-
有机磷、氨基甲酸酯类农药具有广谱杀虫性、降解快、生物积累量低等特点,因此在粮食生产、果蔬栽培等领域得到了广泛应用[1]。近年来,由于农药被过度使用,导致其在粮食、果蔬和环境水体中残留程度不一,对环境和人体健康造成了潜在危害[2]。因此,建立一种快速、简便的定量方法来提纯富集环境水样中农药的含量尤为重要[3]。
在进行农药富集过程时,样品前处理技术显得尤为重要[4]。常用方法有固相萃取(SPE)[5]、磁性固相萃取(MSPE)[6]、液相微萃取(LPME)[7]和分散液相微萃取(DLLME)[8-11]。但这些方式仍存在缺点,如DLLME的萃取过程会降低分析物与萃取剂的分配系数,导致萃取效率下降[12-14]。为克服这一问题,磁力搅拌[15]、超声波[16]和涡旋[17]等技术的运用可有效改善分析物与萃取剂的分配系数。因此,开发一种合理的样品前处理技术显得尤为重要。
离子液体的应用是分析化学领域的一个研究热点,主要是因为离子液体(ILs)是非分子溶剂,在低于100 ℃的温度下保持液态,具有许多独特的性质,如可变粘度、高导电性和高热稳定性等[18]。例如,研究人员提出的基于离子液体-分散液液微萃取(IL-DLLME)方法来替代传统的分散液液微萃取(DLLME)方法[19-20],该方法不仅扩大了萃取溶剂的范围,还降低了有毒挥发性溶剂对操作人员的潜在危害。YOU et al[21]结合AALLME和IL-DLLME的优点,提出空气辅助液-液微萃取-离子液体(IL-AALLME)技术,该技术仅使用了少量的离子液体作为萃取溶剂,便得到了良好的实验结果。而空气辅助液-液微萃取-离子液体联用高效液相色谱-紫外法(HPLC-UV)还没有应用于水样中农药的分析。
因此,本文利用液-液微萃取技术和离子液体作为样品前处理,对水样中7种农药进行提取,再利用高效液相色谱测定目标物含量。此外,该实验还将对检测波长、流动相比、离子液体类型和体积、萃取时间、盐效应、pH等实验变量进行评估和优化。
液-液微萃取技术测定环境水样中7种农药
Liquid–liquid Microextraction for the Determination of Seven Pesticides in Environmental Water Samples
-
摘要: 该研究建立了一种新型高效液相色谱-紫外分光光度法(HPLC-UV) 测定环境水样中7种农药含量。在优化后的条件下,使用离子液体作为萃取溶剂,与水样混合均匀促使其形成乳液,再利用液-液微萃取技术提取出目标物,该过程对环境友好无害。在最佳条件下,7种农药分离良好、标准曲线线性良好、相关系数(γ)均不小于0.999 3。结果还表明,自来水和崇德湖的相对标准偏差(RSD)分别为1.88%~4.24%和2.57%~4.86%。自来水和崇德湖的加标回收率分别为95.52%~97.12%和96.90%~104.06%。Abstract: An improved effective high performance liquid chromatography coupled to a ultraviolet detection (HPLC-UV) was developed for the determination of seven pesticides in environmental water samples in the study. The ionic liquid was used as the extraction solvent and mixed with the aqueous sample solution, thus forming the emulsion under the improved conditions. The target objects of the mixed solution were extracted by liquid-liquid microextraction technology. The process was harmless to the environment. Under the optimized conditions, the seven pesticides were well separated. The standard curves were in a good linear curve with the correlation coefficient r≥0.999 3. The results shown that the relative standard deviations (RSD) for tap water and Chongde Lake were 1.88%~4.24% and 2.57%~4.86%, respectively. And the recovery rates of spiked samples was in the range from 95.52% to 97.12% and from 96.90% to 104.06%, respectively.
-
Key words:
- Liquid–liquid Microextraction /
- Ionic Liquid /
- HPLC-UV /
- Pesticides
-
表 1 7种被测成分的线性方程、线性范围和相关系数
μg·mL−1 化合物 线性方程 γ 线性范围 LOQ−1 LOD−1 甲砜霉素 Y=110 406.89+75 281.78X 0.999 6 0.32~32 0.230 0.069 氟苯尼考 Y=93 897.99+1 416 141.06X 0.999 8 0.46~46 0.110 0.033 水胺硫磷 Y=−5 412.01+480 569.50X 0.999 8 0.60~6 0.017 0.050 甲基−对硫磷 Y=−1 816.01+431 160.53X 0.999 8 0.60~6 0.061 0.018 三唑磷 Y=−1 293.29+22 111.26X 0.999 8 0.25~25 0.038 0.011 甲基−毒死蜱 Y=−5 075.90+154 460.57X 0.999 7 0.35~35 0.053 0.016 毒死蜱 Y=−8 826.02+42 658.68X 0.999 3 0.36~36 0.055 0.016 注:相关系数,γ;LOQ,定量限; LOD,检测限。 表 2 样品含量测定及加标回收率
化合物 加入量/μL 自来水 崇德湖 测得量/μg·mL−1 回收率/% RSD/% 测得量/μg·mL−1 回收率/% RSD/% 甲砜霉素 0 ND NA NA ND NA NA 10 13.26 93.38 — 14.29 100.63 — 20 13.45 94.72 2.25 14.63 103.03 3.88 30 13.98 98.45 — 15.41 108.52 — 氟苯尼考 0 ND NA NA ND NA NA 10 20.47 91.79 — 20.45 91.70 — 20 21.80 97.76 3.62 21.89 98.16 3.96 30 21.83 97.89 — 22.49 100.85 — 水胺硫磷 0 ND NA NA ND NA NA 10 13.98 91.97 — 14.94 98.29 — 20 14.79 97.30 2.20 15.68 103.16 3.20 30 15.00 98.68 — 15.88 104.47 — 甲基−对硫磷 0 ND NA NA ND NA NA 10 20.23 95.42 — 19.98 94.24 — 20 20.56 96.98 1.88 20.79 98.07 4.86 30 21.00 99.06 — 22.00 103.77 — 三唑磷 0 ND NA NA ND NA NA 10 21.46 95.38 — 20.66 91.82 — 20 21.79 96.84 1.96 21.79 96.84 3.48 30 22.49 99.96 — 22.49 99.95 — 甲基−毒死蜱 0 ND NA NA ND NA NA 10 13.23 90.62 — 14.98 102.60 — 20 13.97 95.68 4.24 15.38 105.34 2.57 30 14.68 100.55 — 15.77 108.01 — 毒死蜱 0 ND NA NA ND NA NA 10 23.21 93.59 — 23.42 94.44 — 20 24.70 99.60 3.97 24.67 99.48 4.01 30 25.02 100.89 — 25.36 102.26 — 注:ND,未检测到; NA,无法使用。 -
[1] WANG X, QIAO X, MA Y, et al. Simultaneous determination of nine trace organophosphorous pesticide residues in fruit samples using molecularly imprinted matrix solid-phase dispersion followed by gas Chromatography[J]. Journal of Agricultural & Food Chemistry, 2013, 61(16): 3821 − 3827. [2] FARAJZADEH,MA, BAMOROWAT, M, MOGADDAM, MRA. Development of a dispersive liquid-liquid microextraction method based on solidification of a floating ionic liquid for extraction of carbamate pesticides from fruit juice and vegetable samples[J]. RSC Advances, 2016, 6(114): 112939 − 112948. doi: 10.1039/C6RA20103B [3] 张蓓蓓, 章勇, 赵永刚, 等. 水中14种氨基甲酸酯类农药残留测定[J]. 广州化工, 2013, 41(23): 98 − 100. doi: 10.3969/j.issn.1001-9677.2013.23.037 [4] 孙鹏, 高玉玲, 王金梅, 等. 漂浮固化分散液-液微萃取-气相色谱法测定液态奶中5种拟除虫菊酯类农药残留[J]. 农药学学报, 2016, 18(4): 497 − 502. [5] 吴丽, 李刚, 李媛. SPE固相萃取-高效液相色谱联用测定生活废水中烷基酚[J]. 新疆环境保护, 2018, 40(4): 17 − 23. doi: 10.3969/j.issn.1008-2301.2018.01.004 [6] 李兴红, 江静, 杨莉纳, 等. 钴铁氧体磁性固相萃取结合高效液相色谱法测定果蔬汁中4种人工合成色素[J]. 河北大学学报(自然科学版), 2019, 39(1): 41 − 48. [7] FARAHANI H, SHOKOUHI M, RAHIMI-NASRABADI M, et al. Green chemistry approach to analysis of formic acid and acetic acid in aquatic environment by headspace water-based liquid-phase microextraction and high-performance liquid chromatography[J]. Toxicological & Environmental Chemistry, 2016, 98(7): 714 − 726. [8] 于佳佳, 曹娅, 王强, 等. 分散液相微萃取-气相色谱联用测定苹果汁中6种有机磷农药残留[J]. 中国园艺文摘, 2015(8): 40 − 42. doi: 10.3969/j.issn.1672-0873.2015.08.017 [9] REZAEE M, ASSADI Y, MILANIHOSSEINI M R M, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(1/2): 1 − 9. [10] WU C, LIU H, LIU W, et al. Determination of organophosphorus pesticides in environmental water samples by dispersive liquid-liquid microextraction with solidification of floating organic droplet followed by high-performance liquid chromatography[J]. Analytical & Bioanalytical Chemistry, 2010, 397(6): 2543 − 2549. [11] PENG G, HE Q, MMEREKI D, et al. Dispersive solid-phase extraction followedby vortex-assisted dispersive liquid-liquidmicroextraction based onthesolidificationof a floating organic droplet for thedetermination of benzoylureainsecticidesin soil and sewage sludge[J]. Journal of Separation Science, 2016, 39(7): 1213 − 1398. [12] SARAJI M, BOROUJENI M K, BIDGOLI A A H. Comparison of dispersive liquid-liquid microextraction and hollow fiber liquid-liquid-liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography[J]. Analytical and Bioanalytical Chemistry, 2011, 400(7): 2149 − 2158. doi: 10.1007/s00216-011-4874-x [13] LEONG M I, HUANG S D. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection[J]. Journal of Chromatography A, 2008, 1211(1/2): 8 − 12. [14] AHMADI-JOUIBARI T, FATTAHI N, SHAMSIPUR M, et al. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection to determination of opium alkaloids in human plasma[J]. Journal of Pharmaceutical & Biomedical Analysis, 2013, 85(11): 14 − 20. [15] CHATZIMITAKOS T, BINELLAS C, MAIDATSI K, et al. Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: Proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals[J]. Analytica Chimica Acta, 2016, 910(12): 53 − 59. [16] SALEH A, YAMINI Y, FARAJI M, et al. Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples[J]. Journal of Chromatography A, 2009, 1216(39): 6673 − 6679. doi: 10.1016/j.chroma.2009.08.001 [17] SEEBUNRUENGK, SANTALADCHAIYAKIT Y, SRIJARANAI S. Vortex-assisted low density solvent liquid-liquid microextraction and salt-induced demulsification coupled to high performance liquid chromatography for the determination of five organophosphorus pesticide residues in fruits[J]. Talanta, 2015, 132(42): 769 − 774. [18] FARAJZADEH M A, MOGADDAM M R. Air-assisted liquid-liquid microextraction method as a novel microextraction technique; application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography-flame ionization detection[J]. Analytica Chimica Acta, 2012, 728(6): 31 − 38. [19] YAN W, KWOK Y C, HE Y, et al. Application of dynamic liquid-Phase microextraction to the analysis of chlorobenzenes in water by using a conventional microsyringe[J]. Analytical Chemistry, 1998, 70(21): 4610 − 4614. doi: 10.1021/ac9804339 [20] FARAJZADEH M A, KHOSHMARAM L. Air-assisted liquid-liquid microextraction-gas chromatography-flame ionisation detection: a fast and simple method for the assessment of triazole pesticides residues in surface water, cucumber, tomato and grape juices samples[J]. Food Chemistry, 2013, 141(3): 1881 − 1887. doi: 10.1016/j.foodchem.2013.05.088 [21] YOU X, CHEN X, LIU F, et al. Ionic liquid-based air-assisted liquid-liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples[J]. Food Chemistry, 2018, 239(24): 354 − 359. [22] 廖且根, 张大文, 罗林广. 超声辅助悬浮固化分散液液微萃取-液相色谱-串联质谱法测定环境水样中氯硝柳胺[J]. 分析科学学报, 2018, 34(6): 834 − 836. [23] HUANG Z, CHUA P E, LEE H K. Carbonized polydopamine as coating for solid-phase microextraction of organochlorine pesticides[J]. Journal of Chromatography A, 2015, 1399(23): 8 − 17. [24] ZHANG Y, LEE H K. Low-density solvent-based vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction combined with gas chromatography-mass spectrometry for the fast determination of phthalate esters in bottled water[J]. Journal of Chromatography A, 2013, 1274(32): 28 − 35. [25] CHENGJ, XIA Y, ZHOU Y, et al. Application of an ultrasound-assisted surfactant-enhanced emulsification microextraction method for the analysis of diethofencarb and pyrimethanil fungicides in water and fruit juice samples[J]. Analytica Chimica Acta, 2011, 701(1): 86 − 91. doi: 10.1016/j.aca.2011.04.058 [26] ZHOU Q, GAO Y, BAI H, et al. Preconcentration sensitive determination of pyrethroid insecticides in environmental water samples with solid phase extraction with SiO2 microspheres cartridge prior to high performance liquid chromatography[J]. Journal of Chromatography A, 2010, 1217(31): 5021 − 5025. doi: 10.1016/j.chroma.2010.05.060 [27] CHEN L, CHEN W, MA C, et al. Electropolymerizedmultiwalled carbon nanotubes/polypyrrole fiber for solid-phase microextraction and its applications in the determination of pyrethroids[J]. Talanta, 2011, 84(1): 104 − 108. doi: 10.1016/j.talanta.2010.12.027 [28] ZHOU Q, GAO Y, XIE G. Determination of bisphenol A, 4--nonylphenol, and 4--octylphenol by temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detector[J]. Talanta, 2011, 85(3): 1598 − 1602. doi: 10.1016/j.talanta.2011.06.050