-
水资源短缺、水污染严重和水生态恶化等问题是制约我国经济社会可持续发展的主要“水”瓶颈[1]。在习近平生态文明思想和国家生态文明建设要求的指引下,我国水生态环境虽得到明显改善,但湖泊富营养化治理和蓝藻防控,河湖水生生物多样性的恢复以及自净功能的增强仍是当前的工作重点,水生态系统修复工作任重道远[2]。水生态系统修复是指在人工干预下重建水生态系统平衡,恢复生态系统的完整性和稳定性[3],通常借助一些生物能吸收水体中相关污染物的特性来达到水体净化效果。沉水植物恢复在湖泊富营养化治理中发挥着至关重要的作用[4],也是水生态修复技术中的研究热点,构建以沉水植物为主的水生植物群落是维持湖泊“草型清水态”的关键[5],我国的重要湖泊(如太湖、东湖、巢湖、西湖和滇池等)都在尝试进行大面积沉水植物群落的恢复与重建。
沉水植物生长的影响因素很多,包括光照、水深、营养盐、基质和水生生物等,其中,种植密度这一因素是不容忽视的,密度可通过影响沉水植物的生长空间及资源分配而对整个群落的结构产生影响。文献[6]研究表明,如果沉水植物初始种植密度较小,植株个体死亡风险增大,植物群落缺乏稳定性;如果初始密度较高,植株因空间、资源的竞争而受到抑制甚至死亡,此外,还会增加施工成本,造成资源浪费。由此可见,研究不同物种的初始种植密度是沉水植物群落构建的关键,对水生态修复工程具有重要意义。本研究以4种典型的沉水植物为研究对象,根据野外调查结果设置4种初始种植密度梯度,观察在富营养化水体中不同种植密度下4种沉水植物的生长状态及其对水体中化学需氧量(COD)、总氮(TN)和总磷(TP)的吸收情况,为水生态修复工作提供技术支撑。
-
试验选用的多年生沉水植物为矮型苦草、穗花狐尾藻、轮叶黑藻和金鱼藻,均购买于湖北咸宁市水生植物种植基地。挑选生长状态良好且性状一致的成熟植株,洗净后于自来水中驯养一周以使植物适应新环境,所选植株均处于快速生长期。根据之前调研工作成果,某地区夏季小微水体蓝藻水华暴发后形成氮为限制因子的水体,选用C6H12O6、KNO3、KH2PO4和(NH4)2SO4配置试验用水,供试水体的水质指标为cCOD=50 mg
/ L,cTN=2.0 mg/ L,cTP=2.0 mg/ L。 -
对驯养后的植物进行处理,矮型苦草保留其根部,去掉叶片顶部使植株叶片统一长15 cm,单株平均鲜重为3.1 g;穗花狐尾藻、金鱼藻和轮叶黑藻统一截取植株顶部20 cm,单株平均鲜重分别为1.13、1.93和0.8 g。试验中沉水植物密度梯度的设置参考不同富营养化状态下自然湖泊中植物密度,设置4个种植密度,每个密度设置3个重复,矮型苦草为0.9、1.8、2.7和3.6 g/L,穗花狐尾藻为0.4、0.7、1.0和1.3 g/L,轮叶黑藻为0.2、0.5、0.7和1.0 g/L,金鱼藻为0.6、1.2、1.8和2.4 g/L。
试验在自然条件下的阳光房中进行,保持自然通风。种植容器为内壁光滑的塑料水箱(85 cm×55 cm×82 cm),每个水箱铺设5 cm石英砂(不含杂质,颗粒1~2 mm,均匀程度98%)用于固定植物,加入配置的190 L供试水体使水深为40 cm,试验期间通过添加自来水对因蒸发或植物蒸腾消耗的水分进行补充,使水位保持不变。
本试验开始于2021年8月27日,周期为28 d,监测时间定为上午9时,水质监测的指标有COD、TN和TP。水体中的COD采用快速消解分光光度法;TN采用碱性过硫酸钾消解-紫外分光光度法;TP采用PhosVer3消解-抗坏血酸法测定。对水质的监测频次:植物种下的第2天测1次,每7天测1次。试验开始和结束时对各实验组的植物进行测定,每个水箱中随机采集5株植物,吸干水分后测定植株鲜重及株长。
-
数据采用Origin2018、Excel2016统计分析软件进行数据处理与统计分析,相关计算见式(1~3):
式中:c0为初始水体中污染物的浓度,mg/L;ci为水体中污染物的浓度,mg/L。
式中:w1为试验前植物干重,g;w2为试验后植物干重,g;t 为试验天数,d[7]。
式中:L1为试验前植物株长,cm;L2为试验后植物株长,cm;t为试验天数,d。
-
试验期间,在设定的密度梯度下,4种沉水植物生长状态均良好,各植株呈鲜绿色。试验初期,各植株有新叶萌发,表现为鲜重和株长的显著增加。轮叶黑藻、穗花狐尾藻和矮型苦草有不定根形成,且轮叶黑藻和矮型苦草分蘖迅速;金鱼藻分枝横向生长迅速,无不定根生成。试验后期,部分穗花狐尾藻和矮型苦草开花。整个试验周期中,植物株数没有变化。在单株水平上,4种沉水植物在不同初始种植密度下鲜重变化,见图1。
随着初始种植密度的增大,轮叶黑藻、穗花狐尾藻和矮型苦草的鲜重先增大后减小,而金鱼藻的鲜重持续减小。基于鲜重相对生长速率可得到沉水植物最大生产量的初始种植密度为:轮叶黑藻0.5 g/L,穗花狐尾藻0.7 g/L,矮型苦草2.7 g/L,金鱼藻0.6 g/L,对应的鲜重相对生长速率分别为:0.031 53、0.049 31、0.026 57和0.048 42 d−1,可见,穗花狐尾藻和金鱼藻的生长速度相对较快。
对不同初始种植密度下的沉水植物生长性状进行比较,见图2。
随着初始种植密度的增大,4种沉水植物的株长先增大后减小,最大株长增长速率对应的初始种植密度为:轮叶黑藻0.7 g/L,穗花狐尾藻0.7 g/L,矮型苦草2.7 g/L,金鱼藻1.2 g/L,对应的株长相对生长速率为:0.033 11、0.054 06、0.019 59和0.036 62 d−1。穗花狐尾藻的茎径生长速率明显高于其他3种植物,矮型苦草因其生物学特征,初始种植密度对其株长的影响不显著。
-
不同种植密度下矮型苦草、轮叶黑藻、穗花狐尾藻和金鱼藻体系水体COD浓度呈现出下降的趋势,见图3。
穗花狐尾藻和金鱼藻对COD的净化效果整体上较矮型苦草和轮叶黑藻对COD的净化效果好。试验前7 d,各体系水体中COD的浓度显著降低,而7 d后总体上趋于平缓。在试验前期,较高种植密度下的矮型苦草对COD的去除效果较好;21 d后,水体COD浓度有小幅度回升;试验结束时,初始种植密度分别为0.9、1.8、2.7和3.2 g/L的矮型苦草生长体系水体中COD浓度从50 mg/L分别下降为18、11、9和20 mg/L,去除率分别为64%、78%、82%和60%(图4a)。随着种植密度的增大,轮叶黑藻对COD的去除效果先增大后降低,初始种植密度分别为0.2、0.5、0.7和1.0 g/L的轮叶黑藻生长体系水体中COD浓度从50 mg/L分别下降到8、5、10和19 mg/L,去除率分别为84%、90%、80%和62%(图4b),试验后期,轮叶黑藻种植密度较大的水体COD出现小幅回升。穗花狐尾藻体系对水体中COD的去除效果随着种植密度的增大表现出先增大后降低的趋势。初始种植密度分别为0.4、0.7、1.0和1.3 g/L的穗花狐尾藻体系水体中COD浓度从50 mg/L分别下降为7、4、8和14 mg/L,去除率分别为86%、92%、84%和72%(图4c)。不同种植密度下的金鱼藻体系对水体COD的去除效果差异不显著,试验结束时,初始种植密度分别为0.6、1.2、1.8和2.4 g/L的金鱼藻体系水体中COD浓度从50 mg/L分别下降为8、7、10和11 mg/L,去除率分别为84%、86%、80%和78%(图4d)。
-
不同种植密度下矮型苦草、轮叶黑藻、穗花狐尾藻和金鱼藻体系对TN具有较好的去除效果,且种植密度对4种沉水植物体系净化水体TN的影响效果较显著,见图5。从总体上看,穗花狐尾藻体系对水体TN的去除效果优于其他3种沉水植物。试验第28 d,初始种植密度分别为0.9、1.8、2.7和3.6 g/L的矮型苦草生长体系水体中TN浓度从2.0 mg/L分别下降为0.2、0.6、0.4和0.2 mg/L,去除率分别为90%、70%、80%和90%(图6a)。初始种植密度为0.9和3.6 g/L的矮型苦草体系表现出较其他2个密度更强的吸收TN效果,由于在整个试验期间,矮型苦草种植密度最大和最小的处理组中伴随着附着藻的生长,说明密度过大和过小都不利于矮型苦草的生长,且有研究表明附着藻的生长需要吸收水体中的氮元素[8]。综上分析,矮型苦草的初始种植密度为2.7 g/L时对水体TN去除效果最优,去除率为80%。试验初期,初始种植密度较大的轮叶黑藻体系对TN的去除率相对较高,由于较大密度的轮叶黑藻更早进入衰亡阶段,试验后期水体TN浓度回升。第28 d,轮叶黑藻种植密度为0.5 g/L时,水体TN浓度从2.0降至0.2 mg/L,TN去除效果最佳,去除率为90%(图6b)。穗花狐尾藻在第28 d种植密度为0.7 g/L时,水体TN浓度从2.0降至0.1 mg/L,TN去除效果最佳,去除率高达95%(图6c),而金鱼藻在种植密度为1.2 g/L时对TN的去除效果最佳,水体TN浓度从2.0降至0.3 mg/L,去除率为85%(图6d)。
-
不同种植密度下矮型苦草、轮叶黑藻、穗花狐尾藻和金鱼藻体系均对水体中的TP具有较明显的削减作用,见图7。第28 d,4种沉水植物的所有试验组中,矮型苦草种植密度为2.7 g/L时,对水体中TP的削减效果最好,TP浓度从最初的2.0下降到0.16 mg/L,去除率为92%(图8a);轮叶黑藻体系水体中TP浓度最低为0.19 mg/L,对应的轮叶黑藻的种植密度为0.5 mg/L,TP的去除率为90.5%(图8b);穗花狐尾藻在第28 d种植密度为0.7 g/L时,水体TP浓度从2.0降至0.09 mg/L,TP去除效果最佳,去除率高达95.5%(图8c);种植密度对金鱼藻体系去除水体TP影响不显著,初始种植密度分别为0.6、1.2、1.8和2.4 g/L的金鱼藻生长体系水体中TP浓度从2.0分别下降到0.25、0.23、0.30和0.27 mg/L,去除率分别为87.5%、88.5%、85%和86.5%(图8d),金鱼藻种植密度为1.2 g/L时,水体中TP去除效率最佳。
-
初始种植密度对轮叶黑藻、穗花狐尾藻、矮型苦草和金鱼藻的生长状态均有一定程度的影响,随着初始种植密度的增大,各植株获得的光照随之减少,对生长空间和养分的竞争也随着密度的增加而更激烈[9]。4种沉水植物均存在产生最大生产力的最小初始种植密度,但因各沉水植物的形态学特征和生理特征的不同而对种植密度的响应不同。随着初始种植密度的增加,对4种植物会产生如下影响:穗花狐尾藻由于对光照的需求高于苦草和金鱼藻等[10],会表现为加剧其种内的光竞争;轮叶黑藻在生长到水面并沿水面横向生长后,在相同的空间条件下,其所能延伸的空间受到抑制,主要表现为空间资源的竞争抑制;矮型苦草因其植株矮型化,能够较好地适应弱光照条件的特征[11],其株长对初始种植密度的响应不显著,但其具有较强的分蘖能力,会表现为种内竞争;金鱼藻的针型叶片具有较强的生态空间利用能力和摄取养分能力[12],对其株长的影响不显著,但其有较强的产生分枝的能力,较大的密度会抑制其侧枝的生长。根据沉水植物的生长状态,各沉水植物最大生产力的初始种植密度为:轮叶黑藻0.5 g/L,穗花狐尾藻0.7 g/L,矮型苦草2.7 g/L,金鱼藻1.2 g/L。
-
轮叶黑藻、穗花狐尾藻、矮型苦草和金鱼藻在各种植密度下对水体中的COD、TN和TP均有明显的去除效果。轮叶黑藻种植密度为0.5 g/L时净水效果最好,COD、TN和TP的去除率分别为90%、90%和90.5%;穗花狐尾藻种植密度为0.7 g/L,COD、TN和TP的最高去除率分别为92%、95%和95.5%;矮型苦草的COD、TN和TP去除率最高是在种植密度为2.7 g/L,分别为82%、80%和90%;金鱼藻的最佳净水能力出现在初始种植密度为1.2 g/L时,COD、TN和TP的去除率分别为86%、85%和88.5%。试验中选用的4种沉水植物优于其他沉水植物对营养盐去除效果,如张帆等[13]研究篦齿眼子菜对水体氮、磷的去除效果,发现试验21 d,在氮、磷浓度分别为10.111和2.010 mg/L的配置水体中篦齿眼子菜对TN的去除率为63.03%,TP去除率为58.89%。在本试验中,前7 d出现水体变绿现象,初始种植密度越大,藻类数量越少且出现时间越晚;7 d后,各水箱水体清澈见底;试验后期,种植密度较小、植株生长状态较差的水箱和种植密度较大、植株出现叶片枯黄、衰落的试验水箱中出现孑孓甚至藻类。沉水植物可通过与藻类竞争光照和养分达到抑藻效果,沉水植物也可通过根部分泌化感物质抑制藻类生长。姜小玉等[14]研究发现,金鱼藻能显著抑制铜绿微囊藻的增殖。巨颖琳等[15]发现,眼子菜对抑制铜绿微囊藻的作用优于金鱼藻。
-
在富营养化水体的治理中,利用沉水植物净化水体是一种行之有效且成本较低的技术,然而初始种植密度会影响沉水植物对水体营养盐的去除效果。本试验就不同初始种植密度对4种典型的沉水植物水质净化效果的影响进行研究,结论如下。
(1)4种沉水植物轮叶黑藻、矮型苦草、穗花狐尾藻和金鱼藻对水体中的COD、TN和TP均有较好的净化效果。
(2)综合沉水植物的生长状态和净水效果,轮叶黑藻的最优种植密度为0.5 g/L,COD、TN和TP的去除率分别为90%、90%和90.5%;矮型苦草的最优种植密度为2.7 g/L,COD、TN和TP的去除率分别为82%、80%和90%;穗花狐尾藻的最优种植密度为0.7 g/L,COD、TN和TP的去除率分别为92%、95%和95.5%;金鱼藻的最优种植密度为1.2 g/L, COD、TN和TP的去除率分别为86%、85%和88.5%。
(3)对水体COD的净化效果:穗花狐尾藻>轮叶黑藻>金鱼藻>矮型苦草;对水体TN的净化效果:穗花狐尾藻>轮叶黑藻>金鱼藻>矮型苦草;对水体TP的净化效果:穗花狐尾藻>轮叶黑藻>矮型苦草>金鱼藻。
种植密度对4种沉水植物净化富营养化水体效果的影响
Effect of planting density on water purification efficiency of four submerged macrophytes
-
摘要: 沉水植物恢复是水生态修复中的关键措施,其初始种植密度能直接影响富营养化水体的治理效果。文章通过研究水生态修复中常用的4种典型沉水植物:轮叶黑藻、矮型苦草、穗花狐尾藻和金鱼藻在不同种植密度下的生长状态和对水体中有机物、氮和磷营养盐的去除效果,确定最优种植密度。结果表明:轮叶黑藻的最优种植密度为0.5 g/L,COD、TN和TP的去除率分别为90%、90%和90.5%;矮型苦草的最优种植密度为2.7 g/L,COD、TN和TP的去除率分别为82%、80%和90%;穗花狐尾藻的最优种植密度为0.7 g/L,COD、TN和TP的去除率分别为92%、95%和95.5%;金鱼藻的最优种植密度为1.2 g/L,COD、TN和TP的去除率分别为86%、85%和88.5%。Abstract: Submerged macrophytes restoration is a key measure in water ecological system, and its initial planting density can directly affect the treatment effect of eutrophic water bodies. By studying the growth status and the removal effect of four typical submerged plants (Hydrilla verticillata, Vallisneria natans, Myriophyllum spicatum and Ceratophyllum demersum) used in water ecological restoration with different planting densities, the optimal planting density was determined. The results showed that the optimal planting density of H. verticillata was 0.5 g/L, the removal rates of COD, TN and TP were 90%, 90% and 90.5%, respectively. For V. natans, the density was 2.7 g/L, the removal rates of COD, TN and TP were 82%, 80% and 90%, respectively. For M.spicatum, the density was 0.7 g/L,the removal rates of COD, TN and TP were 92%, 95% and 95.5%, respectively. For C. demersum, the density was 1.2 g/L,the removal rates of COD, TN and TP were 86%, 85% and 88.5%, respectively.
-
随着工业化的发展,采矿、工业和农业生产等人为活动逐渐成为环境水体中重金属的主要来源[1]. 例如,电镀、制革、燃煤等工业活动会产生大量含铬废水,燃煤和焚烧污泥排放大量含镉废水,酸性电池、含铅汽油的普遍使用导致含铅废水的增多[1-2]等. 废水中的重金属具有毒性大、无法降解的特点,能够通过食物链被水生生物富集,再由食物摄入的途径进入人体,造成发育迟缓、内分泌紊乱、神经系统异常、癌症等严重危害[3-4]. 水中重金属的去除方法主要有物理法和化学法两类. 物理法是利用膜孔截留、静电作用和其他作用将重金属离子从污水中浓缩并分离出来,不发生化学反应,具有操作简单、灵活、不受污水规模影响等优点,但材料回收和膜再生等问题是限制物理法大规模应用的因素[5]. 化学法的原理是通过投加化学药剂使水中的重金属离子改变形态或降低毒性,适用于重金属浓度较高的废水,包括化学沉淀法、电解法、氧化还原法、气浮法等. 然而,由于耗费电能、使用大量化学品、产生大量污泥等等缺点,化学法的成本较高[6]. 吸附法能兼顾处理效果和成本效益,对高低浓度的重金属污染物都适用,且基本不产生二次污染,具有多方面的优势[6-7].
传统吸附剂(活性炭等)受处理效率和成本等因素的限制,难以满足废水处理的需要[8],近年来新型吸附剂的设计开发成为研究热点. 这些材料可分为低成本吸附剂、生物吸附剂、无机纳米材料和合成多孔材料四类[9-10]. 需要注意的是,对天然材料或传统吸附材料改性处理得到的多孔材料属于低成本吸附剂的范畴. 合成多孔材料是由人工设计并合成的吸附剂,既具有疏松、多孔的结构特性,又能根据应用水体进行灵活的结构调控,增加吸附位点. 废水中的重金属离子被截留在合成多孔吸附剂表面,然后进入颗粒内的孔道并扩散,最终与吸附活性位点发生结合[11]. 合成多孔材料对重金属的吸附容量和选择性远胜于其他材料,有极大的发展空间. 为指导高效、高选择性吸附剂的设计合成,通过理论模拟和实验结合,确定吸附剂和重金属离子之间的相互作用机制,是此类研究中的关键步骤. 常用的实验方法是对吸附前后的吸附剂进行表征和对比(如FT-IR和XPS),理论模拟是对吸附过程进行DFT计算,其重点在于针对不同研究目的选择合适的计算、分析方法.
本文介绍了近年来典型合成多孔材料的开发和对重金属吸附的应用进展,并对这些新材料未来的研究方向进行了展望. 另外,总结了DFT计算的四个常用功能,并列举文献实例说明具体分析方法,为此类理论模拟研究提供参考和帮助.
1. 合成多孔吸附剂的开发与应用(Development and application of synthetic porous adsorbents)
石墨烯、过渡金属硫化物等无机纳米材料均能作为重金属吸附剂,但其孔径和表面化学特性很难提前设计和调控,在研究中大多制成复合材料来提高吸附效果[9-12]. 相比之下,人工设计合成的多孔材料具有合适而均匀的孔径和良好的化学稳定性,并可通过添加官能团修饰的方式提高材料对某些重金属的特异性亲和力,因此合成多孔材料具有很大的研究空间[13]. 根据组成和结构,这类材料主要分为无机介孔吸附剂、金属有机框架和多孔有机聚合物,各种合成多孔材料吸附重金属的效果见表1.
表 1 合成多孔材料对重金属的吸附性能比较Table 1. Comparison of the adsorption properties of synthetic porous materials for heavy metals类型Type 吸附剂Adsorbents BET比表面积/(m2·g−1)Specific surface area 重金属Heavy metals 最佳pHOptimum pH 吸附容量/(mg·g−1)Adsorption capacity 循环效果Reusability 参考文献Ref. 无机介孔材料 介孔二氧化硅(HMBA改性) 552 Cu(Ⅱ) 5.2 182 8次,>90% [14] Pb(Ⅱ) 3.5 173 无机介孔材料 PVP-SBA-15 378 Cu(Ⅱ) 5 128 — [15] Pb(Ⅱ) 175 Ni(Ⅱ) 72 CKIT-6-100-5 23 Co(Ⅱ) 5 156 — [16] Ni(Ⅱ) 149 CST-100-5 0.66 Co(Ⅱ) 141 Ni(Ⅱ) 130 金属有机框架 UiO-66-DMTD — Hg(Ⅱ) 3 671 10次,85.4% [17] UiO-66-EDTMPA 131 Pb(Ⅱ) 5.5 559 5次,73.92% [18] Cd(Ⅱ) 271 5次,70.28% Cu(Ⅱ) 211 5次,66.56% UiO-66-EDA — Pb(Ⅱ) 6 244 4次,84% [19] Cd(Ⅱ) 217 4次,76% Cu(Ⅱ) 208 4次,67% UiO-66-AT 887 Pb(Ⅱ) 5—5.5 246 4次,>90% [20] UiO-67-AT 920 Pb(Ⅱ) 367 4次,>90% Ni0.6Fe2.4O4-UiO-66-PEI 22 Pb(Ⅱ) 5.5 273 5次,92.32% [21] Cr(Ⅵ) 3 429 5次,99.79% MIL-101-NH2 455 Fe(Ⅲ) 3 195 6次,初次的88.1% [22] Cu(Ⅱ) 5 57 6次,初次的78.8% Pb(Ⅱ) 5 228 6次,初次的76.9% ZIF-8 937 Pb(Ⅱ) 5.1 1120 — [23] Cu(Ⅱ) 455 ZIF-67 1289 Pb(Ⅱ) 5.2 1348 Cu(Ⅱ) 618 多孔有机聚合物 COF-SH 40.4 Pb(Ⅱ) 5-6 239 — [24] COF-SH 235 Hg(Ⅱ) 7 1283 10次,>97% [25] COF-BTA-DHBZ 816 Cr(Ⅵ) 1 384 — [26] CMP-2a 118 Pb(Ⅱ) ≥4 63 — [27] CMP-3a 168 93 5次,>80% PTIA 139 Ni(Ⅱ) 6 290 4次,初次的74.6% [28] Cu(Ⅱ) 324 4次,初次的80.2% Cr(Ⅲ) 179 4次,初次的75.0% Zn(Ⅱ) 204 4次,初次的81.4% SMP 517 Hg(Ⅱ) 1 596 4次,>98% [29] POP-SH 1061 Hg(Ⅱ) — 1216 4次,>90% [30] 4AS-MBP 167 Hg(Ⅱ) 5 312 5次,92.13% [31] FC-POP-CH2TETA-H 599 Pb(Ⅱ) 2—8 1134 6次,>90% [32] FC-POP-CH2TETA-E 413 561 6次,>90% 1.1 无机介孔材料
1.1.1 介孔二氧化硅
孔径在2—50 nm范围内的材料称为介孔材料,二氧化硅是最常见的介孔材料之一,其结构高度有序,合成方法简单,具有大比表面积和丰富的吸附位点. 介孔二氧化硅的吸附能力主要与形貌和表面化学特性有关,因此,可以从孔道大小和表面官能团两方面调节吸附剂的理化性质. 对材料扩孔的常用方法是“溶胀-萃取”法,即先用溶胀剂填充孔道,待其溶胀后用溶剂萃取除去溶胀剂得到扩孔后的吸附剂,从而适应不同尺寸的目标污染物[33].
由于介孔二氧化硅表面富含羟基,容易团聚,不利于实际应用,目前许多研究用偶联剂对其进行表面化学修饰,改性方法有共缩聚法和后嫁接法等[33]. Awual等[14]通过后嫁接法将6-((2-(2-羟基-1-萘甲酰基)肼基)甲基)苯甲酸(HMBA)包覆在二氧化硅上得到一种光学介孔吸附剂. Cu(Ⅱ)或Pb(Ⅱ)与HMBA结合会使吸附剂的反射光谱红移,溶液出现明显的颜色变化. 利用这一光学特性,该材料能快速检测水中痕量的Cu(Ⅱ)和Pb(Ⅱ)并去除,实验测得最大吸附容量分别为182 mg·g−1和173 mg·g−1,且再生后循环使用8次仍能保持90%以上去除率,对低浓度含铜、铅废水的大规模检测和处理有很大的应用潜力. Betiha等[15]同样采用后嫁接法,对介孔二氧化硅SBA-15表面接枝3-氨丙基三甲氧基硅烷,部分氨基再与聚乙烯吡咯烷酮(PVP)发生希夫碱缩合反应得到复合介孔材料PVP-SBA-15. 该材料表面含有丰富的官能团,能够通过多种机理的联合作用实现高效吸附,包括端位氨基与重金属的络合作用;质子化氨基与重金属的离子交换作用;PVP结构中C=O、C—N—C共振产生的C—O、C=N+—C对金属离子的螯合作用等. 实验证明,PVP-SBA-15对Pb(Ⅱ)、Cu(Ⅱ)、Ni(Ⅱ)等3种金属离子有良好的吸附效果,最大吸附容量分别为175 mg·g−1、128 mg·g−1、72 mg·g−1. 由于后嫁接法的稳定性、可控性,目前在介孔二氧化硅吸附重金属的研究中应用较多,但仍存在反应条件苛刻、成本偏高、改性后对重金属的吸附容量仍低于有机材料等局限性. 未来还需优化介孔二氧化硅的改性方法,进一步提高其吸附容量.
1.1.2 介孔碳
介孔碳是一种新型碳基吸附剂材料,具有比表面积大、孔体积大、表面可调控等优点,在污染物去除领域已有大量研究. 介孔碳的制备方法分为硬模板法和软模板法两种[34],硬模板法是以介孔二氧化硅作为模板,用选定的碳源物质浸渍并填充模板孔,在高温下对碳-硅复合材料进行碳化,最后用NaOH/HF除去模板物质. 这种方法成本较高,操作复杂,且用到有害化学品氢氟酸,因此,通过有机物自组装的软模板法逐渐成为主流,该方法需要先形成胶束单元,再与碳源物质发生交联聚合反应,在高温、氮气环境中,聚合物逐步转化得到介孔碳.
介孔碳的孔径调节和表面改性方法与介孔二氧化硅类似,通过调节合成中的各种参数来优化材料的理化性质,从而增强吸附能力. 此外,还可以用酸碱对介孔碳进行表面化学改性. Marciniak等[16]用硬模板法和软模板法制备了介孔碳吸附剂,并分别在70 ℃和100 ℃下用5 mol·L−1的硝酸氧化改性. 氧化后材料的比表面积和孔体积降低,但表面含氧官能团增多. 实验发现,两种方法合成的材料吸附效果接近,而氧化后的吸附剂对水中Co(Ⅱ)和Ni(Ⅱ)的吸附容量显著增加,且温度越高氧化程度越高(经过100 ℃硝酸氧化,对Co(Ⅱ)的吸附量从66 mg·g−1和71 mg·g−1分别增加到135 mg·g−1和148 mg·g−1),说明化学吸附可能是介孔碳吸附剂的主要吸附作用.
1.2 金属有机框架
金属有机框架(MOFs)是由金属盐溶液与有机配体混合原位反应得到的有机-无机杂化多孔晶体材料,合成方法简便,有溶剂热法、微波法、扩散法、模板法、超声波法、机械搅拌法等等[35]. 金属离子或金属簇与有机配体通过配位键结合,形成的MOF网络兼具稳定性和多孔性,通过调节金属与有机配体的比例即可调控多孔结构[36]. MOF对重金属的吸附一般是多种物理和化学机理联合作用的结果,物理作用包括静电作用、范德华力和分子扩散作用等,化学作用有有离子交换、络合作用、形成化学键等[37]. 根据软硬酸碱理论,稳定的MOF材料可以分为两种:一种是硬碱配体(例如羧基)与硬酸离子结合,主要有MIL系列和UiO系列;另一种是软碱配体(咪唑、吡唑、三唑盐等)与软酸离子结合,以沸石咪唑骨架(ZIFs)为代表[38].
UiO系列材料的结构中含有较强的Zr—O键和大量的吸附位点,能在不同溶剂、不同酸碱环境中保持结构的稳定性,是比较理想的重金属吸附材料[35]. 许多研究表明,用有机化合物改性UiO材料能够显著提升吸附效果. Liu等[17]用2,5-二巯基-1,3,4-噻二唑(DMTD)改性UiO-66-NH2制备了一种新型MOF吸附剂,DMTD能够引入大量的巯基和氮原子,利用这些官能团的络合作用提高吸附剂结合Hg(Ⅱ)的能力,使UiO-66-DMTD的吸附量从改性前的不到200 mg·g−1增至671 mg·g−1,并对Hg(Ⅱ)表现出较好的吸附选择性和循环利用性,5次循环后去除率为93.8%,10次循环后降至85.4%. Yan等[18]用乙二胺四亚甲基膦酸(EDTMPA)改性UiO-66,引入氮、氧原子作为吸附位点,使UiO-66-EDTMPA对Pb(Ⅱ)、Cd(Ⅱ)、Cu(Ⅱ)的吸附容量分别增至改性前的8.77、5.63、5.19倍. Ahmadijokani等[19]用乙二胺(EDA)改性UiO-66后,对Pb(Ⅱ)、Cd(Ⅱ)、Cu(Ⅱ)的吸附容量分别为243.90、217.39、208.33 mg·g−1. Morcos等[20]用氨基硫脲(AT)改性UiO-66和UiO-67,对Pb(Ⅱ)的吸附容量分别增加了5倍和6.5倍,用EDTA-2Na再生循环4次后去除率仍保持在90%以上,表现出优良的吸附和循环利用效果. Wang等[21]用富含氮原子的聚乙烯亚胺(PEI)和具有磁性的Ni0.6Fe2.4O4改性UiO-66-NH2得到一种新型磁性MOF吸附剂,实现了对Pb(Ⅱ)和Cr(Ⅵ)的高容量、高选择性吸附. 该材料的磁性有利于进行分离和再生,5次吸附循环后对Pb(Ⅱ)和Cr(Ⅵ)的去除率分别为92.32%和99.79%,表明Ni0.6Fe2.4O4-UiO-66-PEI具有突出的大规模应用潜力.
MIL系列和ZIF材料也有类似的特点,例如,Lv等[22]设计的氨基改性材料MIL-101-NH2,兼具吸附和荧光传感器两种功能,对Fe(Ⅲ) 、Cu(Ⅱ)、Pb(Ⅱ)的最大吸附容量分别为195、57 、228 mg·g−1. Huang等[23]通过溶剂热法制备了ZIF-8和ZIF-67吸附剂,其中ZIF-67的孔更均匀,且比表面积很大(1289 m2·g−1),对重金属Pb(Ⅱ)和Cu(Ⅱ)的最大吸附容量高达1348 mg·g−1和618 mg·g−1. 可见,表面官能团改性是提高MOF材料吸附容量的关键方法,而在结构相似的情况下材料的吸附容量受比表面积影响较大.
目前多数研究致力于对单一重金属的选择性去除,而Peng等[39]设计的广谱吸附剂BS-HMT对22种重金属离子都有非常好的去除效果. BS-HMT的合成方法如图1所示,以MOF-808为原料,用乙二胺四乙酸(EDTA)取代其表面的甲酸从而接枝到MOF-808表面. EDTA能与各种软酸、硬酸、临界酸金属离子发生络合,因此这种材料对几乎所有重金属都有捕获作用. 在19种金属离子共存的溶液中,BS-HMT对所有金属的静态吸附去除率都接近100%;在固定床动态吸附条件下,出水中所有金属均降到极低浓度(1.9×10−9 mg·L−1以下),表现出巨大的水处理应用潜力. 实际废水中往往存在多种重金属污染物,因此,未来广谱吸附剂的开发可能会成为重要的研究方向.
1.3 多孔有机聚合物
多孔有机聚合物(POPs)是通过共价键桥联等反应人工合成的具有多孔结构的有机高分子材料. POPs包含许多种类,其中共价有机框架(COFs)为晶体材料,其他大多数是无定形的非晶体材料[40]. POPs对重金属的吸附效率、容量、选择性和循环利用性都远高于天然材料,且合成和调控方法多样,近年来在污染物去除领域受到广泛关注.
1.3.1 共价有机框架
共价有机框架是一种骨架密度低、由强共价键相连的多孔聚合物,分子结构长程有序,热稳定性和化学稳定性良好,是理想的吸附材料. 羟基、三嗪、偶氮、亚胺、卟啉、噻吩等官能团以共价键连接在多孔网络上,成为重金属的吸附活性位点[41-42].
与MOFs类似,COFs对重金属的吸附依靠多孔结构和官能团的共同作用,其中官能团一般起决定性作用. 巯基是典型的软碱,对软酸离子有较强的亲和力. Cao等[24]用巯基改性COF,对Pb(Ⅱ)最大吸附容量为239 mg·g−1,实现了高效、高选择性吸附. Ma等[25]制备的COF-SH 对Hg(Ⅱ)的吸附容量高达1283 mg·g−1,并且由于合成过程中发生了烯醇向酮的转变,COF-SH还具有良好的化学稳定性和循环吸附能力,循环使用10次后去除率仍保持97%以上. Cui等[26]用羟基修饰双孔COF吸附剂,具有1.27 nm和2.2 nm两种大小的孔,在酸性溶液中对Cr(Ⅵ)的最大吸附容量达到384 mg·g−1,并且吸附后小孔径的分布变宽,出现更小的孔,而2.2 nm的大孔几乎不变. 根据孔径分布的变化和XPS表征可以推测,羟基密度较高的小孔能提供更多的吸附位点,并且Cr(Ⅵ)能被羟基部分还原,因此表现出良好的去除效果. Jiang等[43]将TpPa-NO2表面的硝基还原为氨基,再接枝EDTA,得到广谱吸附剂TpPa-NH2@EDTA. 利用EDTA的强络合能力,TpPa-NH2@EDTA在5 min内对6种软酸、硬酸、临界酸金属离子都能达到85%以上的去除率. 由此可见,吸附剂结构中巯基、羟基的引入能显著强化对特定金属离子的吸附;设计重金属广谱吸附剂材料时,可以考虑用EDTA改性.
1.3.2 共轭微孔聚合物
共轭微孔聚合物(CMPs)具有扩展的π共轭骨架结构,因此孔道结构具有刚性,化学稳定性和热稳定性较好[44]. 除了常规的化学交联法,还能通过微波合成、机械力化学合成和基质上合成等非常规方法制备CMPs[40]. 与上述多孔材料类似,通过调节单体的结构、比例、反应条件,以及合成后修饰等方法可以对CMPs分子的形貌和孔结构进行灵活的设计以实现不同的功能[44-45]. Qiao等[27]向CMP结构中同时引入氰基和吡啶得到两种孔径不同的吸附剂CMP-2a(孔径较小)和CMP-3a(孔径较大),对Pb(Ⅱ)的吸附容量分别为63 mg·g−1和93 mg·g−1. 两种含氮基团能与Pb(Ⅱ)配位,使原有的多孔结构具有更高的吸附容量和吸附选择性,且孔大、比表面积较大的CMP-3a效果更佳. Wang等[28]设计的PTIA吸附剂以三元吲哚结构为重复单元,具有高度富电子的π平面. 研究表明,它主要通过阳离子-π相互作用吸附重金属离子,每个单元可结合6个金属阳离子(如图2所示),对Ni(Ⅱ)、Cu(Ⅱ)、Cr(Ⅲ)、Zn(Ⅱ)的最大吸附量在179—324 mg·g−1之间,体现出较好的广谱吸附效果. 可见,在设计开发广谱吸附剂时,可以利用阳离子-π或其他非特异性相互作用,同时提高对各种金属离子的亲和力.
1.3.3 含杂原子的多孔聚合物
除了COFs和CMPs这些特殊结构,一般在聚合时引入氮、硫、氧等杂原子作为重金属的吸附活性位点,也同样能提高聚合物材料对重金属离子的亲和力,其中含硫的材料多适用于水中Hg(Ⅱ)的去除. Xu等[29]制备了富含硫的微孔聚合物SMP(硫含量为31.4% wt)去除痕量Hg(Ⅱ),SMP结构中的硫与Hg(Ⅱ)形成配合物,能在3 min内将Hg(Ⅱ)从0.2 mg·L−1降至饮用水标准以下,且SMP再生循环使用4次后吸附效率仍高达98%. Aguila等[30]制备的吸附剂含大量硫醇基团,在较宽的pH范围内稳定性良好,对水中Hg(Ⅱ)的吸附容量高达1216 mg·g−1,循环吸附4个周期后去除率在90%以上. 类似的还有Ryu等[31]制备的含硫醇介孔聚合物4AS-MBP,对Hg(Ⅱ)的最大吸附容量为312 mg·g−1,实验发现,4AS-MBP对Hg(Ⅱ)与其他几种重金属离子(Pb(Ⅱ)、Cd(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ))的选择性系数在54—823之间,验证了吸附剂对Hg(Ⅱ)的高选择性,并且4AS-MBP循环使用5次后对Hg(Ⅱ)的去除率为92.13%,体现出良好的循环利用性. Zhao等[32]通过三联苯的傅克烷基化反应产生聚合物骨架,再接枝三亚乙基四胺(TETA)得到具有环形氨基链和延伸氨基链的两种多孔聚合物(分子结构见图3). 用Langmuir模型拟合得到两种材料对Pb(Ⅱ)的最大吸附容量分别为1134 mg·g−1 和561 mg·g−1,经过6次循环对Pb(Ⅱ)的去除率均保持在90%以上. 利用DFT计算解释了两种结构的吸附效果差异:经过构型优化,FC-POP-CH2TETA-H的氮原子与Pb(Ⅱ)距离更近,对Pb(Ⅱ)的结合能为-2624 kJ·mol−1,远大于FC-POP-CH2TETA-E(-988 kJ·mol−1),即环形氨基链结构对Pb(Ⅱ)有更强的亲和力. 可见,在多孔聚合物中引入杂原子可以显著提高吸附量,而官能团引入的不同位置和形式也可能导致吸附量的巨大差异. 今后的研究中,可以通过DFT计算筛选出几种合适的吸附剂结构,再进行合成和测试,使官能团改性最大化地发挥作用,同时提高研究效率.
2. DFT计算在合成多孔材料吸附研究中的应用 (Application of DFT calculation in adsorption study of synthetic porous materials)
近年来,量子化学计算的相关模型和方法已经逐渐成熟,特别是DFT计算,在物理、化学、材料科学和工程各领域中已经成为重要的研究方法[46]. 合成多孔材料吸附重金属是多种机理共同影响的过程,包括配位络合作用、氢键作用、静电作用、氧化还原作用、扩散作用等. 吸附剂的结构和重金属的种类决定了吸附的主要机理,DFT计算作为一种辅助手段,主要是为了与吸附实验结果相互验证,为吸附机理的推断提供有说服力的证据. 吸附研究中常用的DFT计算方法可以归为四类:结构优化、结合能计算、吸附剂的电子特性分析、吸附剂与金属离子的相互作用分析.
2.1 结构优化
Gaussian程序能对物质的结构进行优化,即得到能量最低时分子中各原子的空间排布. 结构优化是进行后续计算的基础,对于合成多孔吸附剂来说,构建完整的分子结构计算量太大,也没有必要,因此通常取吸附剂的一个重复单元为计算对象. 例如1.3.2节中图2所示,Wang等优化后的构型中PTIA结构单元能与6个金属阳离子结合,验证了阳离子-π作用在吸附机理中的主导地位[28].
利用结构优化后的原子间距信息能初步推测原子间的相互作用. 例如,He等[47]发现吸附剂POP-NH2中的氮原子与Pb(Ⅱ)间的距离小于两者的范德华半径之和;另一项研究中,结构优化后Cu(Ⅱ)与硫原子和吸附剂TSP-NS中氮原子的距离分别为0.2237 nm和0.2159 nm,均小于对应的范德华半径之和,说明吸附过程中可能有化学键形成[48]. Yang等[49]制备了共轭微孔材料PFCMP-0,其中苯环大π键与炔键之间的π-π共轭效应有利于其与金属离子结合,同时氟原子电负性较强,增强了吸引力. PFCMP-0吸附Pb(Ⅱ)和Ca(Ⅱ)的优化构型如图4所示,PFCMP-0与Pb(Ⅱ)的距离明显更近,相互作用更强,很好地解释了对Pb(Ⅱ)的吸附选择性.
结构优化后的键角数据可以解释某些官能团对重金属的结合能力. Shao等[50]分别用五种官能团(EDTA、羧基、磺酸基、巯基、氨基)改性二氧化硅制备了水中Pb(Ⅱ)的高效吸附剂,并对SiO2-EDTA的最佳吸附效果给出了合理的解释. 通过比较结构优化后Pb(Ⅱ)单独结合官能团和Pb(Ⅱ)结合官能团改性的二氧化硅的键角数据发现,只有EDTA-Pb(键角为100.37°)和SiO2-EDTA-Pb(键角为101.37°)键角基本相同,而其他几组键角变化较大,表明SiO2-EDTA相比其余4种吸附剂几何适应性更好,与Pb(Ⅱ)结合时基本不发生结构扭曲,有利于吸附Pb(Ⅱ).
此外,结构优化与表征方法相结合,可以初步推测吸附机理,验证某些官能团的作用. Halder等[51]为了探究吸附剂[Ni(3-bpd)2(NCS)2]n的—SCN基团是否为Hg(Ⅱ)的吸附位点,尝试将多个汞原子与其结合并优化结构,发现—SCN中的硫原子最多同时结合两个汞原子,多余的汞原子之间存在弱的Hg···Hg相互作用. 吸附前后的理论红外光谱中—SCN特征峰的位置偏移了89 cm−1,与实验得到的-SCN特征峰位移(69 cm−1)十分接近,验证了—SCN在吸附中的贡献. 利用结构优化得到稳定构型是后续计算的基础,但也能从中获取一些有价值的信息.
2.2 计算结合能
结合能,或称吸附能(Ead),计算方法见式(1),其中Etotal为吸附后体系的总能量,Eadsorbent和Emetal分别代表吸附剂单元和金属离子单独的能量[52-54]. 结合能的计算结果一般为负值,根据热力学原理,结合能越小代表结构越稳定,由结合能大小分析官能团的亲和力强弱、吸附选择性顺序、最佳吸附构型等信息,在吸附研究中十分常见.
Ead=Etotal−Eadsorbent−Emetal (1) 计算结合能可以比较不同官能团对金属离子的亲和力大小. 例如,Xu等[55]发现含三嗪、羟基双官能团的COF-Tz-OH对Pb(Ⅱ)的吸附能为−70.4 kcal·mol−1,明显小于单官能团吸附剂COF-Tz (−51.4 kcal·mol−1)和COF-OH(-39.9 kcal·mol−1),表明三嗪基团亲和力较强且两种官能团具有协同作用. 同样,He等[56]用Gaussian09程序计算并比较了氨基、羧基改性POP的效果,POP-NH2对Pb(Ⅱ)的结合能为−540.71 kJ·mol−1,小于POP-COOH(−467.49 kJ·mol−1)和未修饰的POP (−257.52 kJ·mol−1),证明氨基改性可以提高对Pb(Ⅱ)的亲和力,且效果优于羧基,很好地解释了实验结果.
计算结合能还可以预测或解释同一吸附剂对不同金属离子的选择性. 例如,Li等[52]比较了单簇纳米片CoCNSP分别结合不同金属离子的情况,对Hg(Ⅱ)、U(VI)、Pb(Ⅱ)、Co(Ⅱ)的吸附能分别为−9.43、−10.77、−8.75、−0.97 kcal·mol−1,与实验中CoCNSP对Co(Ⅱ)的吸附选择性最差结果相符. 然而,计算得到的吸附选择性顺序与实验结果并不完全对应,这是因为仅对单簇结构进行计算很难精确地模拟整体材料的吸附行为.
对于确定的吸附剂和金属离子来说,可能的结合方式也有多种,计算结合能可以推断最稳定的吸附构型. Ren等[57]计算了改性介孔二氧化硅G1.0与Cd(Ⅱ)的6种结合方式的结合能,结果见表3,G1.0-Cd(Ⅱ)-6的结合能最低,表明G1.0的氮、氧原子与Cd(Ⅱ)的六配位模式是最稳定的吸附构型. Wei等[54]计算了Cr(Ⅲ)以3种水合离子形式分别结合5种吸附剂的结合能,结果见图5. 可以看出,A和D两种吸附剂对Cr(Ⅲ)的亲和力更强,水合离子中Cr(H2O)43+与各吸附剂之间的络合最稳定,并且水合分子数增加会降低吸附量. 由此可见,结合能计算既可以验证实验得出的官能团改性效果和吸附选择性顺序,还能提供一些实验无法测定的信息(如吸附构型).
络合构型Complexes 结合能/(kcal·mol−1)Binding energy NBO部分电荷NBO partial charge Cd(II)电子构型Cd(Ⅱ) electron configuration 配体Ligand Cd(Ⅱ) G1.0-Cd(II)-1 −224.53 0.81 1.19 5s0.84d9.995p0.026p0.01 G1.0-Cd(II)-2 −260.79 0.36 1.64 5s0.364d9.986p0.02 G1.0-Cd(II)-3 −271.73 0.35 1.65 5s0.354d9.995p0.016p0.01 G1.0-Cd(II)-4 −280.36 0.30 1,70 5s0.294d9.996p0.02 G1.0-Cd(II)-5 −291.85 0.29 1.71 5s0.294d9.986p0.02 G1.0-Cd(II)-6 −300.12 0.33 1.67 5s0.324d9.995p0.016p0.01 2.3 电子特性分析
2.3.1 静电势分析
静电势(ESP)分析是通过作吸附剂分子的ESP图得到各原子周围的电荷情况,帮助确定吸附活性位点的一种常用方法,多用于分析静电作用导致的吸附行为. 一般在ESP图中,红色区域代表带负电荷,蓝色表示带正电,静电势越低就越容易结合金属阳离子. Wei等[54]作了5种吸附剂片段的ESP图,推测这些分子中的红色区域,即C=N键、氧原子和芳香环都可能是Cr(Ⅲ)的吸附位点. Wang等[56]从MOF-MA的静电势图中发现负电荷集中分布在硫原子周围,说明这些位点对金属阳离子的亲和力最强,应当是主要的吸附位点. Esrafili等[58]合成的MOF吸附剂表面静电势为负值的区域都与氮或氧原子有关,因此,这些原子很可能是Pb(Ⅱ)吸附的位点. 可见一般电负性强的杂原子和富电子的芳香环对金属阳离子的静电作用较强,是主要的吸附位点,当吸附剂分子含有这类官能团时,可以采用静电势分析.
2.3.2 原子电荷分析
选择合适的方法计算出原子电荷,并在分子结构中用不同的颜色标记(颜色与电性的对应关系与ESP图相同),这种方法能够直观地分析原子之间的静电作用,在吸附研究中可以预测吸附位点和比较吸附选择性等. 计算原子电荷的方法有许多种[59],其中,ADCH是以原子偶极距校正来计算Hirshfeld电荷的方法. Li等[52]对CoCNSP分别结合4种金属进行了ADCH电荷分析,发现金属原子均位于带负电荷的硫原子周围,并且钴原子的ADCH电荷明显低于其他3种金属,说明硫原子是吸附位点,且在4种金属中对Co(Ⅱ)的选择性最差,验证了实验结果.
2.3.3 HOMO和LUMO能量分析
HOMO和LUMO分别是最高占据分子轨道和最低未占据分子轨道的缩写,二者之间的能级差称为禁带. HOMO、LUMO的能量大小和禁带宽度不仅能反映出分子的导电性,还能在相似的结构间比较化学稳定性. Esrafili等[58]比较了4个结构类似的吸附剂分子的HOMO能量(见表2),从结构稳定性角度解释了TMU-23对6种金属的最佳吸附能力:TMU-6和TMU-21的结构存在共振效应,分子比较稳定,与金属离子结合的倾向更低;而TMU-24的HOMO能量低于TMU-23,表明含萘环的结构比苯环更稳定,因此,4种结构中TMU-23与金属结合的能力最强.
表 2 四种吸附剂材料的结构和HOMO能量比较[58]Table 2. Structure and HOMO energy comparison of four adsorbent materials[58]吸附剂Adsorbent 结构特征Structural feature HOMO能量/eVHOMO energy TMU-6 吡啶与苯环相连 −0.2361 TMU-21 吡啶与萘环相连 −0.2398 TMU-23 苯环与苯环相连 −0.2239 TMU-24 苯环与萘环相连 −0.2283 2.4 相互作用分析
2.4.1 NCI(RDG)分析
NCI(非共价相互作用指数)分析,也称为RDG(约化密度梯度函数)法,是对体系中弱相互作用的区域和类型进行可视化的研究方法. RDG函数的表达式见式(2). NCI方法是通过ρ和λ2两个参数来定性地表示一个区域内的各种相互作用的,其中ρ代表电子密度,反映相互作用的强弱;λ2反映相互作用的类型,λ2<0代表吸引作用,λ2>0代表互斥作用. 对不同的类型和强弱用不同的颜色区分,将Sign(λ2)绘制成RDG填色等值面图,就能直观地看出结构内或分子间的非成键相互作用情况[60]. 绘制RDG等值面图的对应关系见图6,若出现蓝色区域代表周围原子之间存在吸引作用,红色代表互斥作用,以此推测金属原子与吸附剂之间的相互作用类型. 在Wei等[54]的研究中,发现Cr(H2O)43+的氢原子与吸附剂的氮原子之间出现盘状的蓝色区域,据此推测氢键可能是吸附机理之一. Li等[52]用三维RDG等值面图解释了吸附剂CoCNSP对Co(Ⅱ)吸附选择性差的原因,当4种不同金属分别与吸附剂的硫原子结合时,Co(II)与硫原子之间出现绿色区域,其余3种金属与硫原子之间为蓝色,表明吸附剂对Co(II)的作用力明显较弱.
S=|∇ρ|2(3π2)1/3ρ4/3 (2) 2.4.2 NBO分析
自然键轨道(NBO)分析是考察成键原子之间电子离域情况的一种方法,是将薛定谔方程的计算解转化为化学键概念的手段之一[61],常用于分析重金属与吸附剂之间的络合作用. NBO分析常用到二阶微扰校正能E(2),即通过二阶微扰理论近似估计电子占据的NBO轨道向相邻的非占据NBO轨道发生离域而使体系降低的能量,E(2)的值越大说明相互作用越强. 例如,吸附剂G1.0含有的多个氮、氧原子能与Cd(Ⅱ)以6种方式络合,Ren等[57]对这些构型进行了NBO分析,结果见表3. 从部分电荷和Cd(Ⅱ)电子排布的变化可以看出,氮、氧原子的孤对电子部分转移至Cd(Ⅱ)的5s、5p、6p空轨道上,大部分转移至5s轨道;计算得到LP(N)→LP*(Cd)过程的E(2)明显大于LP(O)→LP*(Cd),表明氮原子与Cd(Ⅱ)的结合能力比氧原子更强,在吸附中的贡献更大.
3. 结论与展望(Conclusion and prospect)
合成多孔材料根据化学组成可分为无机介孔材料、金属-有机框架和多孔有机聚合物三类,通过改变反应物或合成条件、合成后修饰等方法能够对吸附剂的孔结构和表面化学特性进行灵活调控. 表面化学特性是影响吸附的关键因素,在研究中大多采用有机物进行化学改性. 通过向吸附剂的分子结构中引入含杂原子(氮、氧、硫等)的官能团,利用它们对重金属的特异性亲和力,可有效增加吸附剂表面的活性位点,从而显著提高吸附效果. 近年来,DFT计算在吸附研究中的应用越来越普遍,主要用于从微观角度分析和阐明吸附过程中的络合作用、静电作用以及其他弱相互作用,预测或解释实验结果. 然而,合成多孔吸附剂的开发和DFT计算探究吸附机理仍存在许多挑战和局限性,今后的研究中应关注以下问题:
(1)合成多孔材料的改性条件比较苛刻,为了适应实际废水的大规模处理需求,研究者们应考虑开发更简便高效的合成与改性方法.
(2)新材料产生的环境影响未被重视. 目前,仅有少数研究在开发新材料时关注了毒性或金属浸出情况,未来合成多孔材料的开发研究应包含毒性测试或环境影响评估,避免产生二次污染.
(3)许多研究的吸附机理分析比较简略,多数文献仅通过DFT计算的结构优化和结合能解释实验现象并推测机理. 研究者们应充分利用DFT计算的强大功能进一步分析可能存在的相互作用,或预测吸附剂的吸附效果,为新型吸附剂的设计提供参考.
-
[1] 周欣, 秦绪明, 徐怒潮, 等. 酒泉市水生态环境问题及保护修复对策[J]. 环境保护科学, 2021, 47(2): 62 − 70. [2] 吉利娜, 刘泽娟. 北运河水生态环境保护和修复的实践历程[J]. 北京水务, 2021(3): 17 − 21. [3] 赵玲玲, 夏军, 杨芳, 等. 粤港澳大湾区水生态修复及展望[J]. 生态学报, 2021, 41(12): 5054 − 5065. [4] 陈林. 生态修复技术在水环境保护中的治理应用[J]. 资源节约与环保, 2020(7): 53. [5] 刘晓伟, 周道坤, 荣楠, 等. 浅水型湖泊自然保护区水生态环境改善对策研究—以湖北省网湖湿地自然保护区为例[C]//2020中国环境科学学会科学技术年会论文集(第二卷), 2020: 161-168. [6] 王永阳, 罗芳丽, 李红丽, 等. 初始密度对3种沉水植物生物量、节数和茎长的影响[J]. 湿地科学, 2014, 12(6): 740 − 746. [7] 张萌, 李雄清, 邹新, 等. 典型沉水植物修复富营养水体的最优种植密度[J]. 湖北农业科学, 2016, 55(20): 5218 − 5224. [8] 张强, 刘正文. 附着藻类对太湖水体中3种氮源的吸收作用[J]. 水生态学杂志, 2014, 35(1): 60 − 64. [9] MICHELAN T S, THOMAZ S M, BINI L M. Native macrophyte density and richness affect the invasiveness of a tropical Poaceae species[J]. PloS One, 2017, 8(3): e60004. [10] 王祎, 宋光丽, 杨万年, 等. 光周期对穗花狐尾藻生长、开花与种子形成的影响[J]. 水生生物学报, 2007(1): 107 − 111. [11] 张忠海, 杨桐, 文紫豪, 等. 在极度弱光和两种底质条件下苦草的生长和生理响应[J]. 水生生物学报, 2021, 45(3): 652 − 662. [12] 潘文斌, 黎道丰, 唐涛, 等. 水生植物叶片的分形特征研究[J]. 水生生物学报, 2004, 28(1): 23 − 28. [13] 张帆, 谢建治. 篦齿眼子菜对水体氮、磷去除效果的研究[J]. 河北农业大学学报, 2012, 35(4): 19 − 24. [14] 姜小玉, 杨佩昀, 王洁玉, 等. 大型溞和金鱼藻对三种微藻增殖的影响[J]. 淡水渔业, 2018, 48(4): 106 − 112. [15] 巨颖琳, 李小明. 南四湖3种沉水植物对铜绿微囊藻化感作用研究[J]. 山东大学学报(理学版), 2011, 46(3): 1 − 8. -