-
自然土地处理系统因其成本低且运行管理简单的优点而被广泛应用于小规模分散式污水处理,其中人工湿地(constructed wetlands,CWs)在分散式污水处理应用方面最为常见,在世界范围内都有大量建造[1–3]。但诸多实践结果表明,CWs易受土地面积、气候条件、自身基质和操作参数等因素制约,且经常出现内部溶解氧不足的问题,导致在营养物质去除效果方面不尽如人意[4-5]。人工湿地有机负荷较低,也限制了其使用范围。
人工快速渗滤系统(constructed rapid infiltration system,CRIS)也属于土地渗滤处理类型,是在传统快速渗滤系统的基础上开发的,常以河砂代替天然土壤充当填料基质[6]。CRI系统运行具备经济和生态上的优势,且无需额外曝气,能综合物理、化学和生物反应机理有效处理污水[7]。目前关于CRIS的研究多集中于垂直流,垂直流CRIS应用研究的相关报道已较为丰富。
为了更好地满足分散式污水处理的要求,本研究设计构建了一个水平流人工渗滤系统(horizontal flow constructed infiltration system,HFCIS)(简称水平渗滤系统)。该系统结合了CRIS和水平潜流人工湿地(horizontal subsurface flow constructed wetlands,HSSFCWs)的特点,运行时无需种植植物。目前对HFCIS的研究报道极少,对于该技术的滤层结构、进水工艺参数、污染物处理影响因素和规律等,尚无深入的研究。本研究优化了水平渗滤系统的滤层结构和填料组成,并研究该系统在不同污染物质量浓度和水力负荷条件下的沿程去除效果,粗略分析系统内部污染物垂向分布情况,以此建立水平渗滤过程污染物去除的一级反应动力学方程,得出一阶去除速率常数,并与CRIS和HSSFCWs的速率常数做对比,为水平渗滤技术在小型分散式污水处理方面的实际应用化提供参考。
水平渗滤系统的污染物去除效果及动力学分析
Analysis of performance and kinetics of pollutant removal by a horizontal flow infiltration system
-
摘要: 基于人工快渗(CRIS)和水平潜流人工湿地(HSSFCWs)构建了水平流人工渗滤系统(HFCIS),研究了该系统对耗氧有机物(以COD计)、氨氮(NH4+-N)的沿程去除情况和污染物在系统内的垂向分布情况,并进行了动力学分析。结果表明,在水力负荷为0.083 m·d−1、进水耗氧有机物(以COD计)浓度为220~630 mg·L−1、NH4+-N质量浓度为13~47 mg·L−1时,COD、NH4+-N的去除率分别为88.6%和91.9%以上。在水力负荷为0.25 m·d−1的条件下,进水耗氧有机物(以COD计)和NH4+-N质量浓度分别为613~690 mg·L−1和36~48 mg·L−1时,总去除率分别为95.5%和78.2%以上。水平方向沿程污染物质量浓度呈现逐渐衰减的趋势,污染物降解符合一阶动力学模型,去除速率常数在CRIS和HSSFCWs的速率常数范围内并处于较高水平。该HFCI系统填料简单,复氧效果好,污染物去除性能优异,提高了土地利用率,建造位置选择较为灵活,在分散式污水处理中有独特的优势。Abstract: In this study, a horizontal flow constructed infiltration system (HFCIS) was constructed based on the artificial rapid infiltration (CRIS) and the horizontal subsurface flow constructed wetland (HSSFCWs). The removal of oxygen consuming organic matter (COD) and ammonia nitrogen (NH4+-N) along HFCIS and the vertical distribution of pollutants in HFCIS were studied, as well as the kinetic analysis. The results showed that at the hydraulic load of 0.083 m·d−1, the influent oxygen consuming organic matter (COD) concentration of 220~630 mg·L−1, and the influent NH4+-N mass concentration of 13~47 mg·L−1, the removal rates of COD and NH4+-N were higher than 88.6% and 91.9%, respectively. When the hydraulic loading was 0.25 m·d−1, the mass concentrations of influent oxygen consuming organic matter (COD) and NH4+-N were 613-690 mg·L−1 and 36-48 mg·L−1, the total removal rates were over 95.5% and 78.2%, respectively. The pollutant mass concentration along the horizontal direction showed a gradually decreasing trend. The pollutant degradation accorded with the first-order kinetic model, and the removal rate constant was at a high level in the range of CRIS and HSSFCWs rate constants. HFCI system had a simple filling, a good reoxygenation effect, an excellent pollutant removal performance, improved the land utilization rate with a flexible construction location selection. It has unique advantages in decentralized sewage treatment.
-
表 1 合成废水水质参数
Table 1. Water quality parameters of the synthetic wastewater
运行阶段 COD/(mg·L−1) NH4+-N/(mg·L−1) DO/(mg·L−1) pH S1 220~380 13~35 7.50~7.84 7.06~7.47 S2 260~390 34~46 7.25~7.68 7.08~7.44 S3 470~630 39~47 7.17~7.30 7.10~7.33 S4 613~690 36~48 7.36~7.62 7.01~7.06 表 2 4阶段各出水口出水DO质量浓度
Table 2. DO concentration of each outlet at four stages mg·L−1
运行阶段 出水口1# 出水口2# 出水口3# 出水口4# S1 3.49~4.04 5.91~6.27 6.50~6.89 7.20~7.31 S2 3.50~3.95 5.83~6.21 6.66~6.78 7.21~7.28 S3 3.36~3.61 5.81~6.00 6.47~6.77 7.19~7.30 S4 1.67~2.93 3.60~4.34 3.79~5.59 5.51~5.75 表 3 4阶段耗氧有机物(以COD计)和NH4+-N指数拟合的相关参数
Table 3. Relevant parameters for the index fitting of oxygen consuming organic matter (COD) and ammonia nitrogen at four stages
水质指标 实验编号 ρ*/(mg·L−1) 去除率/% A m COD FT1~FT7 308.34±68.34 93.62±1.57 0.997~0.998 2.691±0.228 ST1~ST7 325.00±58.33 94.08±1.58 0.997~0.999 3.171±0.233 TT1~TT7 511.67±25.00 98.69±0.69 0.999~1.001 3.873±0.322 HT1~HT7 663.34±26.67 96.50±1.05 0.996~0.999 2.425±0.146 NH4+-N FT1~FT7 27.92±6.44 98.95±0.46 1.003~1.019 1.780±0.264 ST1~ST7 38.60±2.03 97.97±1.07 1.013~1.026 1.803±0.087 TT1~TT7 43.90±3.08 97.52±0.51 1.006~1.017 1.848±0.136 HT1~HT7 44.11±3.85 87.94±2.93 1.023~1.084 0.907±0.140 表 4 4阶段耗氧有机物(以COD计)和NH4+-N的kA和kV值
Table 4. The kA and kV values of oxygen consuming organic matter (COD) and ammonia nitrogen at four stages
指标 实验编号 m kV/d−1 kA/(m·d−1) COD FT1~FT7 2.691±0.228 0.621±0.053 0.280±0.024 ST1~ST7 3.171±0.233 0.731±0.054 0.329±0.024 TT1~TT7 3.873±0.322 0.893±0.075 0.402±0.034 HT1~HT7 2.425±0.146 1.677±0.101 0.755±0.045 NH4+-N FT1~FT7 1.780±0.264 0.405±0.055 0.185±0.028 ST1~ST7 1.803±0.087 0.416±0.020 0.187±0.009 TT1~TT7 1.848±0.136 0.426±0.031 0.192±0.014 HT1~HT7 0.907±0.140 0.627±0.097 0.283±0.043 表 5 已报道的一些HSSFCWs的kA和kV值
Table 5. The reported kA and kV values of some HSSFCWs
指标 q/(m·d−1) kV/d−1 kA/(m·d−1) 文献 NH4+-N 0.047 — 0.027 [3] COD 0.042 — 0.113~0.135 [17] BOD 0.002~0.300 0.170~6.110 0.060~1.000 [28] BOD — — 0.080~0.310 [29] COD 0.08 — 0.136 [30] COD 0.055~0.440 — 0.283、0.271 [31] BOD — — 0.018~0.092 [32] NH4+-N — — 0.013~0.086 [32] COD 0.031~0.146 — 0.060~0.082 [33] -
[1] ZHONG L, DING J, WU T, et al. Bibliometric overview of research progress, challenges, and prospects of rural domestic sewage: Treatment techniques, resource recovery, and ecological risk[J]. Journal of Water Process Engineering, 2023, 51: 103389. doi: 10.1016/j.jwpe.2022.103389 [2] ROUSSEAU D P L, VANROLLEGHEM P A, PAUW N D. Constructed wetlands in Flanders: A performance analysis[J]. Ecological Engineering, 2004, 23(3): 151-163. doi: 10.1016/j.ecoleng.2004.08.001 [3] KNIGHT R L, JR V W E P, BORER R E, et al. Constructed wetlands for livestock wastewater management[J]. Ecological Engineering, 2000, 15(1/2): 41-55. [4] PENG X X, YANG W, JIN Q, et al. Biofilter-constructed wetland-trophic pond system: A new strategy for effective sewage treatment and agricultural irrigation in rural area[J]. Journal of Environmental Management, 2023, 332: 117436. doi: 10.1016/j.jenvman.2023.117436 [5] WU H, ZHANG J, NGO H H, et al. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation[J]. Bioresource Technology, 2015, 175: 594-601. doi: 10.1016/j.biortech.2014.10.068 [6] YANG L, KONG F L, XI M, et al. Environmental economic value calculation and sustainability assessment for constructed rapid infiltration system based on emergy analysis[J]. Journal of Cleaner Production, 2017, 167: 582-588. doi: 10.1016/j.jclepro.2017.08.172 [7] WANG M C, ZHANG H Z. Chemical oxygen demand and ammonia nitrogen removal in a non-saturated layer of a strengthened constructed rapid infiltration system[J]. Water, Air, & Soil Pollution, 2017, 228(11): 440. [8] LI X Y, DING A Z, ZHENG L, et al. Relationship between design parameters and removal efficiency for constructed wetlands in China[J]. Ecological Engineering, 2018, 123: 135-140. doi: 10.1016/j.ecoleng.2018.08.005 [9] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1/2/3): 48-65. [10] ANDREO-MARTÍNEZ P, GARCÍA-MARTÍNEZ N, QUESADA-MEDINA J, et al. Domestic wastewaters reuse reclaimed by an improved horizontal subsurface-flow constructed wetland: A case study in the southeast of Spain[J]. Bioresource Technology, 2017, 233: 236-246. doi: 10.1016/j.biortech.2017.02.123 [11] 庞俊玲. 多级土壤渗滤系统处理模拟生活污水研究[D]. 沈阳: 沈阳师范大学, 2022. [12] 姚琪. CRI系统COD降解试验及滤池有效高度模型构建[D]. 成都: 西南交通大学, 2012. [13] AKRATOS C S, TSIHRINTZIS V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands[J]. Ecological Engineering, 2007, 29(2): 173-191. doi: 10.1016/j.ecoleng.2006.06.013 [14] 刘家宝. 人工快速渗滤系统污染物去除机理及其处理效果研究[D]. 北京: 中国地质大学, 2006. [15] ÇAKIR R, GIDIRISLIOGLU A, ÇEBI U. A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters[J]. Journal of Environmental Management, 2015, 164: 121-128. [16] LI J Y, WANG J J, ZHANG Q, et al. Efficient carbon removal and excellent anti-clogging performance have been achieved in multilayer quartz sand horizontal subsurface flow constructed wetland for domestic sewage treatment[J]. Journal of Environmental Management, 2023, 335: 117516. doi: 10.1016/j.jenvman.2023.117516 [17] VYMAZAL J. Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years?[J]. Chemical Engineering Journal, 2019, 378: 122117. doi: 10.1016/j.cej.2019.122117 [18] 何江涛, 段光杰, 张金炳, 等. 污水渗滤土地处理系统中水力停留时间与出水效果的讨论[J]. 地球科学, 2002(2): 203-208. doi: 10.3321/j.issn:1000-2383.2002.02.016 [19] ZHANG Z, CHEN Y Z, CHEN H H, et al. Novel efficient capture of Cr(VI) from soil driven by capillarity and evaporation coupling[J]. Chemosphere, 2022, 288: 132593. doi: 10.1016/j.chemosphere.2021.132593 [20] XU W L, ZHANG J Q, LIU Y. NH3-N degradation dynamics and calculating model of filtration bed height in Constructed Soil Rapid Infiltration[J]. Chinese Geographical Science, 2011, 21(6): 637-645. doi: 10.1007/s11769-011-0476-y [21] 肖璐. 水平潜流人工湿地净化府河水的试验研究[D]. 保定: 河北农业大学, 2019. [22] 曹帆. 人工快渗生物滤池中污染物归趋机制及滤料界面反应动力学研究[D]. 合肥: 合肥工业大学, 2010. [23] 石国玉. 人工快渗系统处理工业园区污水厂尾水研究[D]. 合肥: 合肥工业大学, 2011. [24] 陈佼. 人工快渗系统PN-ANAMMOX耦合脱氮性能及机理研究[D]. 成都: 西南交通大学, 2018. [25] 许文来. 人工快速渗滤系统污染物去除机理及动力学研究[D]. 成都: 西南交通大学, 2011. [26] 陈佼, 李晓媛, 刘欢, 等. 生物炭对人工快渗系统氨氮去除的影响研究[J]. 成都工业学院学报, 2022, 25(3): 35-41. [27] 史云鹏, 周琪. 人工湿地污染物去除动力学模型研究进展[J]. 工业用水与废水, 2002(6): 12-15. doi: 10.3969/j.issn.1009-2455.2002.06.004 [28] ROUSSEAU D P L, VANROLLEGHEM P A, PAUW N D. Model-based design of horizontal subsurface flow constructed treatment wetlands: a review[J]. Water Research, 2004, 38(6): 1484-1493. doi: 10.1016/j.watres.2003.12.013 [29] AGUADO R, PARRA O, GARCÍA L, et al. Modelling and simulation of subsurface horizontal flow constructed wetlands[J]. Journal of Water Process Engineering, 2022, 47: 102676. doi: 10.1016/j.jwpe.2022.102676 [30] KANTAWANICHKUL S, KLADPRASERT S, BRIX H. Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus[J]. Ecological Engineering, 2009, 35(2): 238-247. doi: 10.1016/j.ecoleng.2008.06.002 [31] KONNERUP D, KOOTTATEP T, BRIX H. Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia[J]. Ecological Engineering, 2009, 35(2): 248-257. doi: 10.1016/j.ecoleng.2008.04.018 [32] ÖÖVEL M, TOOMING A, MAURING T, et al. Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia[J]. Ecological Engineering, 2007, 29(1): 17-26. doi: 10.1016/j.ecoleng.2006.07.010 [33] TRANG N T D, KONNERUP D, SCHIERUP H H, et al. Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: Effects of hydraulic loading rate[J]. Ecological Engineering, 2010, 36(4): 527-535. doi: 10.1016/j.ecoleng.2009.11.022 [34] 侯云霞. 人工快速渗滤系统有机物质量浓度随机模型研究[D]. 成都: 西南交通大学, 2014. [35] YAN G, XU X, YAO L R, et al. Process of inorganic nitrogen transformation and design of kinetics model in the biological aerated filter reactor[J]. Bioresource Technology, 2011, 102(7): 4628-4632. doi: 10.1016/j.biortech.2011.01.009 [36] 王春荣, 李军, 王宝贞, 等. 2种不同填料曝气生物滤池处理生活污水的经验模型[J]. 环境污染治理技术与设备, 2005(12): 56-60. [37] FERREIRA A G, BORGES A C, ROSA A P. Comparison of first-order kinetic models for sewage treatment in horizontal subsurface-flow constructed wetlands[J]. Environmental Technology, 2020(12): 1-17.