少生态环境却较良好,即该区域仍有较大的开发利用空间,因此,可以在人口较少的地区合理规划一些工厂企业吸引外来人员,在保证地区经济稳定发展的同时实现对区域人口的隐形调控。
(3)流域大部分下游地区地形比较陡峭,地貌破碎程度较高,植被稀疏,人口密度持续升高,人居自然环境势态不容乐观,应对该地区进行生态保护,合理规划城镇空间布局,保障下游地区的可持续发展。
金沙江流域(云南段)人居自然环境质量时空分异研究
Study on temporal and spatial differentiation of human settlement natural environment quality in Jinsha River Basin (Yunnan section)
-
摘要: 基于2010、2015、2020年3期遥感影像和其他多源数据,从自然环境的角度,选取地貌、土壤、植被覆盖等10个环境质量因子作为人居自然环境质量评估指标,将熵权法、欧式距离函数等多方法复合建立流域人居自然环境质量的综合度量模型,通过GIS趋势面、Moran's I指数及冷热点分析揭示流域人居自然环境质量的时空分异规律。结果表明:流域人居自然环境质量受坡度、地貌和植被覆盖度的影响较大,环境质量优异地区的空间分布与坡度平缓、地貌适宜且植被良好的区域具有较高的重叠性;流域三期人居自然环境质量的时空演变规律表现为:空间维上,南部>北部、中部>东部>西部,从南到北,环境质量下降,中下游优于上游;时间维上,呈现出先下降后回升的趋势,尤其是中游以南的滇中地区表现尤为明显;流域整体呈正相关集聚分布,置信度高的热点区以中下游以南的楚雄州及昆明地区为主;而置信度高的冷点区覆盖整个迪庆藏族自治州。研究得出的人居自然环境度量模型及空间异质性分析方法为开展类似研究提供参考,揭示的人居自然环境时空变异规律为区域进行灾害搬迁选址和环境保护治理提供科学依据。
-
关键词:
- 金沙江流域 /
- 人居自然环境度量模型 /
- Moran's I指数 /
- 冷热点分析
Abstract: Based on 2010, 2015, 2020, three remote sensing images and other multi-source data, from the perspective of the natural environment, landscape, soil, vegetation, and so on, 10 environmental quality factors as living environment quality evaluation indicators were used to build a composite basin residential environment quality comprehensive measurement model by using the entropy weight method and the Euclidean distance function method. Through GIS trend surface, Moran's I index and cold and hot spot analysis, the spatial and temporal differentiation rules of natural environment quality of human settlements in the watershed were revealed. The results showed that the natural environment quality of human settlements in the watershed was greatly affected by slope, geomorphology and vegetation coverage, and the spatial distribution of areas with excellent environmental quality had a high overlap with areas with gentle slope, suitable geomorphology and good vegetation. The spatial and temporal evolution of the natural environment quality of human settlements in the three stages of the watershed is as follows: from the spatial dimension, south > north, central > east > west. From south to north, the environmental quality decreases, and the middle and lower reaches are better than the upper reaches. In the time dimension, it showed a trend of first declining and then rising, especially in the central Yunnan region in the south of the middle reaches. The overall basin is positively correlated with the cluster distribution, and the hotspots with high confidence are mainly Chuxiong Prefecture and Kunming region in the south of the middle and lower reaches. The cold spot area with high confidence covers the whole Diqing autonomous Prefecture. The measurement model and spatial heterogeneity analysis method of human settlement natural environment obtained in this study provide a reference for similar research. And the spatial-temporal variation law of human settlement natural environment revealed can provide a scientific basis for the regional disaster relocation site selection and environmental protection and governance. -
磷是生命体不可或缺的营养元素,在生物的生长、发育和繁殖过程中起着至关重要的作用[1]1。它是一种不可再生资源,主要源自磷矿石的开采。有研究表明,按目前的开采速率,现存的磷矿储备最多仅够维持372a[2]。另一方面,水体中过量的磷容易引发水体富营养化,进而破坏生态环境[3]。为了保护资源和环境,磷回收技术应运而生,并逐渐受到人们的关注。其中,鸟粪石(MgNH4PO4·6H2O)结晶法由于具备氮磷去除效果好、反应速率快、产品为优质缓释肥料等特点而备受青睐[4-5]。
鸟粪石产品的商品化是鸟粪石法能否实际应用的关键,而鸟粪石的商品化价值取决于其产品质量。鸟粪石的产品质量与所使用的结晶反应器密切相关,目前主流的鸟粪石结晶反应器为搅拌釜和流化床[6]。有研究表明,完全混合式的搅拌釜无法将杂质与鸟粪石产品进行有效分离,所得的鸟粪石污染物含量较高;流化床采用上升水流作为物料混合和颗粒流化的推动力,可实现轴向上的水力分级,大幅降低产品中杂质含量,所得产品纯度高,安全性好[7-8]。
截至目前,鸟粪石结晶流化床尚无设计规范。研究人员多根据经验或半经验公式计算流化速度,并设计不同的管径以实现鸟粪石在反应器中的分级[9-11]。管径的变化除了具备分级效果,还可创造一定的湍流以促进物料的混合及晶体的聚并[12]。目前较为常见的流化床构型主要有多段式和锥体式。FATTAH等[11]使用多段式流化床对污水处理厂的污泥压滤浓缩液开展磷回收,磷酸盐去除率超过90%,磷回收率高于85%,所得产品中鸟粪石纯度高达96%。李咏梅等[7]采用锥体式流化床反应器对污泥脱水上清液进行处理,
PO3−4 -P的去除率最高可达90.5%,产生颗粒的最大粒径在2.0~3.2 mm之间,纯度在80%以上。2种流化床反应器构型均具备理想的磷去除效果及产品特性,但结构较复杂,加工难度大。鸟粪石微晶的流失会导致总磷(TP)去除率下降,是鸟粪石流化床面临的首要问题,目前主要通过设置沉淀池、安装筛网或投加混凝剂进行截留[13-15]。其中,外置沉淀池的目的是为了保证沉淀效果,须设计较大容积的沉淀池,从而增加了基建成本;安装筛网虽经济有效,但须频繁清理,人工维护成本较高;投加混凝剂则需额外的药剂费用及污泥处置费用。综上所述,无论是复杂的反应器外部构型或是额外的微晶截留措施,均不可避免地增加了加工难度及运行维护成本。鉴于结晶反应器内流体运动的复杂性,完全从实验角度开展反应器优化研究将会非常费时、费力。随着计算机性能的不断提高,计算流体力学(computational fluid dynamics,CFD)已被广泛应用于反应器结构的优化,其避免了传统经验方法中繁复的实验过程,对结晶反应器的设计、优化及放大提供更加可靠的依据和详尽的信息。针对鸟粪石结晶流化床构型设计的不确定性及复杂性,本研究首先采用数值模拟的方法,探明多粒径体系下不同构型流化床的湍流强度、分级特性和微晶截留效率;然后通过实验研究新构型鸟粪石结晶流化床的磷去除效果与产品特性,以验证数值模拟优化方法的可靠性和合理性。
1. 材料与方法
1.1 模型建立及计算
采用冷态数值模拟的方法研究流化床外部构型对鸟粪石产品分级情况与湍流强度的影响以及内部构件对鸟粪石微晶截留的影响,确定适宜鸟粪石流化床的外部构型及内部构件。
1.1.1 几何建模及网格划分
考察的流化床外部构型包括目前常见的多段圆柱式、一段锥体式和一段圆柱式。3种构型的流化床均由反应区和沉淀区组成。所对比的流化床内部构件为三相分离器及斜板,安装于沉淀区中,用以考察其对鸟粪石微晶的截留效果。鉴于流化床结构的规则性,采用Gambit 2.4软件建立流化床二维模型(X-Z平面),并采用四边形结构性网格进行划分。流化床外部构型及内部构件的具体构型与尺寸如图1所示。
1.1.2 模拟条件设定
根据文献中报道的鸟粪石粒径设置模拟粒径[10],考察流化床外部构型对3类混合粒径的分级情况及湍流特性,同时明确内部构件对小粒径鸟粪石的截留情况。具体条件设定如表1所示。
表 1 模拟条件设定Table 1. Modeling conditions set-up工况 粒径组成特征 粒径/mm 外部构型 内部构件 1 宽粒径组合 0.5/1.0/4.0 锥体/多段/一段 无 2 小粒径组合 0.2/0.5/1.0 锥体/多段/一段 无 3 大粒径组合 2.0/3.0/4.0 锥体/多段/一段 无 4 宽粒径组合 0.2/0.5/1.0 一段 三相分离器 5 宽粒径组合 0.2/0.5/1.0 一段 斜板 1.1.3 模拟参数设定
研究表明,曳力是固液相间运动的主要作用力。前期研究结果[16]已证实了曳力模型对鸟粪石流化体系模拟精度的重要性。由于Syamlal-O′Brien曳力模型在较宽的流速及粒径范围内对鸟粪石床层膨胀的模拟精度优于其他曳力模型,因此,本研究选用Syamlal-O′Brien曳力模型开展模拟研究。其余控制方程的表达式见鸟粪石冷态流化模拟的研究[16],模拟参数设定如下。基本设置:分离式求解器,欧拉双流体模型,Dispersed湍流模型,一阶迎风格式,残差为1×10−3,最大迭代次数为100次;边界条件:速度进口v=0.05 m·s−1,压力出口,无滑移壁面,标准壁面函数;液相参数:密度为998.2 kg·m−3,黏度为1.003×10−3;固相参数:密度为1 580.23 kg·m−3,粒径分别为0.2、0.5、1.0、2.0、3.0和4.0 mm,初始固相体积分数为60%,颗粒床层体积为380 cm3。
1.1.4 模型计算及后处理
流化床反应器数值模拟计算采用Fluent 14.5,后处理采用Ensight 10.0。程序运行平台的主要参数:Intel Xeon十二核处理器(2颗),主频3.1 GHz,64 GB DDR3双通道内存。
1.2 实验材料及方法
1.2.1 实验水质
为验证数值模拟结果的可靠性,明确结构优化后流化床的运行效果,本研究采用人工配水的方式考察不同进水磷浓度条件下,流化床的磷去除及产品颗粒粒径分布情况。配制的进水磷浓度为240、480和1 000 mg·L−1,采用磷酸二氢铵(纯度≥98%,武汉无机盐化肥有限公司)为磷源和氮源,采用六水合氯化镁(纯度≥99%,REDOX公司)为镁源,控制反应过程Mg/N/P摩尔比为1∶1∶1。采用氢氧化钠(纯度≥96%,沪试)调节反应液pH。
1.2.2 实验装置及运行条件
实验装置为一段式流化床,材质为有机玻璃,有效容积为50 L,由流化区和沉淀区组成(图2)。实验过程pH设置为8.5,进水流量为33 L·h−1。采用流化床出水回流作为物料混合及流化的推动力,设置流化区的上升流速为50 mm·s−1。
1.2.3 分析方法
pH采用PC-3100(Suntex)在线pH计进行测定;
PO3−4 -P和TP采用钼锑抗分光光度法测定(HACH DR5000,USA);鸟粪石产品于38 ℃烘干24 h,采用标准筛(0.3 mm/1.25 mm/2.5 mm/3.2 mm)测定粒径;使用扫描电子显微镜(S-4800,Hitachi,Japan)观察鸟粪石产品的微观形貌。2. 结果与讨论
2.1 流化床数值模拟分析
2.1.1 网格无关性检验
数值计算的基础是网格划分。当前的主流偏微分方程数值离散方法都是先计算节点上的物理量,而后通过插值方式求得节点间的值。因此,理论上网格点布置得越密集,所得到的计算结果也越精确。但网格加密带来了较大的计算量及舍入误差,所以从计算的效率及求解结果的精度来说,网格并非越多越好。网格过疏或过密均可能产生误差过大的计算结果。只有当网格数的增加对计算结果影响不大时,此时的数值模拟计算结果才具有意义,因此,首先必须进行网格无关性检验,可采用一段式流化床进行网格无关性研究(图3)。设置2.0、3.0、4.2、5.0、6.0和8.0 mm这6种网格尺寸,对应的网格数量分别为53 433、23 863、12 099、8 624、5 844和3 335个。通过对比体积平均粒径为1 mm和3 mm的鸟粪石颗粒在特定上升流速和初始堆积高度条件下的床层膨胀情况来判断其网格无关性。
图3为不同网格尺寸下,模拟床层与实验床层的膨胀情况对比。由图3可知,所建立的冷态流化模型对3 mm颗粒的模拟精度较好,不同网格尺寸差异较小,与实验结果偏差均在6%以内;但对1 mm颗粒的模拟结果波动较大,与实验偏差为3.3%~12.4%,其中,网格尺寸为3 mm和4.2 mm的精度最佳。综合考虑模拟精度与计算成本,选择尺寸为4.2 mm、数量为12 099个网格以供后续模拟。
2.1.2 流动特性分析
图4模拟了3种不同构型流化床在流化区进口上升流速为50 mm·s−1时,鸟粪石固含率随时间的分布云图。为了突出流化床构型对不同粒径鸟粪石产品的空间分级特性,选择颗粒粒径分别为0.5、2.0和4.0 mm。由图4可知,水流从流化床底部沿轴线穿过颗粒床层向上运动,此时空隙率的增大造成床层抬升,床层平均密度下降。在密度差的作用下,颗粒在反应器内循环运动。由于粒径的自由沉降速度随颗粒粒径的增大而增加,在相同的上升流速下,不同粒径颗粒的膨胀高度不同。反应器构型上的差异也导致了不同轴向高度上流速的不同。除了一段式流化床在流化区内上升流速不变外,锥体式流化床与多段式流化床的上升流速均随轴向高度的升高而减小,其中,锥体式流化床为逐步减小,而多段式流化床为阶梯性减小(图1)。粒径的不同与上升流速的变化综合导致了颗粒分级效果的差异。由图4可知,在相同操作条件下,多段式和一段式流化床均能对3种粒径的鸟粪石颗粒实现空间分级(图4(d)~(f),(g)~(i)),锥体式流化床对大粒径颗粒的分级效果较差(图4(b)和图4(c))。
2.1.3 颗粒分级特性分析
流化床结构是影响颗粒分级特性的关键因素。图5系统对比了不同鸟粪石粒径组合在3种不同流化床构型下的分级情况。
当鸟粪石粒径较大时(0.5、2.0和4.0 mm),锥体式流化床仅能将0.5 mm的颗粒与2.0 mm和4.0 mm的颗粒分离开,但不能将2.0 mm颗粒与4.0 mm颗粒分开(图5(a));多段式与一段式流化床均展示了良好的分级效果,3种粒径颗粒分布在不同的轴向位置(图5(d)和图5(g))。
当鸟粪石粒径较大时(2.0、3.0和4.0 mm),3种粒径的颗粒在锥体式流化床内混合在一起,分布在同一轴向高度上(图5(b))。多段式流化床仅能将部分4.0 mm颗粒与2.0 mm和3.0 mm颗粒分开,而对2.0 mm和3.0 mm颗粒无分级效果(图5(e)),这与多段式流化床的流化区管径设置有关[17]。在此案例中,为了确保3种流化床的流化段体积相同,多段式流化床的底部第1流化段管径较小,体积有限,4.0 mm颗粒部分被挤至中部第2流化段。另一方面,第2流化段的上升流速由于管径的增大而下降,仅略高于2.0 mm和3.0 mm颗粒的初始流化速度[17],因此,无法分离这2种粒径的颗粒。一段式流化床由于整个流化段管径无变化,水流的上升流速维持恒定,不同粒径颗粒所承受的上升推动力差异较大,因此,能较好地实现大粒径鸟粪石颗粒的分级(图5(h))。
当鸟粪石粒径较小时(0.2、0.5和1.0 mm),锥体式和多段式流化床均无法实现颗粒的分级(图5(c)和图5(f)),一段式流化床也仅能将1.0 mm颗粒与0.2 mm和0.5 mm颗粒分开,而对0.2 mm和0.5 mm颗粒无分级效果(图5(i))。
根据以上数值模拟结果,当流化段体积相同时,一段式流化床对3种不同粒径组合的分级效果最优,多段式流化床次之,锥体式流化床无分级效果。当采用多段式流化床时,为确保分离效果,流化段的管径与高度选择至关重要。
2.1.4 湍流特性分析
截至目前,湍流对鸟粪石颗粒化的影响并不明确。FATTAH等[18]通过调节上升流速,间接得出当上升流速高于500 cm·min−1时,上升水流产生的湍流会导致颗粒破碎的结论。YE等[10]明确了上升流速与鸟粪石颗粒粒径的正相关性。尽管上升水流形成的湍流是物料混合和颗粒流化及碰撞的推动力,但以上研究均没有直接分析湍流大小。由于实验测定湍流难度较大,本节采用数值模拟的方式对比3种构型流化床流化段的湍动能,来表征流化床结构对湍流的影响程度。
由图6可知,3种构型流化床的湍动能大小为锥体式最大,多段式次之,一段式最小,且随着流化粒径的减小而增大。由于存在变径,锥体式和多段式流化床内大粒径颗粒(如2.0、3.0和4.0 mm)的湍动能与小粒径(如0.2、0.5和1.0 mm)相差较小,导致鸟粪石粒径变大后速度波动仍然剧烈,对流明显,碰撞强度较大,这可能是前人报道的大粒径破碎的主要原因[18]。一段式流化床不存在变径,颗粒的运动速度随粒径的增大而减小,因此,颗粒粒径增大后碰撞强度降低。综上所述,一段式流化床的湍流特征可能更有助于鸟粪石造粒,此推测在2.2节的实验中也得到证实。
2.1.5 微晶截留分析
流化床采用上升水流作为物料混合和流化的推动力,细小的鸟粪石微晶易受上升水流夹带而流失,进而影响流化床的磷回收率。已有研究表明,提高回流比或降低上升流速等方式能有效减少微晶的流失[10]。但在相同的处理负荷条件下,提高回流比将增大流化床容积,同时须使用更大的回流水泵,从而不可避免地增加了基建与运行成本。降低上升流速从力学角度上虽能减少部分微晶流失,但同时也降低了物料混合效果,易造成构晶离子的局部过饱和,进而产生更多的微晶。
增加内部固液分离构件是增强颗粒沉淀效果的一种方式,本节通过数值模拟,在一段式流化床内流化粒径为0.2 mm的鸟粪石微晶,比较流化床沉淀区内安装构件前后鸟粪石微晶的截留效果。
如图7所示,增加内部构件后,流化前期(200 s和400 s)的微晶流失量略高于不加内部构件的工况,这是由于内部构件的设置减小了上升水流的过流面积,致使流速增大,加快了微晶的流失。在流化后期(800 s),3个工况的微晶总流失量差别不大,因此,通过增加内部固液分离构件来增强鸟粪石微晶截留的效果并不显著。
2.2 流化床实验验证研究
采用不带内部固液分离构件的一段式流化床反应器开展鸟粪石结晶连续实验。由于操作条件对除磷效果影响的研究已较为成熟,主要考察不同进水浓度下,一段式流化床反应器对磷的去除效果及鸟粪石的产品特性。
如图8所示,
PO3−4 -P去除率及TP去除率均随着进水磷浓度的升高而降低。当进水磷浓度为240 mg·L−1时,PO3−4 -P去除率与TP去除率相当,分别为90.9%和90.4%,说明在该浓度下,生成的鸟粪石均能截留在流化床内,几乎没有鸟粪石微晶流失。当进水磷浓度增至480 mg·L−1时,PO3−4 -P和TP的去除率分别降至87.4%和73.9%;继续增高至1 000 mg·L−1时,二者的去除率分别为81.0%和68.2%。在相同的pH、Mg/N/P及水力条件下,PO3−4 -P去除率的略微降低主要缘于水力停留时间不足,而TP去除率的降低说明存在鸟粪石微晶的流失。在处理高浓度含磷废水时,反应段构晶离子局部的过饱和现象是导致微晶生成及流失的主要原因,可通过提高回流比和分散进料等方式[10]进行改善。有研究[10]表明,多段式流化床同样存在类似的问题。因此,从磷去除的角度来看,一段式流化床与多段式流化床并无显著差别。在3种进水磷浓度下,一段式流化床所得的鸟粪石产品粒径较大。其中,大于1.25 mm的产品占比分别为88.1%、96.4%和70.1%(图9),且呈规则椭球状(图10)。从2.1节的数值模拟结果得知,一段式流化床具有良好的颗粒分级特性及适合造粒的湍流强度,实验所得的颗粒特征也较好地验证了这一结论。
3. 结论
1)一段式流化床的颗粒分级效果最佳,多段式次之,锥体式较差。针对不同粒径混合体系,一段式流化床均能表现出良好的分级效果。
2)锥体式流化床的湍流强度最大,多段式次之,一段式最小,且随着流化粒径的减小而增大;一段式流化床的湍流特征可能更有助于鸟粪石造粒。
3)增设内部固液分离构件对增强鸟粪石微晶截留效果不显著。
4)验证实验结果表明,在不同的进水磷浓度条件下,一段式流化床的磷去除率与多段式流化床相当,所得的鸟粪石产品粒径多大于1.25 mm,呈规则椭球状,确证了一段式流化床是理想的鸟粪石结晶反应器。
-
表 1 组合权重分配表
Table 1. Combined weight allocation table
指标(P) 权重(W) P1 0.023 7 P2 0.044 6 P3 0.064 7 P4 0.069 4 P5 0.029 8 P6 0.069 4 P7 0.235 9 P8 0.160 2 P9 0.190 4 P10 0.111 9 表 2 各指标量化范围及最优值
Table 2. Quantitative range and optimal value of each index
因子名称 量化范围 最优值( )X∗(k) 土壤可蚀性 0~0.516 0 地震烈度 6~9 0 坡度 0~73.1° 0° 海拔 267~5 596 m 2 000 m 降水 421.6~1 320.2 mm 788 mm 温度 6.5~23.2 ℃ 18~20 ℃ 植被覆盖度 −1~1 1 断层 0~1 0 岩石类型 2.2~10 10 地貌 1~6 6 表 3 流域人居自然环境质量的Moran's I指数
Table 3. Moran's I index of natural environment quality of human settlements
Moran's I 指数 方差 Z得分 P值 0.782 0.000 2 538.777 0.000 -
[1] 刘娟. 城市人居自然环境质量评估研究[D]. 武汉: 华中师范大学, 2002. [2] 吴良镛. 人居自然环境科学导论[M]. 北京: 中国建筑工业出版社, 2001.1 − 200. [3] 莫霞. 农村可持续发展的人居环境建设研究[D]. 上海: 同济大学, 2006. [4] 许长军, 金孙梅, 王英. 基于GIS的青藏高原人居环境自然适宜性评估[J]. 生态科学, 2020, 39(6): 93 − 103. [5] 李大伟, 黄薇薇, 沈非, 等. 基于栅格的安徽省人居环境人文适宜性评估[J]. 地球信息科学学报, 2021, 23(6): 1017 − 1027. doi: 10.12082/dqxxkx.2021.200346 [6] 刘海旭, 余斌, 张加磊, 等. 长江经济带城市人居环境空间格局研究[J]. 长江流域资源与环境, 2019, 28(12): 2795 − 2805. [7] 朱媛媛, 周笑琦, 罗静, 等. 长江中游城市群乡村人居自然环境质量评估及其时空分异[J]. 经济地理, 2021, 41(4): 127 − 136. [8] 崔世华, 于婧, 陈艳红, 等. 基于熵权TOPSIS的湖北省城市人居环境质量时空分异研究[J]. 华中师范大学学报(自然科学版), 2022, 56(4): 695 − 702. [9] 夏既胜, 杨树华, 万晔, 等. 基于GIS的金沙江流域(云南段)生态潜力空间分布特征[J]. 长江流域资源与环境, 2009, 18(09): 865 − 870. doi: 10.3969/j.issn.1004-8227.2009.09.014 [10] 夏既胜, 陈佩妍, 蒋顺德. 金沙江流域(云南段)典型露天矿区开采条件生态适宜性评估[J]. 长江流域资源与环境, 2012, 21(4): 459 − 465. [11] 朱勋克. 建设世界级高质量绿色发展先行区——金沙江流域可持续发展战略布局前瞻[J]. 昭通学院学报, 2018, 40(2): 15 − 23. doi: 10.3969/j.issn.1008-9322.2018.02.004 [12] 封志明, 唐焰, 杨艳昭, 等. 基于GIS的中国人居环境指数模型的建立与应用[J]. 地理学报, 2008, 63(12): 1327 − 1336. doi: 10.3321/j.issn:0375-5444.2008.12.010 [13] 李月臣, 刘春霞, 张虹, 等. 基于RS与GIS的三峡库区(重庆段)人居环境适宜性评价(英文)[J]. Journal of Geographical Sciences, 2011, 21(2): 346 − 358. [14] 沈非, 黄艳萍, 王芳, 等. 基于GIS与栅格数据的安徽省人居环境自然适宜性测评[J]. 长江流域资源与环境, 2018, 27(3): 535 − 543. doi: 10.11870/cjlyzyyhj201803009 [15] 游珍, 封志明, 杨艳昭, 等. 栅格尺度的西藏自治区人居环境自然适宜性综合评价[J]. 资源科学, 2020, 42(2): 394 − 406. doi: 10.18402/resci.2020.02.17 [16] 胡静. 马鞍山市居住区绿地景观评估的研究[D]. 合肥: 安徽农业大学, 2011. [17] 李帅, 魏虹, 倪细炉, 等. 基于层次分析法和熵权法的宁夏城市人居环境质量评估[J]. 应用生态学报, 2014, 25(9): 2700 − 2708. [18] 王富强, 马尚钰, 赵衡, 等. 基于AHP和熵权法组合权重的京津冀地区水循环健康模糊综合评估[J]. 南水北调与水利科技(中英文), 2021, 19(1): 67 − 74. [19] 周建飞. 基于RS和GIS的红壤丘陵区城市生态功能区划研究[D]. 长沙: 湖南大学, 2007. [20] 杨涛. 沿海地区新农村建设重点领域及战略选择[D]. 青岛: 中国海洋大学, 2009. -