-
随着经济的快速发展,城乡一体化的速度不断加快,导致城镇河湖水体中无机和有机污染物的输入量前所未有[1]。然而,随着城市排水系统和污水处理设施的升级改造,地表水水质得到了一定改善,但微污染水体仍普遍存在。污染江河水源表现为氨氮、总磷、色度、有机物等指标超出饮用水源卫生标准[2],或导致湖泊、水库水体的富营养化,造成水质恶化。水体富营养化因其对生态环境和人类健康的负面影响而引起了关注,例如藻类和其他浮游生物的快速繁殖、水质恶化、鱼类和其他生物的死亡以及饮用水污染[3-4]。但水体的自净能力是有限的,水体的污染物总量超过某限度时将会造成水体污染,需要借助修复技术实现污染水体的净化。近年来,已开发各种水体修复技术如曝气[5]、引水[6]、化学絮凝[7]、化学杀藻剂添加[8],用于修复各种污染类型的水体。然而,物理化学方法虽然能在一定程度上缓解水体污染,但在实际应用中表现出局限性。例如,曝气和引水的成本很高,还需要较大工程量[9]。添加化学药剂对污染河流的处理效果明显,但化学试剂带来的二次污染也是不可避免的[10]。为了不造成河湖水体进一步恶化,并改善区域环境,迫切需要具有成本效益的技术。与传统工程技术相比,植物修复技术因其高效和生态友好的特性得到了广泛的研究[11-12]。
植物修复是指利用植物从环境中去除和积累污染物[13],包括利用植物来减轻、转移、稳定或降解土壤、沉积物和水中的污染物。根据近期对特定植物的研究,在污水处理设施末端过滤出的污染物,可通过植物进行净化和去除[14]。水生植物可以通过富集和自身生长的生物量累积作用,以及与微生物的协同修复,有效净化水体[15]。沉水植物植株整体生活在水中,各器官直接吸收养分[16];漂浮水生植物在光竞争中具有明显优势,通过迅速繁殖,其茎和根吸收营养[17]。此外,挺水植物根系发育良好,能有效吸收养分,同时为微生物提供良好的生长环境[18]。植物修复技术在水处理中研究包括水体中金属[19]、除草剂修复[20]等。不同的植物种类,如水葫芦 (Eichhornia crassipes) 、浮萍 (Lemna minor) 、水莴苣 (Pistia stratiotes) 、香根草 (Chrysopogon zizanioides) 和芦苇 (Phragmites australis) ,已用于污染河水的修复[21-22]。其中,水葫芦可以改善水质,减少总溶解性固体 (26%) 和磷酸盐 (33%) [23]。对比不同水生植物净化水质除机理方面,水葫芦、水莴苣、狐尾藻3种水生植物对氮和磷的去除主要依赖于植物吸附,水葫芦和水莴苣对氮的去除也与微生物硝化/反硝化密切相关[13]。以往研究多集中在水生植物对水体氮、磷的去除上,但关于不同挺水植物对水质净化效能及影响因素的研究相对较少[24],这在微污染水体植物修复中至关重要。
水生植物生长受温度等环境因素影响,不同物种生长及水质净化的最佳温度不同[2]。当水温高于或低于最适温度时,会影响水生植物对养分尤其是氮、磷的吸收能力,影响其生长和水净化能力[25]。然而,很少有关于水生植物在不同温度下从微污染水体中去除污染物的研究,并探讨挺水植物净水效能及环境因子影响机制[26]。本研究旨在评价不同挺水植物对污染物去除效果,确定不同挺水植物配置模式,探讨不同温度下挺水植物系统对污染物去除效率。本研究结果可为挺水植物水质净化和微污染水体生态修复提供理论基础。
挺水植物浮岛水质净化模拟
Simulation study on water purification of emergent plant floating island
-
摘要: 针对地表水生态系统环境治理与生态保护的实际需求,植物修复技术作为成本较低和适用范围较广的生态修复技术,水生植物类型及配置模式对水质净化功能需系统探讨。为解决微污染水体人工湿地水质净化问题,以美人蕉、千屈菜、香蒲、鸢尾和慈姑5种挺水植物及不同配置模式开展水质净化功能研究,筛选水质净化优势植物基础上探讨不同温度下污染物去除效果。结果表明:水生植物在30 d试验周期内对氨氮 (NH4+-N) 的去除率均大于95%;对总氮 (TN) 和总磷 (TP) 的去除率最高的为美人蕉和千屈菜,其中对TN去除率为60.2%、57.8%,对TP去除率最高为66.3%和73.2%;慈姑因植株枯萎掉落下来进入水体,导致植物向水体释放氮磷,释放率分别为18.7%和43.0%;鸢尾组出现根部腐烂状态,并出现反硝化和TP释放。组合植物试验中,鸢尾与美人蕉、千屈菜的组合对污染水体的净化效果要明显优于香蒲与美人蕉、千屈菜组合,适合运用到湿地等生态修复措施治理微污染水中。水质净化优势植物美人蕉在不同环境温度下净水效能研究表明,低温 (5~10 ℃) 条件下TN平均去除率显著降低,对COD的降解速率影响较小,环境温度20~25 ℃条件下美人蕉对微污染水体COD、NH4+-N、TN和TP的去除效率显著高于低温环境;常温环境下复合浮岛植物根际填料样品的细菌群落多样性高于低温环境,常温环境样品中变形菌门 (Proteobacteria) 为优势菌门,低温环境中优势菌门为绿弯菌门 (Chloroflexi) 。Abstract: According to the actual needs of environmental treatment and ecological protection of surface water ecosystem, phytoremediation technology, as an ecological remediation technology with low cost and wide application range, needs to be systematically discussed for water purification function of aquatic plant types and allocation modes. In this paper, aiming at the water purification problem of constructed wetland in micro-polluted water, five emergent plants, Typha orientalis, Iris tectorum, Canna indica, Lythrum salicaria, Sagittaria trifolia, and their different configuration modes were used to study the water purification function. On the basis of screening the dominant plants for water purification, the pollutant removal efficiency at different temperatures was discussed. The results revealed that the removal rate of ammonia nitrogen (NH4+-N) by aquatic plants in 30 days was more than 95%. Canna and Lythrum groups had the highest removal rates of of total nitrogen (TN) and total phosphorus (TP), and the removal rates of TN were 60.2% and 57.8%, and the removal rates of TP were 66.3% and 73.2%. Sagittaria arrowhead felled into the water body due to withering of plants, which led to the release of nitrogen and phosphorus into the water body, with the release rates of 18.7% and 43.0%, respectively. Root decay, denitrification and total phosphorus release appeared in Iris group. In the combined plant experiment, the combination of Iris, Canna and Lythrum showed better purification effect on polluted water than the combination of Typha, Canna and Lythrum, which was suitable for wetland and other ecological restoration measures to control micro-polluted water. The study on water purification efficiency of Canna, a dominant plant for water purification, at different environmental temperatures showed that the average TN and COD removal rate decreased significantly at low temperature (5~10 ℃). Moreover, the removal efficiency of COD, NH4+-N, TN and TP in micro-polluted water at 20~25 ℃ was significantly higher than that in low temperature environment. The diversity of bacterial community in rhizosphere fillers of composite floating island plants in normal temperature environment was higher than that in low temperature environment. Proteobacteria was the dominant bacterium in normal temperature environment, while Chloroflexi was the dominant bacterium in low temperature environment.
-
Key words:
- slightly polluted water /
- emergent plant /
- water purification /
- low temperature
-
表 1 挺水植物水质净化试验中生物量和根长变化
Table 1. Changes of biomass and root length of emergent plants in water purification experiment
测量项目 检测指标 鸢尾 美人蕉 香蒲 千屈菜 慈姑 生物量 初始鲜重/g 33.65±1.26 48.64±6.78 36.12±4.06 21.91±1.80 29.62±2.16 结束鲜重/g 38.35±3.56 67.12±9.74 40.71±7.18 26.51±2.91 29.02±4.11 鲜重增长率 13.91%±3.48% b 38.03%±5.20% a 12.21%±7.23% b 21.07%±3.30% b 5.13%±8.89% b 初始干重/g 21.45±2.20 29.26±4.15 21.28±4.92 10.86±1.28 11.78±2.97 结束干重/g 25.58±2.83 35.72±6.24 25.08±5.72 15.14±0.97 13.18±1.68 干重增长率 19.25±5.50% ab 21.87±9.95% ab 17.92±1.83% ab 39.94±10.16% a 11.86±10.58% b 根长 初始/cm 14.17±1.51 7.15±0.77 18.86±42.21 9.33±1.21 20.94±2.21 结束/cm 20.94±1.56 25.57±4.59 25.42±4.66 18.79±4.21 23.99±2.87 增长率 46.72%±22.00% b 259.86%±72.30% a 34.68%±4.20% b 104.46%±36.77% b 14.80%±4.20% b 注:表中数值为各指标平均值±标准差,不同小写字母为不同处理同一项指标差异显著 (p<0.05) 。 表 2 挺水植物系统对水体总氮和总磷的去除率
Table 2. Removal rate of total nitrogen and phosphorus by emergent plants
% 测量项目 鸢尾 美人蕉 香蒲 千屈菜 慈姑 总氮去除率 62.77~50.23 43.66~48.53 49.76~59.78 37.21~42.08 −19.21~−12.55 总磷去除率 −50.23~−37.52 72.45~80.77 18.27~37.42 60.56~77.15 −45.50~−36.22 表 3 微生物多样性指数统计
Table 3. Statistics of microbial diversity index
样品种类 Ace Chao Coverage Shannon Simpson Sobs 常温20~25 ℃ 1 663 1 660 0.9949 5.858 0.015 1 576 低温5~10 ℃ 1 076 1 061 0.9943 4.623 0.066 968 -
[1] 柏义生, 周国宏, 于鲁冀, 等. 河道水体原位生态净化现场试验[J]. 环境工程, 2019, 37(6): 42-45+116. [2] 李跃平, 刘玉香. 我国微污染水源地污染现状及其处理技术研究进展[J]. 现代化工, 2021, 41(10): 42-46. [3] WURTSBAUGH W A, PAERL H W, DODDS W K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum[J]. Wiley Interdisciplinary Reviews:Water, 2019, 6(5): e1373. doi: 10.1002/wat2.1373 [4] MAURE E R, TERAUCHI G, I SHIZAKA J, et al. Globally consistent assessment of coastal eutrophication[J]. Nature Communication, 2021, 12(1): 6142. doi: 10.1038/s41467-021-26391-9 [5] 罗伟, 田秋宜. 轻质滤料曝气生物滤池在珠江微污染原水处理中的应用[J]. 城镇供水, 2019, 210(5): 26-30. [6] 丁欢欢. 福州西湖左海湖泊群水流水质改善与引水优化研究[D]. 福州: 福州大学, 2013. [7] 朱小冬, 贠延滨, 马青青, 等. 化学絮凝法和微电解法预处理酯化废水研究[J]. 环境工程, 2016, 34(S1): 373-377. [8] 和丽萍. 利用化学杀藻剂控制滇池蓝藻水华研究[J]. 云南环境科学, 2001(2): 43-44. [9] WANG L K, IVANOV V, TAY J H. , et al. Environmental Biotechnology[M]. Springer Science & Business Media, 2010. [10] RAHMAN M A, HASEGAWA H. Aquatic arsenic: phytoremediation using floating macrophytes[J]. Chemosphere, 2021, 83: 633-646. [11] OJOAWO S O, UDAYAKUMAR G, NAIK P. Phytoremediation of phosphorus and nitrogen with canna x generalis reeds in domestic wastewater through NMAMIT constructed wetland[J]. International Conference on Water Resources, Coastal and Ocean Engineering. Elsevier, 2015, 4: 349-356. [12] GARFI M, FLORES L, FERRER I. Life cycle assessment of wastewater treatment systems for small communities: activated sludge, constructed wetlands and high rate algal ponds[J]. Journal of Cleaner Production, 2017, 161: 211-219. doi: 10.1016/j.jclepro.2017.05.116 [13] LU B, XU Z S, LI J G, et al. Removal of water nutrients by different aquatic plant species: an alternative way to remediate polluted rural rivers[J]. Ecological Engineering, 2018, 110: 18-26. doi: 10.1016/j.ecoleng.2017.09.016 [14] 胡傲, 李宇辉, 杨予静, 等. 不同生长型沉水植物配置对生物量积累和水质净化效果的影响[J]. 湖泊科学, 2022, 34(5): 1484-1492. [15] SUDIARTO S I A, RENGGAMAN A, CHOI H L. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics[J]. Journal of Environmental Management, 2019, 231: 763-769. doi: 10.1016/j.jenvman.2018.10.070 [16] XU J L, LIU J, HU J, et al. Nitrogen and phosphorus removal in simulated wastewater by two aquatic plants[J]. Environmental Science and Pollution Research, 2021, 28(44): 63237-63249. doi: 10.1007/s11356-021-15206-5 [17] 刘童. 挺水植物浮岛净化太湖流域养殖尾水研究[D]. 徐州: 中国矿业大学, 2021. [18] SU F, LI Z, LI Y, et al. Removal of total nitrogen and phosphorus using single or combinations of aquatic plants[J]. International Journal of Environmental Research and Public Health, 2019, 16(23): 4663. doi: 10.3390/ijerph16234663 [19] SANTOS F S D, MAGALHAES M O L, MAZUR N. Chemical amendment and phytostabilization of an industrial residue contaminated with Zn and Cd[J]. Scientia Agricola, 2007, 64: 506-512. doi: 10.1590/S0103-90162007000500008 [20] KNAUER K, MOHR S, FEILER U. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing[J]. Environmental Science and Pollution Research, 2008, 15: 322-331. doi: 10.1007/s11356-008-0008-1 [21] VALIPOUR A, RAMAN V K, GHOLE V S. Phytoremediation of domestic wastewater using Eichhornia crassipes[J]. Indian Journal of Environmental Health, 2011, 53: 183-190. [22] WANG Z, ZHANG Z, ZHANG J, et al. Large-scale utilization of water hyacinth for nutrient removal in lake Dianchi in China: the effects on the water quality, macrozoobenthos and zooplankton[J]. Chemosphere, 2012, 89: 1255-1261. doi: 10.1016/j.chemosphere.2012.08.001 [23] MOYO P, CHAPUNGU L, MUDZENGI B. Effectiveness of water Hyacinth (Eichhornia crassipes) in remediating polluted water: the case of Shagashe river in Masvingo, Zimbabwe[J]. Advances in Applied Science Research, 2013, 4: 55-62. [24] 宋涛, 王玉杰, 罗雪梅, 等. 不同挺水植物对模拟污水中C、N净化效果研究[J]. 四川环境, 2022, 41(5): 12-16. [25] ZHANG P, KURAMAE A, VAN LEEUWEN C H A, et al. Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth, stoichiometry, and palatability[J]. Frontiers in Plant Science, 2020, 11: 58. doi: 10.3389/fpls.2020.00058 [26] CUI J, WANG W, LI J, et al. Removal effects of Myriophyllum aquaticum on combined pollutants of nutrients and heavy metals in simulated swine wastewater in summer[J]. Ecotoxicology and Environmental Safety, 2021, 213: 112032. doi: 10.1016/j.ecoenv.2021.112032 [27] 葛光环, 王秋利, 寇坤, 等. 陕西瀛湖水中高pH值原因分析及防控对策研究[J]. 环境科学与管理, 2022, 47(10): 89-93. [28] 赵家楠. 微生物驱动的水生植物凋落物分解过程及机制[D]. 保定: 河北大学, 2022. [29] 汤鹏. 不同水生植物配置对微污染水体的净化效果及相关机理研究[D]. 郑州大学, 2021. [30] LI J F, WANG Y H, CUI J W, et al. Removal effects of aquatic plants on high-concentration phosphorus in wastewater during summer[J]. Journal of Environmental Management, 2022, 324: 116434. doi: 10.1016/j.jenvman.2022.116434 [31] 李燕彬. 城市小微湿地景观植物配置技术初探——以北京市北辰中心花园小微湿地为例[J]. 现代园艺, 2021, 44(15): 26-31. [32] HU M H, YUAN J H, YANG X E, et al. Effects of temperature on purification of eutrophic water by floating eco-island system[J]. Acta Ecologica Sin, 2010, 30(6): 310-318. doi: 10.1016/j.chnaes.2010.06.009 [33] 林海, 蔡怡清, 李冰, 等. 北京市妫水河底泥微生物群落结构特征[J]. 生态学报, 2019, 39(20): 7592-7601. [34] GAO Y, WANG C C, ZHANG W G, et al. Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in southeast China[J]. Environmental Pollution, 2017, 230: 469-478. doi: 10.1016/j.envpol.2017.06.081 [35] 许巧玲, 汪丽, 张凤, 等. 8种水生植物对高污染负荷水体除污能力的筛选[J]. 园艺与种苗, 2021(12): 49-52. [36] 杨海清, 李秀艳, 赵丹. 植物-水生动物-填料生态反应器构建和作用机理[J]. 环境工程学报, 2008, 2(6): 852-857. [37] SU Z G, DAI, T J, TANG Y S, et al. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area[J]. Marine Pollution Bulletin, 2018, 131(6): 481-495. [38] ZHENG J F, CHEN J H, PAN G X, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment, 2016, 571(15): 206-217. [39] 徐震. 生物栅对景观水体的处理效果及微生物多样性研究[D]. 合肥: 安徽建筑大学, 2019. [40] 刘幸春, 王洪杰, 王亚利, 等. 府河水体及沉积物细菌群落结构分布特征及其影响因素[J]. 生态毒理学报, 2021, 16(5): 120-135.