基于SCI收录的电化学水处理技术文献计量分析

宋冀营, 杨雨寒. 基于SCI收录的电化学水处理技术文献计量分析[J]. 环境保护科学, 2022, 48(5): 100-104. doi: 10.16803/j.cnki.issn.1004-6216.2021080029
引用本文: 宋冀营, 杨雨寒. 基于SCI收录的电化学水处理技术文献计量分析[J]. 环境保护科学, 2022, 48(5): 100-104. doi: 10.16803/j.cnki.issn.1004-6216.2021080029
SONG Jiying, YANG Yuhan. Bibliometric analysis of SCI literature on electrochemical technology for water treatment[J]. Environmental Protection Science, 2022, 48(5): 100-104. doi: 10.16803/j.cnki.issn.1004-6216.2021080029
Citation: SONG Jiying, YANG Yuhan. Bibliometric analysis of SCI literature on electrochemical technology for water treatment[J]. Environmental Protection Science, 2022, 48(5): 100-104. doi: 10.16803/j.cnki.issn.1004-6216.2021080029

基于SCI收录的电化学水处理技术文献计量分析

    作者简介: 宋冀营(1978-),女,博士、工程师。研究方向:生态学、图书馆学和文献计量学。E-mail:jysong@rcees.ac.cn
  • 基金项目:
    中国科学院文献情报能力建设专项(E0290425)
  • 中图分类号: X11

Bibliometric analysis of SCI literature on electrochemical technology for water treatment

  • 摘要: 文章以2011~2020年电化学水处理技术方面的SCI发文情况为依据进行分析。结果显示,电化学水处理领域的全球发文量呈逐年上升的趋势,中国的发文量占全球发文量的近40%,发文量和被引次数H指数均居全球第一。与中国合作关系较为紧密的有日本、新加坡、丹麦和瑞典等国家。研究主要集中在环境科学和生态学、工程和化学等领域,主要研究涉及海水淡化、饮用水、地下水、污水污泥、活性污泥、个人护理产品、药品和垃圾渗滤液等方面,且近一半的发文集中在20个期刊上。
  • 随着我国铁路大面积提速及城市化进程加快,以铁路噪声为主的环境噪声问题日益加重,交通噪声越来越受到公众关注。近年来,随着高速铁路网覆盖面的增加,沿线居民也开始受到高速铁路的交通噪声影响。根据《中长期铁路网规划(2016—2030年)》[1],预计至2030年高速铁路会将全国主要省市区连接起来,形成以“八纵八横”主通道为骨架、区域连接线衔接、城际铁路补充的高速铁路网,这也意味着受到高速铁路噪声影响的居民会越来越多。

    文献[2-3]研究表明,噪声作为一种有害的物理刺激,可损害动物的消化系统引起胃肠功能紊乱,影响动物的生长和发育,从而导致其体重增长速率减缓。在对武广高铁两侧居民的社会调查问卷中发现,距离高铁越近,居民的烦恼度越高[4]。因此管理治理好高速铁路噪声,减少对周围居民的影响,建立完备的针对高速铁路的噪声标准体系至关重要。但我国现有噪声标准,如《铁路边界噪声限值及其测量方法(GB 12525—90)》[5]、《声环境质量标准(GB 3096—2008)》等[6]均未对铁路类型(普通铁路和高速铁路)进行区分,且方法、标准多数是基于普通铁路噪声特点而建立。然而,普通铁路和高速铁路的噪声具有显著差异。高速铁路具有以下两个特点:噪声源组成复杂、声能量水平高、声源呈宽频特性;由于列车运行速度快,列车运营密度高,造成昼夜等效声级都很高[7]。在相关研究中也得出,高速铁路噪声的实际持续时间在6.1~13.5 s之间,而普通铁路为16.0~25.7 s,说明高速铁路噪声更具突发性;在相同等效声级(LAeq)情况下,高速铁路噪声的主观烦恼度与主观干扰度均高于传统铁路噪声[8];高速铁路噪声的传播规律在45~120 m范围内不符合线声源衰减规律,衰减较慢[9]。由此可见,为了适应我国交通噪声污染新形势,急需研究高速铁路运营期的噪声影响程度,制定完善我国交通噪声排放标准。

    本研究以北京至天津城际铁路客运专线为例,对该工程噪声进行了环境影响后评价,并在此基础上进一步提出了高速铁路噪声方面的管理建议。

    京津城际铁路于2008年8月投入试运营,是国内第一条速度在300 km/h以上的高速客运专线,且具有高密度和公交化的特点。城际列车以最高时速(330 km/h)运行时,其噪声以低、中频噪声为主,具有源强高、作用时间短、频次密和衰减缓慢等特点,与普通铁路情况具有显著差异。根据该工程验收监测结果,铁路边界30 m处昼夜噪声均可满足文献[5]中昼夜70 dB(A)的要求;在安装了声屏障的330 km时速路段,铁路两侧全部区域昼间均可满足4类标准70 dB(A)的要求、夜间运行时段80 m外可基本满足4类标准55 dB(A)的要求;基于环境条件(地形、植被、桥高、房屋朝向等),昼间120 m外区域可基本满足2类标准60 dB(A)的要求、夜间运行时段内180 m外仍不能满足2类标准50 dB(A)的要求;声屏障对以时速330 km运行的列车的降噪效果为5~7 dB(A)。

    结合验收调查声环境监测工作的实际情况,本次研究京津城际铁路的声环境监测点位依以下原则确定。

    1)本研究噪声监测结果作为研究工作的基础数据验证支持,主要是为后续管理提供建议及借鉴,不对工程提出进一步污染防治措施改造建议,因此,选择重点点位进行验证监测并与验收调查阶段进行对比。

    2)根据沿线敏感点的空间分布特征和列车运行速度,选择验收调查报告中有代表性的点位进行监测。
    3)高铁在两端城市区域(北京市三环内和天津市的外环线以内)的运行速度较低,由于采用长轨、轮轨噪声也很小,工程在市区的靠近敏感点路段又全部安装了声屏障,而且城市内的其他噪声源较多(既有的铁路、城市道路),总体看城际列车不是主要的噪声源,因此,研究选取了可以判明高铁是主要噪声源的城郊区或农村敏感点开展了验证监测。

    4)为了全面了解高铁的噪声影响及其分布特征,开展水平衰减断面监测(30、60、120和240 m分别布设点位)。

    5)噪声监测方案中,共设监测敏感点3处、典型验证监测点位12个,即每个敏感点水平衰减断面监测30、60、120和240 m共4个点位。监测点位布设情况见表1

    表 1  噪声监测点位基本情况表
    序号敏感点名称里程高差/m现阶段基本情况
    1A(饮马井村)DK7+00016建有声屏障。比较验收调查阶段,现状部分高楼已建设,但临铁路部分低矮房屋仍存在,距离没有变化。
    2B(董村)DK15+50015建有声屏障。比较验收调查阶段,现状户数有所增加,建设了一些小型企业,距离变近,最近建筑物与外轨中心线距离为10 m。
    3C(前屯)DK70+70 8选取点位处为无声屏障路段,比较验收调查阶段,现状户数有所增加,建设了一些小型企业,距离变近,最近建筑物与外轨中心线距离为16 m。
     | Show Table
    DownLoad: CSV

    本次监测时间选择在2019年4月下旬,测量时间为10:00~12:00,测量时段列车通过时间间隔约10 min,测量时段列车通过列数20列;其中前屯测点列车通过速度约350 km/h左右,董村测点列车通过速度约320~350 km/h,饮马井村测点列车通过速度约160 km/h左右。

    根据验收调查报告执行标准,距铁路外轨中心线30 m处的噪声排放昼夜均执行文献[5]中70 dB(A)标准。铁路两侧的一般敏感点,60 m内执行文献[10]中4类标准,即昼间70 dB(A)、夜间55 dB(A),60 m外执行2类标准,即昼间60 dB(A)、夜间50 dB(A);60 m内的特殊敏感点-学校以及医院等也执行2类标准。相关标准在该铁路投运之后有修订,但作为2010年12月31日之前投运的铁路,其应执行的噪声标准限值没有变化。

    本次研究选取典型的10:30~11:30的监测数据分析列车噪声特性,包括列车通过1 min时长Leq(td)(通过时段的Leq)和Lp(max)(通过时间段的噪声最大值)、1小时Leq,夜间按同等运行条件,采用昼间数据进行类比分析。研究选取的监测点位噪声监测结果见表2、表3

    表 2  噪声验证监测原始结果
    日期点位频次结果值LeqdB(A)最大值LmaxdB(A)
    2019.04.23饮马井村(距外轨中心线30 m)小时*55.685.5
    第一列车60.187.9
    第二列车58.062.0
    第三列车58.963.7
    饮马井村(距外轨中心线60 m)小时*53.776.1
    第一列车60.366.1
    第二列车57.667.6
    第三列车56.861.1
    饮马井村(距外轨中心线120 m)小时*50.280.3
    第一列车55.364.3
    第二列车53.565.2
    第三列车54.371.2
    2019.04.25董村(距外轨中心线30 m)小时*58.388.7
    第一列车69.979.2
    第二列车68.774.8
    第三列车69.879.4
    董村(距外轨中心线60 m)小时*58.782.6
    第一列车72.375.7
    第二列车67.175.9
    第三列车70.874.5
    董村(距外轨中心线120 m)小时*55.177.2
    第一列车62.878.8
    第二列车66.069.0
    第三列车64.979.7
    董村(距外轨中心线240 m)小时*54.386.5
    第一列车61.175.0
    第二列车59.769.3
    第三列车60.668.5
    2019.04.22前屯(距外轨中心线30 m)小时*61.684.0
    第一列车75.683.7
    第二列车76.786.5
    第三列车75.079.7
    前屯(距外轨中心线60 m)小时*61.885.3
    第一列车74.883.9
    第二列车74.784.6
    第三列车74.082.5
    前屯(距外轨中心线120 m)小时*60.181.8
    第一列车72.779.2
    第二列车71.081.0
    第三列车68.277.3
    前屯(距外轨中心线240 m)小时*56.678.0
    第一列车69.677.0
    第二列车67.877.5
    第三列车65.274.3
    注:*表示10:30~11:30的1 h内平均值。
     | Show Table
    DownLoad: CSV
    表 3  监测结果统计(有效数据平均值) dB(A)
    序号监测点位Leq(td)Lp(max)1小时*Leq
    1A30 m59.062.955.6
    2A60 m58.264.953.7
    3A120 m54.464.850.2
    4A240 m
    5B30 m69.577.858.3
    6B60 m70.175.458.7
    7B120 m64.675.855.1
    8B240 m60.570.954.3
    9C30 m75.883.361.6
    10C60 m74.583.761.8
    11C120 m70.679.260.1
    12C240 m67.576.356.6
    注:*表示10:30~11:30的1 h内平均值。
     | Show Table
    DownLoad: CSV

    饮马井村点位处于声源较多的城市区域,受其它噪声源及高大建筑影响较多,因此没有明显的特征。列车通过时段,铁路边界30 m处噪声可满足文献[5]中70 dB(A)的要求。

    运行速度300~350 km/h区段有声屏障的达标情况:

    ①列车通过时段,铁路两侧60 m内,1小时Leq可满足4类昼间标准70 dB(A)的要求、但不能满足4类夜间标准55 dB(A)的要求;

    ②列车通过时段,铁路两侧60 m外(60~120 m),1小时Leq可满足2类昼间标准60 dB(A)的要求,不能满足2类夜间标准50 dB(A)的要求。

    运行速度300~350 km/h区段无声屏障的达标情况:

    ①列车通过时段,铁路两侧60 m内,1小时Leq可满足4类昼间标准70 dB(A)的要求、但不能满足4类夜间标准的55 dB(A)要求;

    ②列车通过时段,铁路两侧60 m外(60~120 m),1小时Leq不能满足2类标准的要求。

    从本次监测结果可以看出,高架高速铁路的列车运行噪声不同于普通铁路,随着距离而明显衰减的特征并不明显,并且由30~120 m过程中衰减不大,120~240 m衰减较大。选取的水平方向30、60、120和240 m测点,60 m附近测点噪声值偏高。

    声屏障对于高速铁路的降噪效果,综合监测结果并结合验收调查中开展的噪声分析可以看出,在线路中段,声屏障对以时速300~350 km运行的列车的降噪效果为5~7 dB(A)。

    验收调查阶段,京津城际铁路每天开行动车组列车70对,本次研究时段,每天开行动车组列车136对。由于列车开行密度的增加,京津城际铁路的噪声(Leq)增量约为1.5~3.5 dB(A)。

    1)我国目前针对高速铁路噪声评价还没有相关专门的规范或者标准出台,所以目前对其内容的评价大多是依照铁路边界噪声的相关规定进行判定,相应规定的判定标准一般不考虑最大声级Lmax,而只是将等效声级Leq看做最主要判定标准。但研究结果显示,高速铁路上产生的噪声中对居民产生最大影响的主要是来自最大声级Lmax。因此建议在修订铁路噪声标准时,将高速列车通过时间的Leq(td)和Lp(max)作为评价量。

    2)制修订铁路噪声标准应按不同运行时速考虑不同的噪声限值,体现差异化管理。高速铁路应制定专门的标准体系来进行管理,并考虑现有高速铁路和新建高速铁路。

    3)标准限值应考虑高架高速铁路问题,建议30 m水平距离控制的同时,考虑一定距离内如60 m内的最大值控制。

    4)高速铁路环境噪声预测研究是国际学术界和各国政府关心的一项重要课题。在欧美国家,高速铁路噪声早已引起各国政府、铁路运输部门、研究机构的高度重视[11-13]。美、日、法、英、德等国都建立了适合本国情况的高速铁路环境噪声预测模型,并将模型应用于高速铁路既有线路的环境噪声评估和新建铁路设计中的环境噪声预测,取得了良好的社会经济效益。我国高速铁路发展很快,而相应专门的技术规范体系并未建立起来,因此,很有必要对我国的高速铁路噪声预测评估体系进行制修定。同时,高速铁路以高架方式建设为主,本次研究监测结果以及文献[7-9]均表明,其噪声分布呈现复杂性的特点,同时其噪声特点亦与运行速度关联很大,现有规范标准体系中的分析预测方法并不能完全适用。

    ①噪声评估中应考虑高架高速铁路对地面目标影响的修正参数。

    ②应考虑不同路基、不同运行速度列车的修正参数。

    ③对于高大建筑物,应考虑垂直方向的噪声影响预测。

    1)根据《声环境功能区划分技术规范(GB/T 15190—2014)》[14],铁路交通干线边界线外一定距离以内的区域划分为4b类声环境功能区。即:①相邻区域为1类声环境功能区,距离为50 m±5 m;②相邻区域为2类声环境功能区,距离为35 m±5 m;③相邻区域为3类声环境功能区,距离为20 m±5 m。

    北京至天津城际铁路客运专线在环境影响评价阶段,由环境影响报告书确定并经环境管理部门确认:“噪声执行标准—居民集中居住区60 m内执行4类标准、60 m外执行2类标准”;“铁路用地范围外一定距离以内的区域划为4类标准适用区域。当相邻区域为2类标准适用区时,铁路用地范围外30 m±5 m的区域执行4类标准”;“铁路用地范围外一定距离以内的区域执行4类标准;城市区域有声环境功能区划的、按功能区划执行;没有噪声功能区划的农村地区执行2类标准”;“验收调查中了解到,北京市各区的声环境功能区划各不相同,而且一般只对既有铁路划定相邻区域功能区”;“高铁的征地范围为铁路桥梁(宽21 m)的投影面积和路基的占地范围;沿线的拆迁补偿范围原则上是60 m(单侧30 m),但各段的地方政府最终完成拆迁的情况各异”。

    由相关内容可见,对于高速铁路两侧的声环境功能管理还没有统一的管理规定,京津城际铁路有关声环境管理也没有完全达成一致。而高速铁路又不同于一般铁路的声环境影响特征,建议有关部门制定适用于高速铁路声环境功能管理的规范或文件,应充分考虑相邻区域为1类声环境功能区无法适用高速铁路的实际情况。

    2)铁路两侧受铁路噪声影响区域的声环境功能区划分关系到铁路建设部门的责任和义务,关系到铁路两侧居民的权益保障,关系到铁路两侧区域土地的合理开发利用,关系到环保部门对铁路两侧的声环境质量管理[15]。调研过程中发现,在验收调查阶段,北京至天津城际铁路客运专线沿线很多规划发展区并未有成型的声环境功能区划分方案。因此,本研究认为在城市发展规划及高速铁路网建设规划制定同期即应考虑环境功能区划的制定,制定声环境保护的规划要求,以便项目建设时有所依据并提出有针对性的调整或保护措施。

    本研究通过对北京至天津城际铁路客运专线的噪声进行环境影响后评价,结合我国声环境标准体系以及声环境功能管理现状,得到如下结论。

    1)根据噪声后评价分析结果,在运行速度300~350 km/h区段,列车通过时,铁路两侧60 m内,可满足4类昼间标准70 dB(A)的要求、但不能满足4类夜间标准55 dB(A)的要求;铁路两侧60 m外(60~120 m),列车通过时,有声屏障,可满足2类昼间标准60 dB(A)的要求,不能满足2类夜间标准50 dB(A)的要求,无声屏障,不能满足2类标准的要求;高速铁路上产生的噪声中对居民产生最大影响的主要是来自最大声级Lmax,高速铁路的列车运行噪声随着距离而明显衰减的特征并不明显,由30~120 m过程中衰减不大,120 ~240 m衰减要大一些。

    2)建议完善我国现有的声环境标准体系,制定专门的高速铁路声环境标准并完善高速铁路噪声预测评估体系,将高速列车通过时间的Leq(td)和Lp(max)作为评价量,在标准限值上建议30 m水平距离控制的同时,考虑一定距离内如60 m内的最大值控制;同时建议制定适用于高速铁路声环境功能管理的规范或文件。

  • 图 1  电化学水处理领域全球发文量及趋势

    图 2  电化学水处理领域全球发文国家合作关系

    图 3  2019~2020年电化学水处理领域关键词聚类分析

    图 4  2019~2020年电化学水处理领域被引频次﹥20次关键词聚类分析

    图 5  电化学水处理领域Top10国家发文量和影响力分析

    表 1  SCI收录电化学水处理文献检索结果

    检索内容和检索式检索结果
    电化学技术在水处理中的应用TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro*......) and TS=(“*water* *treatment*” or “*water* purif*” or “*water* cleans*”......)2 034
    电化学技术处理污水、废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or .......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “contaminat* water*” or.......) and TS=(*treatment or purif* or cleans* or remov* or disinfect* or steriliz* or remediat*......)3 767
    电化学技术处理工业废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* flocculat*" or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or ......) and TS=(Industr* or metallurg* or produc* petrochemical or petroleum or “natural gas” or desalinat* or ......)1 479
    电化学技术处理农业、畜牧业废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro* coagulat*"or ......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or......)and TS= (agricultur* or farmland or rural or pesticide* slaughterhouse*or ......)90
    电化学技术处理医疗废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* coagulat*"or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(municipal* or domestic* or sanitary)196
    电化学技术处理生活污水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* coagulat*" ...... and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(hospital or medic* or pharmac*or......)349
    合计8 232
    查重4 177
    检索内容和检索式检索结果
    电化学技术在水处理中的应用TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro*......) and TS=(“*water* *treatment*” or “*water* purif*” or “*water* cleans*”......)2 034
    电化学技术处理污水、废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or .......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “contaminat* water*” or.......) and TS=(*treatment or purif* or cleans* or remov* or disinfect* or steriliz* or remediat*......)3 767
    电化学技术处理工业废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* flocculat*" or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or ......) and TS=(Industr* or metallurg* or produc* petrochemical or petroleum or “natural gas” or desalinat* or ......)1 479
    电化学技术处理农业、畜牧业废水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* oxida*" or "electro* coagulat*"or ......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*” or......)and TS= (agricultur* or farmland or rural or pesticide* slaughterhouse*or ......)90
    电化学技术处理医疗废水TS=("electro* chemi* technolog*" or"electro* oxida*" or "electro* coagulat*"or.......) and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(municipal* or domestic* or sanitary)196
    电化学技术处理生活污水TS=("electro* chemi* technolog*" or "electro* redox*" or "electro* coagulat*" ...... and TS=(wastewater* or “waste water*” or “water contaminat*” or “water pollut*”or......) and TS=(hospital or medic* or pharmac*or......)349
    合计8 232
    查重4 177
    下载: 导出CSV

    表 2  10年内电化学处理水污染相关文章全球及Top10国发文量分析

    t/a中国印度西班牙美国巴西伊朗墨西哥韩国加拿大土耳其合计中国所占比例/%
    2011621211171072123121519030
    2012671221151091115121018229
    20138316179118192113920633
    2014923314231351311131122831
    20151302329162111191112627834
    201616625212420121277329740
    2017189282325201511119934038
    20182172938312416887538340
    201926935332830216511544346
    20203516538323423456656446
    合计1 626278245220193127124117102793 111
    t/a中国印度西班牙美国巴西伊朗墨西哥韩国加拿大土耳其合计中国所占比例/%
    2011621211171072123121519030
    2012671221151091115121018229
    20138316179118192113920633
    2014923314231351311131122831
    20151302329162111191112627834
    201616625212420121277329740
    2017189282325201511119934038
    20182172938312416887538340
    201926935332830216511544346
    20203516538323423456656446
    合计1 626278245220193127124117102793 111
    下载: 导出CSV

    表 3  电化学水处理在不同研究领域发文数量及所占比例

    研究领域发文数量所占比例/%
    环境科学和生态学 640 15.3
    工程学 555 13.3
    电化学 382 9.1
    化学 365 8.7
    工程;环境科学与生态学 307 7.3
    工程;水资源 246 5.9
    工程;环境科学与生态学;水资源 234 5.6
    化学;工程学 151 3.6
    农业;生物技术与应用微生物学;能源与燃料 114 2.7
    化学;电化学 99 2.4
    其他 1 084 26.0
    研究领域发文数量所占比例/%
    环境科学和生态学 640 15.3
    工程学 555 13.3
    电化学 382 9.1
    化学 365 8.7
    工程;环境科学与生态学 307 7.3
    工程;水资源 246 5.9
    工程;环境科学与生态学;水资源 234 5.6
    化学;工程学 151 3.6
    农业;生物技术与应用微生物学;能源与燃料 114 2.7
    化学;电化学 99 2.4
    其他 1 084 26.0
    下载: 导出CSV

    表 4  2019~2020年电化学处理水污染相关文章研究方向及技术要点

    群组研究方向使用技术去除污染物技术要点和参数
    红色海水淡化,饮用水,地下水电氧化,吸附,电还原,电沉积重金属,六价铬,亚甲蓝,纳米颗粒,硝酸盐,亚硝酸盐,氮动力学,电极,活性炭,催化剂,石墨烯,碳纳米管,能量,电容去离子,传感器
    绿色污水污泥,活性污泥降解,电解,零价铁,微电解,生物降解氨,有机质,磷酸盐性能,微生物电解槽,反应器,酸碱度,温度,膜生物反应器,微生物群落,发电
    蓝色个人护理产品,药品,抗生素降解,电化学氧化,阳极氧化,光催化降解,臭氧氧化,电芬顿抗生素,偶氮染料,双酚A,有机污染物,磺胺甲恶唑,过硫酸盐掺硼金刚石,矿化作用,毒性,双氧水,羟基自由基,降解途径,BDD阳极
    黄色垃圾渗滤液电絮凝,电化学降解染料,苯酚,污染物,合成有机染料酸性,活性氯,阳极,表征,COD,能源消耗,二氧化铅电极,响应面法
    群组研究方向使用技术去除污染物技术要点和参数
    红色海水淡化,饮用水,地下水电氧化,吸附,电还原,电沉积重金属,六价铬,亚甲蓝,纳米颗粒,硝酸盐,亚硝酸盐,氮动力学,电极,活性炭,催化剂,石墨烯,碳纳米管,能量,电容去离子,传感器
    绿色污水污泥,活性污泥降解,电解,零价铁,微电解,生物降解氨,有机质,磷酸盐性能,微生物电解槽,反应器,酸碱度,温度,膜生物反应器,微生物群落,发电
    蓝色个人护理产品,药品,抗生素降解,电化学氧化,阳极氧化,光催化降解,臭氧氧化,电芬顿抗生素,偶氮染料,双酚A,有机污染物,磺胺甲恶唑,过硫酸盐掺硼金刚石,矿化作用,毒性,双氧水,羟基自由基,降解途径,BDD阳极
    黄色垃圾渗滤液电絮凝,电化学降解染料,苯酚,污染物,合成有机染料酸性,活性氯,阳极,表征,COD,能源消耗,二氧化铅电极,响应面法
    下载: 导出CSV

    表 5  电化学处理水污染相关文章全球Top20期刊发文量

    期刊发文量/篇2020 IF5年IF
    Chemical Engineering Journal22213.27311.629
    Chemosphere1907.0866.451
    Electrochimica Acta1746.9016.385
    Desalination And Water Treatment1571.2541.027
    Journal Of Hazardous Materials14810.5889.608
    Separation And Purification Technology1407.3126.437
    Water Research12711.23610.177
    Environmental Science And Pollution Research1164.2233.509
    Bioresource Technology1129.6427.820
    International Journal Of Electrochemical Science1091.7651.366
    Journal Of Electroanalytical Chemistry834.4644.105
    Water Science And Technology791.9151.796
    Science Of The Total Environment777.9636.938
    International Journal Of Hydrogen Energy735.8164.063
    Environmental Science & Technology729.0288.079
    Rsc Advances713.3613.206
    Environmental Technology643.2472.880
    Applied Catalysis B-Environmental5819.50317.995
    Journal Of Environmental Management516.7896.393
    Journal Of Environmental Chemical Engineering485.9095.361
    期刊发文量/篇2020 IF5年IF
    Chemical Engineering Journal22213.27311.629
    Chemosphere1907.0866.451
    Electrochimica Acta1746.9016.385
    Desalination And Water Treatment1571.2541.027
    Journal Of Hazardous Materials14810.5889.608
    Separation And Purification Technology1407.3126.437
    Water Research12711.23610.177
    Environmental Science And Pollution Research1164.2233.509
    Bioresource Technology1129.6427.820
    International Journal Of Electrochemical Science1091.7651.366
    Journal Of Electroanalytical Chemistry834.4644.105
    Water Science And Technology791.9151.796
    Science Of The Total Environment777.9636.938
    International Journal Of Hydrogen Energy735.8164.063
    Environmental Science & Technology729.0288.079
    Rsc Advances713.3613.206
    Environmental Technology643.2472.880
    Applied Catalysis B-Environmental5819.50317.995
    Journal Of Environmental Management516.7896.393
    Journal Of Environmental Chemical Engineering485.9095.361
    下载: 导出CSV
  • [1] DOS S, ALEXANDRO J, KRONKA M S, et al. Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review[J]. Current Opinion in Electrochemistry, 2021, 26: 100674. doi: 10.1016/j.coelec.2020.100674
    [2] TRELLU C, VARGAS H O, MOUSSET E, et al. Electrochemical technologies for the treatment of pesticides[J]. Current Opinion in Electrochemistry, 2021, 26: 100677.
    [3] HILARES R T, ATOCHE-GARAY D F, PAGAZA D A, et al. Promising physicochemical technologies for poultry slaughterhouse wastewater treatment: A critical review[J]. Journal of Environmental Chemical Engineering 2021, 9 : 105174.
    [4] MARTINEZ-CRUZ A, FERNANDES A, CITRIACO L, et al. Electrochemical oxidation of effluents from food processing industries: A short review and a case-study[J]. Water, 2020, 12: 3546. doi: 10.3390/w12123546
    [5] 张瑞, 赵霞, 李庆维, 等. 电化学水处理技术的研究及应用进展[J]. 水处理技术, 2019, 45(4): 11 − 16.
    [6] 胡承志, 刘会娟, 曲久辉. 电化学水处理技术研究进展[J]. 环境工程学报2018, 12(3): 677-696.
    [7] 杨雨寒. 基于文献计量的我国水处理研究发展态势分析[J]. 环境工程学报, 2019, 13(5): 1245 − 1260. doi: 10.12030/j.cjee.201903076
  • 加载中
图( 5) 表( 5)
计量
  • 文章访问数:  2336
  • HTML全文浏览数:  2336
  • PDF下载数:  14
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-08-17
  • 刊出日期:  2022-10-20
宋冀营, 杨雨寒. 基于SCI收录的电化学水处理技术文献计量分析[J]. 环境保护科学, 2022, 48(5): 100-104. doi: 10.16803/j.cnki.issn.1004-6216.2021080029
引用本文: 宋冀营, 杨雨寒. 基于SCI收录的电化学水处理技术文献计量分析[J]. 环境保护科学, 2022, 48(5): 100-104. doi: 10.16803/j.cnki.issn.1004-6216.2021080029
SONG Jiying, YANG Yuhan. Bibliometric analysis of SCI literature on electrochemical technology for water treatment[J]. Environmental Protection Science, 2022, 48(5): 100-104. doi: 10.16803/j.cnki.issn.1004-6216.2021080029
Citation: SONG Jiying, YANG Yuhan. Bibliometric analysis of SCI literature on electrochemical technology for water treatment[J]. Environmental Protection Science, 2022, 48(5): 100-104. doi: 10.16803/j.cnki.issn.1004-6216.2021080029

基于SCI收录的电化学水处理技术文献计量分析

    作者简介: 宋冀营(1978-),女,博士、工程师。研究方向:生态学、图书馆学和文献计量学。E-mail:jysong@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心文献信息与学术传播中心,北京 100085
  • 2. 中国科学院文献情报中心,北京 100190
基金项目:
中国科学院文献情报能力建设专项(E0290425)

摘要: 文章以2011~2020年电化学水处理技术方面的SCI发文情况为依据进行分析。结果显示,电化学水处理领域的全球发文量呈逐年上升的趋势,中国的发文量占全球发文量的近40%,发文量和被引次数H指数均居全球第一。与中国合作关系较为紧密的有日本、新加坡、丹麦和瑞典等国家。研究主要集中在环境科学和生态学、工程和化学等领域,主要研究涉及海水淡化、饮用水、地下水、污水污泥、活性污泥、个人护理产品、药品和垃圾渗滤液等方面,且近一半的发文集中在20个期刊上。

English Abstract

  • 20世纪50年代后,工业的发展和人类生活条件的改善得到不断推进,同时也制造了很多化学污染物,加剧了水资源的污染。开采业、农业、畜牧业、食品加工业、印染业 、医疗产业和城市生活垃圾渗透液等都产生了大量、复杂、有毒、持久性的和难去除的污染物,这些污染物通过废水、污水进入了地表水源或者地下水,破坏了生态环境[1-4]。治理水污染,使废水、污水能够再利用,提高水资源利用效率是解决水资源匮乏、保护生态环境的重要途径。电化学技术是通过在特定的电化学反应器中外加电场调控电子定向转移,使水中污染物在反应器中发生特定的物理、化学反应,从而被去除的过程。包括电氧化、电还原、电渗析、电絮凝、电吸附、电气浮、内电解和电芬顿等常用技术。相对传统处理方法,用电化学处理水污染有着可避免二次污染、可深度并有选择性的去除污染物、处理条件温和易实现自动化和规模化、且可与其他处理方法相结合,形成降解能力强的复合处理工艺等优点。还可以有效地回收污水、废水中的金属离子、营养物质、硫、氢和化合物,使废水资源化。电化学技术已经成为目前处理污水、废水的优选技术[5-6]

    本研究对电化学水处理相关的SCI期刊论文进行检索和分析,总结电化学水处理领域的国际论文的发文特点和趋势,揭示该领域的研究前沿发展方向,以期为科研人员的研究规划和国际合作提供科学支撑。

    • 数据来源于科睿唯安(Clarivate Analytics)的Web of Science核心合集的SCI数据库(SCI-Expanded,http://apps.webofknowledge.com)。检索时间为2021年5月,检索年限为2011~2020年。经查重后获得4 177条数据,检索结果见表1。 以主题做为检索字段,以电化学技术和污水、废水处理为检索式进行检索,得到结果最多、最为全面,为3 767条。通过进一步限制检索范围,分别检索电化学处理技术在工业废水、农业废水、城市废水和医疗废水中的应用频率[7] ,结果显示,用电化学技术处理工业废水的应用更为频繁和广泛,检索出1 479条。电化学水处理技术在农业、畜牧业污水的处理中应用面不大,只检索到90条数据。该技术在处理城市生活污水和医疗废水中也有一定的应用,分别检索到349和196条数据。

    • 根据Web of Science的检索结果,2011~2020这10年间,在电化学处理水污染的方面,全球共发文4 177篇,见图1。总发文量由2011年的204篇增长到2020年768篇,呈逐年递增的趋势。

      发文量最多的前10的国家分别是中国、印度、西班牙、美国、巴西、伊朗、墨西哥、韩国、加拿大和土耳其,共3 111篇,占总发文量的74.45%。其中,中国1 626篇,明显领先于其他国家,占全球总发文量的38.93%,尤其2019和2020年发文量占到全球的近1/2。其他9国发文量也呈逐年上升的趋势,特别是近5年发文量逐年增加,见表2

      用知识图谱可视化软件VOSviewer分析全球发文国家的合作关系,见图2。与People r China合作关系较为紧密的有Japan、Singapore、Danmark、SSweden等国家。与USA存在合作关系的国家较多,除了与Australia合作较多,还有很多亚洲国家,如India、South Korea、Vietnam、Thailand等国家及Taiwan Province of China。Sapain与Brazil、Mexcio、Colombia、Chile的合作更为紧密。另外,Canada、France、Mocrocco等也存在广泛的合作关系。而Iran、Turkey、Germany、Portugal、Greece等国家也组成了一个合作小组。

    • 基于Web of Science的学科分类,电化学水处理方面的研究主要涉及环境科学和生态学、工程和化学等领域,见表3。其中,环境科学和生态学领域以及工程领域的发文量超过总发文量的10%,分别为15.3%和13.3%。环境科学和生态学、工程、电化学、化学、工程-环境科学和生态这5个领域的发文总和占有全部发文量的一半以上。另外,电化学水污染的研究在工程-水资源、工程-环境科学和生态-水资源、化学-工程、农业-生物技术和微生物应用-能源和燃料、化学-电化学这些领域的发文量也占有一定的份额,大约占总发文量的20.2%。

      为了揭示研究现状和前沿,本文对2019和2020年的发文提取关键词,并用VOSviewer对关键词进行聚类分析,见图3。小球越大表示此关键词出现的次数越多,小球之间的连线表示两关键词间存在一定相关性。2019~2020年,根据发文关键词的数量多少及相关性,可将全球的研究区分为4个群组。研究热点分别为红色群组的“吸附”“氧化”“水溶液”等;绿色群组的“性能”“微生物电解槽”“除磷”等;蓝色群组的“降解”“电化学氧化”“掺硼金刚石(电极)”等;黄色群组的“去除”“电絮凝”“酸性”等。

      进一步对关键词群组进行分析,总结每个群组研究主要内容、使用的技术和去除的主要污染物,以及所关注的技术要点和参数,见表4

      为了更近一步预测研究趋势和应用范围,对2019和2020年被引频次>20次的发文,剔除广泛性和普遍性使用的关键词后再次进行聚类分析,见图4。红色小球表示个人护理产品和药品,绿色小球表示污水污泥,黄色小球表示海水淡化和地下水,紫色小球表示垃圾渗滤液和饮用水,这几方面仍然是近年的主要研究方向。而主要污染物的去除将会集中在抗生素(包括四环素)、微生物污染物、苯酚、金属铬及六价铬、双酚A和残留农药等方面。在微生物燃料电池制备和绿色合成技术上的应用将会受到更多的关注。

    • 2011~2020年,全球电化学水处理方面的4 177篇文章共发表在492个期刊上。超过半数的文章发表于Top20期刊,见表5。Top20期刊中发文量﹥100的有10个刊,发文量占全部发文量的35.8%。其中发文量最多的是Chemical Engineering Journal,发文222篇,该刊2020年影响因子为13.273,5年影响因子为11.629。Top20影响因子最高的刊是Applied Catalysis B-Environmental,2020年影响因子为19.503,5年影响因子为17.995。

    • 对比了发文量Top10国家的发文期刊平均影响因子,见图5,发文期刊平均影响因子超过5.0的国家有5个。其中最高的是美国,平均IF为6.82。其次是西班牙,也达到了6.23。另外IF>5的国家分别为韩国5.71、中国5.36和加拿大5.21。说明这些国家的整体发文质量较高。通过对比发文量Top10国家文章被引次数H指数,H指数最高的国家为中国,为65,其次为美国49,西班牙45。另外,印度和巴西的H指数也超过了30,分别为38和30。总体来说,中国的发文量和H指数为全球第一,表明全球科研影响力最大。但美国和西班牙发文质量较高,对科研的贡献较大。

    • (1)2011~2020年,电化学水处理领域的全球发文量明显呈逐年上升的趋势,说明全世界越来越多的国家和地区都在关注并应用这项目前处理水污染的优选技术。发文量最多的前十的国家分别是中国、印度、西班牙、美国、巴西、伊朗、墨西哥、韩国、加拿大和土耳其。涵盖亚洲(尤其是东亚和南亚一代)、欧洲、北美洲、南美洲4个大洲,并且这些国家间也有很多直接、间接的合作。说明这项技术在这些地域应用领域更为广泛,技术也更为成熟。

      (2)2011~2020年,电化学水处理领域全球发文量最多的国家是中国,占全球发文量的近40%。这与我国多年来一直坚持以环境保护为基本国策,各级政府都重视环境保护、逐渐加大环境保护方面的技术研发和生产投入力度有关。特别是2018年《中共中央 国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》的提出,更是进一步促进了水污染领域研究成果的产出,2019和2020年,中国的发文量占全球发文量的1/2。

      (3)2011~2020年,电化学水处理领域的发文超过一半集中在环境科学和生态学、工程、电化学、化学、工程-环境科学和生态这5个领域。主要研究涉及海水淡化、饮用水、地下水、污水污泥、活性污泥、个人护理产品、药品和垃圾渗滤液等方面;技术手段较常用的有电氧化、电还原、电絮凝、电吸附和微电解等;去除的污染物有重金属、硝酸盐、磷酸盐、有机污染物、染料和抗生素等。今后的研究中,微生物燃料电池制备和绿色合成技术上的应用将会受到更多的关注。

      (4)2011~2020年,全球电化学水处理方面的4 177篇文章共发表在492个期刊上。其中发文量最多的是Chemical Engineering Journal,发文222篇,该刊2019年影响因子为10.652,5年影响因子为9.42。对比了发文量Top10国家的发文期刊平均影响因子和H指数来评估各个国家的科研实力和影响力,结果显示中国的发文量和H指数为全球第一,全球科研影响力最大。但美国和西班牙发文期刊影响因子总体较高,说明这两国的科学技术更为先进,对学术的贡献较大。

    参考文献 (7)

返回顶部

目录

/

返回文章
返回