-
镉是一种有毒有害元素,长期高镉暴露将增加致癌风险[1]。镉在地壳中含量约为0.1 mg·kg−1,主要与硫和铅锌等元素以化合物形式伴生存在。铅锌矿、闪锌矿、铜硫矿等含镉硫化矿物开采过程中氧化产生的酸性矿坑水 (acid mine drainage, AMD) 通常富集高浓度的镉,导致矿区周边土壤、地表水及地下水镉污染。调查显示,部分受采矿影响的河流中镉质量浓度高达0.43~3.10 mg·L−1[2-4],超过我国《生活饮用水卫生标准》 (GB 5749-2022) 中镉限值 (0.005 mg·L−1) 85~619倍[5]。可见,高镉AMD已成为矿区流域水土污染的主要来源,成为当前我国生态文明建设和矿区水资源供需矛盾加剧的一项重大挑战。
近年来,基于碱性工业副产物、农渔业废弃物资源化利用的AMD处理研究得到越来越多的关注[6-8],进而促进了“以废治废”的可持续发展理念。我国是水产品生产和消费大国,每年仅虾、蟹等甲壳类水产品的消费量就高达8.4×106 t,产生的虾、蟹等甲壳生物质 (外壳,也称外骨骼) 约2.5~3.4×106 t[9],其中仅3%~10%被资源化利用,其余则被当作固废处置,既造成资源浪费,增加处置成本,也可能导致环境污染。甲壳生物质主要由碳酸钙、甲壳素、蛋白质和脂质组成,不仅可作为碱性材料中和AMD酸度,也可作为重金属离子的捕捉剂,是具有应用前景的AMD修复材料[10]。KONG等[11]利用富磷虾壳回收废水中的铀,最大吸附量为318.0 mg·g−1。李平等[12]通过甲壳素脱乙酰基制备了巯基酯化壳聚糖,发现其对镉离子的最大镉吸附量达28.5 mg·g−1。HU等[13]利用龙虾壳提取的壳聚糖去除废水中的铜和铅离子,最大吸附量分别为676.2和120.0 mg·g−1。虽然,目前利用甲壳类生物质去除重金属的研究已有不少,但大多数研究者均是以甲壳素或壳聚糖为研究对象,而直接将甲壳生物质作为多功能修复材料修复富含重金属的AMD研究鲜见,并且对于酸性条件下重金属的去除过程与作用机制仍不明确,因此需进一步开展研究。
本研究选取了4种较为常见的甲壳生物质,包括基围虾、对虾、蛎虾和梭子蟹壳,测定了其主要成分,并在AMD模拟水样和恒定pH的AMD模拟水样中探究其对镉的去除性能与机制,为AMD绿色低碳修复治理提供理论依据。
甲壳生物质去除酸性矿坑水中镉的性能与机制
Efficiencies and mechanism of crustacean biomasses on removing cadmium in acid mine drainage
-
摘要: 采用低成本、可持续修复材料处理酸性矿坑水 (acid mine drainage, AMD) 具有重要的科研价值和应用前景。选取基围虾、对虾、蛎虾和梭子蟹壳4种甲壳生物质,探究其对AMD模拟水样及恒定pH的AMD水样中镉的去除性能与机制。结果表明:甲壳生物质具有良好的镉去除能力 (112.38~235.45 mg·g−1) ,其含有丰富的碳酸钙对镉去除起了至关重要的作用,可通过中和作用调高AMD的pH值,降低镉的迁移能力;也可与镉离子形成碳酸镉沉淀,促进镉的固定。此外,甲壳生物质中大量的羟基、羧基等官能团可通过络合作用捕获镉离子。研究结果为甲壳生物质的资源化利用和废弃矿山AMD的低成本、可持续修复提供了理论依据。Abstract: Using low-cost and sustainable remediation materials to treat acid mine drainage (AMD) has important scientific research values and application potentials. In this study, four crustacean biomasses including Metapenaeus ensis, prawn, talon shrimp and swimming crab shells were selected to explore the performance and mechanism of cadmium removal in simulated AMD samples with and without constant pH. It was concluded that crustacean biomasses have excellent cadmium removal capabilities ranging from 112.38 to 235.45 mg·g−1. Their abundant calcium carbonate played a crucial role in the cadmium removal, in which not only the pH values of AMD were increased by neutralization with reduced cadmium mobilization, but also the cadmium was stabilized by forming cadmium carbonate precipitates. In addition, a large number of hydroxyl, carboxyl and other functional groups in crustacean biomasses can also capture cadmium ions through the complexation. These findings provide theoretical basis in promoting the resource utilization of crustacean biomasses and the low-cost and sustainable remediation of AMD from abandoned mines.
-
Key words:
- acid mine drainage /
- crustacean biomass /
- cadmium /
- shrimp shell /
- resource utilization
-
表 1 甲壳生物质去除镉的动力学和等温线模型参数
Table 1. Parameters of kinetic and isotherm models for Cd removal on crustacean biomasses
动力学参数 伪一级模型 伪二级模型 Qe1/(mg·g−1) k1/(min−1) R2 Qe2/(mg·g−1) k2/(g·mg−1 ·h−1) R2 基围虾 18.914 0.255 0.930 19.015 0.090 0.984 对虾 18.919 0.295 0.823 19.134 0.077 0.973 蛎虾 19.300 0.363 0.993 19.347 0.155 0.997 梭子蟹 18.926 0.071 0.942 19.295 0.018 0.968 等温线参数 Langmuir模型 Freundlich模型 Qmax/(mg·g−1) KL/(L·mg−1) R2 KF/(L·mg−1) n R2 基围虾 116.038 0.261 0.971 28.195 2.494 0.866 对虾 235.447 0.099 0.983 23.973 1.504 0.803 蛎虾 116.204 0.131 0.994 15.440 2.011 0.867 梭子蟹 112.377 0.199 0.974 17.995 2.106 0.872 -
[1] EFSA. Cadmium dietary exposure in the European population[S]. 2012, 10: 2551. [2] 周立祥. 生物矿化: 构建酸性矿山废水新型被动处理系统的新方法[J]. 化学学报, 2017, 75(6): 552-559. [3] 陈宏坪, 韩占涛, 沈仁芳, 等. 废弃矿山酸性矿井水产生过程与生态治理技术[J]. 环境保护科学, 2021, 47(6): 73-80. [4] 艾雨露, 陈宏坪, 陈梦舫等. 全球主要产煤国煤矿AMD污染特征与治理技术 [J]. 煤炭学报, 2023, 48 (12): 4521-4535. [5] 国家市场监督管理总局, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2022[S]. 2022. [6] CHEN H P, AI Y L, JIA Y F, et al. Effective and simultaneous removal of heavy metals and neutralization of acid mine drainage using an attapulgite-soda residue based adsorbent[J]. Science of the Total Environment, 2022, 843: 157120. doi: 10.1016/j.scitotenv.2022.157120 [7] CHEN H P, LI J, DAI Z B, et al. In-situ immobilization of arsenic and antimony containing acid mine drainage through chemically forming layered double hydroxides[J]. Science of the Total Environment, 2023, 903: 166601. doi: 10.1016/j.scitotenv.2023.166601 [8] AI Y L, CHEN H P, CHEN M F, et al. Characteristics and mechanism of effectively capturing arsenate by sulfate intercalated and self-doping layered double hydroxide derived from field acid mine drainage[J]. Separation and Purification Technology, 2024, 331: 125763. doi: 10.1016/j.seppur.2023.125763 [9] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[R]. 2023. [10] 贾郁菲, 陈宏坪, 张文影, 等. 甲壳生物质修复废弃煤矿酸性矿坑水研究进展 [J/OL]. 环境保护科学, 1-8[2024-01-17] https://doi.org/10.16803/j.cnki.issn.1004-6216.202303014. [11] KONG L J, ZHANG H M, JI W, et al. Recovery of phosphorus rich krill shell biowaste for uranium immobilization: A study of sorption behavior, surface reaction, and phase transformation[J]. Environmental Pollution, 2018, 243: 630-636. doi: 10.1016/j.envpol.2018.08.023 [12] 李平, 金兰淑, 林国林, 等. 巯基酯化壳聚糖的合成及对Cd2+的去除性能研究[J]. 环境工程学报, 2014, 8(1): 254-259. [13] HU W Q, CHEN S and JIANG H. Crayfish shell waste as safe biosorbent for removal of Cu2+ and Pb2+ from synthetic wastewater[J]. Chinese Journal of Chemical Physics, 2022, 35: 842-852. doi: 10.1063/1674-0068/cjcp2001011 [14] ABDOU E S, NAGY K S and ELSABEE M Z. Extraction and characterization of chitin and chitosan from local sources[J]. Bioresource Technology, 2008, 99: 1359-1367. doi: 10.1016/j.biortech.2007.01.051 [15] KURITA K. Chitin and chitosan: Functional biopolymers from marine crustaceans[J]. Marine Biotechnology, 2006, 8: 203-226. doi: 10.1007/s10126-005-0097-5 [16] PINTO P X, AL-ABED S R and EISMAN D J. Biosorption of heavy metals from mining influenced water onto chitin products[J]. Chemical Engineering Journal, 2011, 166: 1002-1009. doi: 10.1016/j.cej.2010.11.091 [17] KHAN A, BADSHAH S and AIROLDI C. Biosorption of some toxic metal ions by chitosan modified with glycidylmethacrylate and diethylenetriamine[J]. Chemical Engineering Journal, 2011, 171: 159-166. doi: 10.1016/j.cej.2011.03.081 [18] BOULAICHE W, HAMDI B and TRARI M. Removal of heavy metals by chitin: Equilibrium, kinetic and thermodynamic studies[J]. Applied Water Science, 2019, 9: 1-10. doi: 10.1007/s13201-018-0879-3 [19] YANG J, LI M, WANG Y F, et al. High-strength physically multi-cross-linked chitosan hydrogels and aerogels for removing heavy-metal ions[J]. Journal of Agricultural and Food Chemistry, 2019, 67: 13648-13657. doi: 10.1021/acs.jafc.9b05063 [20] 吴琦, 戴凌青, 杨文叶, 等. 虾壳粉对水溶液中阴、阳离子型染料的吸附[J]. 环境工程学报, 2019, 13(3): 594-606. [21] 晏侬洋, 王美丹, 张权, 等. 基于电镜与红外光谱技术研究不同处理方式对小龙虾虾壳粉表观结构的影响[J]. 食品安全质量检测学报, 2021, 12(8): 3182-3186. [22] DOU D T, WEI D L, GUAN X, et al. Adsorption of copper (II) and cadmium (II) ions by in situ doped nano-calcium carbonate high-intensity chitin hydrogels[J]. Journal of Hazardous Materials, 2022, 423: 127137. doi: 10.1016/j.jhazmat.2021.127137 [23] SANGEETHA K, PANGELIN V, SUDHA P N, et al. Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium[J]. International Journal of Biological Macromolecules, 2019, 132: 939-953. doi: 10.1016/j.ijbiomac.2019.03.244