[1] 柏义生, 周国宏, 于鲁冀, 等. 河道水体原位生态净化现场试验[J]. 环境工程, 2019, 37(6): 42-45+116.
[2] 李跃平, 刘玉香. 我国微污染水源地污染现状及其处理技术研究进展[J]. 现代化工, 2021, 41(10): 42-46.
[3] WURTSBAUGH W A, PAERL H W, DODDS W K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum[J]. Wiley Interdisciplinary Reviews:Water, 2019, 6(5): e1373. doi: 10.1002/wat2.1373
[4] MAURE E R, TERAUCHI G, I SHIZAKA J, et al. Globally consistent assessment of coastal eutrophication[J]. Nature Communication, 2021, 12(1): 6142. doi: 10.1038/s41467-021-26391-9
[5] 罗伟, 田秋宜. 轻质滤料曝气生物滤池在珠江微污染原水处理中的应用[J]. 城镇供水, 2019, 210(5): 26-30.
[6] 丁欢欢. 福州西湖左海湖泊群水流水质改善与引水优化研究[D]. 福州: 福州大学, 2013.
[7] 朱小冬, 贠延滨, 马青青, 等. 化学絮凝法和微电解法预处理酯化废水研究[J]. 环境工程, 2016, 34(S1): 373-377.
[8] 和丽萍. 利用化学杀藻剂控制滇池蓝藻水华研究[J]. 云南环境科学, 2001(2): 43-44.
[9] WANG L K, IVANOV V, TAY J H. , et al. Environmental Biotechnology[M]. Springer Science & Business Media, 2010.
[10] RAHMAN M A, HASEGAWA H. Aquatic arsenic: phytoremediation using floating macrophytes[J]. Chemosphere, 2021, 83: 633-646.
[11] OJOAWO S O, UDAYAKUMAR G, NAIK P. Phytoremediation of phosphorus and nitrogen with canna x generalis reeds in domestic wastewater through NMAMIT constructed wetland[J]. International Conference on Water Resources, Coastal and Ocean Engineering. Elsevier, 2015, 4: 349-356.
[12] GARFI M, FLORES L, FERRER I. Life cycle assessment of wastewater treatment systems for small communities: activated sludge, constructed wetlands and high rate algal ponds[J]. Journal of Cleaner Production, 2017, 161: 211-219. doi: 10.1016/j.jclepro.2017.05.116
[13] LU B, XU Z S, LI J G, et al. Removal of water nutrients by different aquatic plant species: an alternative way to remediate polluted rural rivers[J]. Ecological Engineering, 2018, 110: 18-26. doi: 10.1016/j.ecoleng.2017.09.016
[14] 胡傲, 李宇辉, 杨予静, 等. 不同生长型沉水植物配置对生物量积累和水质净化效果的影响[J]. 湖泊科学, 2022, 34(5): 1484-1492.
[15] SUDIARTO S I A, RENGGAMAN A, CHOI H L. Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics[J]. Journal of Environmental Management, 2019, 231: 763-769. doi: 10.1016/j.jenvman.2018.10.070
[16] XU J L, LIU J, HU J, et al. Nitrogen and phosphorus removal in simulated wastewater by two aquatic plants[J]. Environmental Science and Pollution Research, 2021, 28(44): 63237-63249. doi: 10.1007/s11356-021-15206-5
[17] 刘童. 挺水植物浮岛净化太湖流域养殖尾水研究[D]. 徐州: 中国矿业大学, 2021.
[18] SU F, LI Z, LI Y, et al. Removal of total nitrogen and phosphorus using single or combinations of aquatic plants[J]. International Journal of Environmental Research and Public Health, 2019, 16(23): 4663. doi: 10.3390/ijerph16234663
[19] SANTOS F S D, MAGALHAES M O L, MAZUR N. Chemical amendment and phytostabilization of an industrial residue contaminated with Zn and Cd[J]. Scientia Agricola, 2007, 64: 506-512. doi: 10.1590/S0103-90162007000500008
[20] KNAUER K, MOHR S, FEILER U. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing[J]. Environmental Science and Pollution Research, 2008, 15: 322-331. doi: 10.1007/s11356-008-0008-1
[21] VALIPOUR A, RAMAN V K, GHOLE V S. Phytoremediation of domestic wastewater using Eichhornia crassipes[J]. Indian Journal of Environmental Health, 2011, 53: 183-190.
[22] WANG Z, ZHANG Z, ZHANG J, et al. Large-scale utilization of water hyacinth for nutrient removal in lake Dianchi in China: the effects on the water quality, macrozoobenthos and zooplankton[J]. Chemosphere, 2012, 89: 1255-1261. doi: 10.1016/j.chemosphere.2012.08.001
[23] MOYO P, CHAPUNGU L, MUDZENGI B. Effectiveness of water Hyacinth (Eichhornia crassipes) in remediating polluted water: the case of Shagashe river in Masvingo, Zimbabwe[J]. Advances in Applied Science Research, 2013, 4: 55-62.
[24] 宋涛, 王玉杰, 罗雪梅, 等. 不同挺水植物对模拟污水中C、N净化效果研究[J]. 四川环境, 2022, 41(5): 12-16.
[25] ZHANG P, KURAMAE A, VAN LEEUWEN C H A, et al. Interactive effects of rising temperature and nutrient enrichment on aquatic plant growth, stoichiometry, and palatability[J]. Frontiers in Plant Science, 2020, 11: 58. doi: 10.3389/fpls.2020.00058
[26] CUI J, WANG W, LI J, et al. Removal effects of Myriophyllum aquaticum on combined pollutants of nutrients and heavy metals in simulated swine wastewater in summer[J]. Ecotoxicology and Environmental Safety, 2021, 213: 112032. doi: 10.1016/j.ecoenv.2021.112032
[27] 葛光环, 王秋利, 寇坤, 等. 陕西瀛湖水中高pH值原因分析及防控对策研究[J]. 环境科学与管理, 2022, 47(10): 89-93.
[28] 赵家楠. 微生物驱动的水生植物凋落物分解过程及机制[D]. 保定: 河北大学, 2022.
[29] 汤鹏. 不同水生植物配置对微污染水体的净化效果及相关机理研究[D]. 郑州大学, 2021.
[30] LI J F, WANG Y H, CUI J W, et al. Removal effects of aquatic plants on high-concentration phosphorus in wastewater during summer[J]. Journal of Environmental Management, 2022, 324: 116434. doi: 10.1016/j.jenvman.2022.116434
[31] 李燕彬. 城市小微湿地景观植物配置技术初探——以北京市北辰中心花园小微湿地为例[J]. 现代园艺, 2021, 44(15): 26-31.
[32] HU M H, YUAN J H, YANG X E, et al. Effects of temperature on purification of eutrophic water by floating eco-island system[J]. Acta Ecologica Sin, 2010, 30(6): 310-318. doi: 10.1016/j.chnaes.2010.06.009
[33] 林海, 蔡怡清, 李冰, 等. 北京市妫水河底泥微生物群落结构特征[J]. 生态学报, 2019, 39(20): 7592-7601.
[34] GAO Y, WANG C C, ZHANG W G, et al. Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in southeast China[J]. Environmental Pollution, 2017, 230: 469-478. doi: 10.1016/j.envpol.2017.06.081
[35] 许巧玲, 汪丽, 张凤, 等. 8种水生植物对高污染负荷水体除污能力的筛选[J]. 园艺与种苗, 2021(12): 49-52.
[36] 杨海清, 李秀艳, 赵丹. 植物-水生动物-填料生态反应器构建和作用机理[J]. 环境工程学报, 2008, 2(6): 852-857.
[37] SU Z G, DAI, T J, TANG Y S, et al. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area[J]. Marine Pollution Bulletin, 2018, 131(6): 481-495.
[38] ZHENG J F, CHEN J H, PAN G X, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment, 2016, 571(15): 206-217.
[39] 徐震. 生物栅对景观水体的处理效果及微生物多样性研究[D]. 合肥: 安徽建筑大学, 2019.
[40] 刘幸春, 王洪杰, 王亚利, 等. 府河水体及沉积物细菌群落结构分布特征及其影响因素[J]. 生态毒理学报, 2021, 16(5): 120-135.