-
随着工业、农业和城市化的迅速发展,各种污染物不断地进入各环境介质中,严重威胁生态健康[1-3]。5大重金属因其污染具有持久性、不可逆性、潜在毒性、生物富集和生物放大等特点而备受关注,也是环境重点监控污染物[4]。对于水环境而言,人为污染排放(废水、废气和固废等)和自然岩石风化等都是重金属进入水体的有效途径,一部分重金属经稀释后被水生生物吸收,随着食物链的生物放大作用,进入并蓄积于人体,存在“致畸、致癌、致突变”的风险[5];另一部分重金属会随水体中的胶体粒子絮凝沉积到底泥中,在湖底形成高含量的“毒库”,是潜在的二次污染源[6-7]。因此,水体和沉积物中的重金属含量是水环境安全性的重要检测指标[8]。
“南水北调”作为世界上最大的水利工程,运行7年以来,累计向北方调水4.94×1011 m3,其中东平湖作为南水北调的东线工程调水流经的最后一个湖泊,调水量达9.331×1010 m3,占总调水量的18.89%[9]。东平湖西部和南部主要为农田,东南部有电厂、机械制造厂、服装制造厂、印刷厂、畜禽养殖场和各种食品制造厂,周边的农业面源污染和工业废水排放都是东平湖水环境的潜在威胁[10]。
以往的研究大都关注东平湖水体富营养化、藻类泛滥或水环境中单一部分重金属问题[11-13],但对于在大型调水工程的背景下的东平湖水环境重金属的系统研究相对较少。该研究分析了东平湖水体和沉积物中5种重金属(Cr、Hg、Pb、Cd和As)的分布特征及其生态风险,探究工程调水前后湖泊重金属含量的变化,初步分析了东平湖重金属可能的污染来源,以期为东平湖的污染防控和生态风险管理提供科学依据。
东平湖水体和沉积物重金属分布及风险评估
Heavy metal distribution and risk assessment of Dongping Lake water bodies and sediments
-
摘要: 为了解东平湖水体和沉积物中Cr、Hg、Pb、Cd和As 5种重金属的污染特征及空间分布,评价其生态风险,测定了水体和沉积物中5种重金属的含量,通过相关性和主成分分析方法探究其重金属来源,并利用潜在生态风险指数法评估了其生态风险。结果表明,东平湖水体Cr、Hg、Pb、Cd和As的平均含量分别为4.53、0.04、7.51、0.77和5.92 μg/L,5种重金属的含量均符合地表水中Ⅲ类水标准。东平湖沉积物Cr、Hg、Pb、Cd和As的平均含量分别为59.41、0.05、22.21、0.27和18.43 mg/kg,分别是黄河沉积物背景值的0.99、3.33、1.48、3.51和2.46倍,其中仍有少数点位Cr含量略高。相关性分析和主成分分析结果表明,东平湖的重金属污染的主要来源是农业和工矿业。东平湖沉积物的潜在生态危害程度为中度水平,Hg、Cd的贡献率比较高,各重金属元素的潜在生态危害系数(
$ {E}_{r}^{i}$ )均值大小排序为Hg>Cd>As>Pb>Cr。南水北调工程有效地降低了东平湖水体和沉积物中的重金属含量。Abstract: To understand the pollution characteristics and spatial distribution of five heavy metals, Cr, Hg, Pb, Cd and As, and their ecological risk assessments in the water bodies and sediments of Dongping Lake, the contents of the five heavy metals in the water and sediment were measured. Their sources were explored by using the correlation and principal component analysis, and their ecological risks were evaluated by using the potential ecological risk index method. The results showed that the average contents of Cr, Hg, Pb, Cd and As in Dongping Lake water were 4.53, 0.04, 7.51, 0.77 and 5.92 μg/L, respectively, and the contents of the five heavy metals met the standard of Class III water for surface water. The average contents of Cr, Hg, Pb, Cd and As in Dongping Lake sediments were 59.41, 0.05, 22.21, 0.27 and 18.43 mg/kg, which were 0.99, 3.33, 1.48, 3.51, and 2.46 times of the background values of Yellow River sediments respectively. And there were still a few points with slightly higher Cr contents. The results of correlation analysis and principal component analysis indicated that the main sources of heavy metal pollutions in Dongping Lake were agriculture and industrial as well as mining industries. The potential ecological hazard level of Dongping Lake sediments was moderate. The contribution of Hg and Cd was relatively high, and the mean value of the potential ecological hazard coefficient (${E}_{r}^{i} $ ) of each heavy metal element was ranked as Hg > Cd > As > Pb > Cr. The South-North Water Transfer Project effectively reduced the heavy metal content in the water bodies and the sediments of Dongping Lake.-
Key words:
- heavy metals /
- spatial distribution /
- traceability /
- risk assessment
-
表 1 沉积物中重金属潜在生态危害程度
Table 1. Potential ecological hazard level of heavy metals in sediments
潜在生态危害
系数( )${E}_{r}^{i} $ 潜在生态危害
指数(RI)潜在生态
危害程度<40 <150 轻度 [40,80) [150,300) 中度 [80,160) [300,600) 强度 [160,320) ≥600 很强 ≥320 - 极度 表 2 东平湖水体和沉积物通水前后的重金属含量
Table 2. Heavy metal content of Dongping Lake water bodies and sediments before and after water circulation
重金属 水体/μg·L−1 沉积物/mg·kg−1 采样时间2012-06 采样时间2012-09 采样时间2019-12 采样时间2012-07 采样时间2019-12 范围 均值 范围 均值 范围 均值 范围 均值 范围 均值 Cr 10.00~16.00* 12.75* 10.00* 10.0* 2.14~7.00 4.53 67.20~102.80 89.30 43.84~68.71 59.41 Hg 0.10~0.17 0.12 0.10 0.1 0.01~0.09 0.04 0.03~0.07 0.06 0.03~0.07 0.05 Pb 10.00 10.00 10.00 10.0 4.32~12.30 7.51 29.20~41.30 35.50 17.34~27.21 22.21 Cd 0.10~1.00 0.78 1.00 1.0 0.19~1.65 0.77 0.22~0.35 0.29 0.08~0.72 0.27 As 10.00 10.00 10.00 10.0 2.22~15.25 5.92 19.20~38.50 25.30 15.04~21.47 18.43 参考文献 [22] 本研究 [10] 本研究 注:“ * ”为Cr6+。 表 3 东平湖水体和沉积物的主成分分析
Table 3. Principal component analysis for water bodies and sediments of Dongping Lake
元素 水体 沉积物 PC1 PC2 PC1 PC2 Cr 0.24 0.86 −0.36 0.83 Hg −0.66 0.70 0.06 0.42 Pb 0.43 0.80 −0.85 −0.43 Cd 0.94 −0.03 0.78 −0.53 As 0.94 −0.07 0.89 0.36 方差百分比/% 48.78 37.58 44.99 29.13 累积贡献率/% 48.78 86.36 44.99 74.12 表 4 东平湖沉积物的潜在生态危害系数(
)和潜在生态危害指数(RI)${E}_{r}^{i} $ Table 4. Potential ecological hazard coefficient (
) and potential ecological hazard index (RI) of sediments of Dongping Lake${E}_{r}^{i} $ 项目 ${E}_{r}^{i} $ RI Cr Hg Pb Cd As 最大值 2.29 181.33 9.07 279.35 28.62 456.78 最小值 1.46 85.33 5.78 31.56 20.05 190.36 平均值 1.98 139.83 7.40 104.37 24.57 278.16 对RI贡献率/% 0.70 50.20 2.60 37.50 8.80 100.00 -
[1] QIN G W, NIU Z D, YU J D, et al. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology[J]. Chemosphere, 2021, 267: 129205. doi: 10.1016/j.chemosphere.2020.129205 [2] GITHAIGA K B, NJUGUNA S M, GITURU R W, et al. Water quality assessment, multivariate analysis and human health risks of heavy metals in eight major lakes in Kenya[J]. Journal of Environmental Management, 2021, 297: 113410. doi: 10.1016/j.jenvman.2021.113410 [3] CUI L, WANG X, LI J, et al. Ecological and health risk assessments and water quality criteria of heavy metals in the Haihe River[J]. Environment Pollution, 2021, 290: 117971. doi: 10.1016/j.envpol.2021.117971 [4] 李道金, 朱润, 等. 滇池重金属污染的分布、积累和风险评估[J]. 环境化学, 2021, 40(6): 1808 − 1818. [5] NIU Y, JIANG X, WANG K, et al. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China[J]. Science of the Total Environment, 2020, 700: 134509. doi: 10.1016/j.scitotenv.2019.134509 [6] LI F, HUANG J H, ZENG G M, et al. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China[J]. Journal of Geochemical Exploration, 2013, 132: 75 − 83. doi: 10.1016/j.gexplo.2013.05.007 [7] LI R, TANG X Q, GUO W J, et al. Spatiotemporal distribution dynamics of heavy metals in water, sediment, and zoobenthos in mainstream sections of the middle and lower Changjiang River[J]. Science of the Total Environment, 2020, 714: 136779. doi: 10.1016/j.scitotenv.2020.136779 [8] 阳金, 张彦, 祝凌燕. 中国七大水系沉积物中典型重金属生态风险评估[J]. 环境科学研究, 2017, 30(3): 423 − 432. [9] GUO C B, CHEN Y S, XIA W T, et al. Eutrophication and heavy metal pollution patterns in the water suppling lakes of China’s South-to-North water diversion project[J]. Science of the Total Environment, 2020, 711: 134543. doi: 10.1016/j.scitotenv.2019.134543 [10] WANG Y Q, YANG L Y, KONG L H, et al. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, east China[J]. Catena, 2015, 125: 200 − 205. doi: 10.1016/j.catena.2014.10.023 [11] 薛迪, 解军, 周建仁, 等. 南水北调东线湖泊针杆藻属分布特征及其与环境因子的关系[J]. 环境科学研究, 2016, 29(11): 1600 − 1607. [12] 张菊, 陈明文, 鲁长娟, 等. 东平湖表层沉积物重金属形态分布特征及环境风险评价[J]. 生态环境学报, 2017, 26(5): 850 − 856. [13] 陈豪, 徐洪增, 路民, 等. 东平湖水体营养化状况综合评价[J]. 人民黄河, 2022, 44(1): 83 − 88. [14] TIAN C, LU X T, PEI H Y, et al. Seasonal dynamics of phytoplankton and its relationship with the environmental factors in Dongping Lake, China[J]. Environmental Monitoring and Assessment, 2013, 185(3): 2627 − 2645. doi: 10.1007/s10661-012-2736-4 [15] CHEN S Y, CHEN Y Y, LIU J Z, et al. Vertical variation of phosphorus forms in core sediments from Dongping Lake, China[J]. Procedia Environmental Sciences, 2011, 10: 1797 − 1801. doi: 10.1016/j.proenv.2011.09.281 [16] HAKANSON L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975 − 1001. doi: 10.1016/0043-1354(80)90143-8 [17] LI D P, YU R D, CHEN J, et al. Ecological risk of heavy metals in lake sediments of China: A national-scale integrated analysis[J]. Journal of Cleaner Production, 2022, 334: 130206. doi: 10.1016/j.jclepro.2021.130206 [18] 浦江, 张翠萍, 刘淑娟, 等. 杞麓湖径流区不同湿地沉积物重金属污染特征及潜在生态风险评价[J]. 农业资源与环境学报, 2021, 38(5): 755 − 763. [19] 张坤, 杨霞, 吴雅霁, 等. 湘江株洲-湘潭-长沙段河床沉积物重金属污染特征及生态风险评价[J]. 农业资源与环境学报, 2015, 32(1): 60 − 65. [20] YI Y J, YANG Z F, ZHANG S H. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin[J]. Environmental Pollution, 2011, 159(10): 2575 − 2585. doi: 10.1016/j.envpol.2011.06.011 [21] ZHAO Z H, GONG X H, DING Q Q, et al. Environmental implications from the priority pollutants screening in impoundment reservoir along the eastern route of China's South-to-North water diversion project[J]. Science of the Total Environment, 2021, 794: 148700. doi: 10.1016/j.scitotenv.2021.148700 [22] 胡尊芳. 南水北调东线工程对东平湖水环境的影响[J]. 山东国土资源, 2017, 33(10): 46 − 51. [23] ZHANG H X, HUO S L, YEAGER K M, et al. Accumulation of arsenic, mercury and heavy metals in lacustrine sediment in relation to eutrophication: Impacts of sources and climate change[J]. Ecological Indicators, 2018, 93: 771 − 780. doi: 10.1016/j.ecolind.2018.05.059 [24] 王萍, 王世亮, 刘少卿, 等. 砷的发生、形态、污染源及地球化学循环[J]. 环境科学与技术, 2010, 33(7): 90 − 97. [25] SHI W C, LI T, FENG Y, et al. Source apportionment and risk assessment for available occurrence forms of heavy metals in Dongdahe wetland sediments, southwest of China[J]. Science of the Total Environment, 2022, 815: 152837. doi: 10.1016/j.scitotenv.2021.152837 [26] 张磊, 王起超, 李志博, 等. 中国城市汞污染及防治对策[J]. 生态环境, 2004, 13(3): 410 − 413.