水平渗滤系统的污染物去除效果及动力学分析

廖俭霞, 黄智, 高澍, 宿程远. 水平渗滤系统的污染物去除效果及动力学分析[J]. 环境工程学报, 2024, 18(2): 430-440. doi: 10.12030/j.cjee.202310035
引用本文: 廖俭霞, 黄智, 高澍, 宿程远. 水平渗滤系统的污染物去除效果及动力学分析[J]. 环境工程学报, 2024, 18(2): 430-440. doi: 10.12030/j.cjee.202310035
LIAO Jianxia, HUANG Zhi, GAO Shu, SU Chengyuan. Analysis of performance and kinetics of pollutant removal by a horizontal flow infiltration system[J]. Chinese Journal of Environmental Engineering, 2024, 18(2): 430-440. doi: 10.12030/j.cjee.202310035
Citation: LIAO Jianxia, HUANG Zhi, GAO Shu, SU Chengyuan. Analysis of performance and kinetics of pollutant removal by a horizontal flow infiltration system[J]. Chinese Journal of Environmental Engineering, 2024, 18(2): 430-440. doi: 10.12030/j.cjee.202310035

水平渗滤系统的污染物去除效果及动力学分析

    作者简介: 廖俭霞 (1999—) ,女,硕士研究生,2633055639@qq.com
    通讯作者: 黄智(1972—),男,博士,教授,77466325@qq.com
  • 基金项目:
    国家自然科学基金资助项目(52060003)
  • 中图分类号: X703

Analysis of performance and kinetics of pollutant removal by a horizontal flow infiltration system

    Corresponding author: HUANG Zhi, 77466325@qq.com
  • 摘要: 基于人工快渗(CRIS)和水平潜流人工湿地(HSSFCWs)构建了水平流人工渗滤系统(HFCIS),研究了该系统对耗氧有机物(以COD计)、氨氮(NH4+-N)的沿程去除情况和污染物在系统内的垂向分布情况,并进行了动力学分析。结果表明,在水力负荷为0.083 m·d−1、进水耗氧有机物(以COD计)浓度为220~630 mg·L−1、NH4+-N质量浓度为13~47 mg·L−1时,COD、NH4+-N的去除率分别为88.6%和91.9%以上。在水力负荷为0.25 m·d−1的条件下,进水耗氧有机物(以COD计)和NH4+-N质量浓度分别为613~690 mg·L−1和36~48 mg·L−1时,总去除率分别为95.5%和78.2%以上。水平方向沿程污染物质量浓度呈现逐渐衰减的趋势,污染物降解符合一阶动力学模型,去除速率常数在CRIS和HSSFCWs的速率常数范围内并处于较高水平。该HFCI系统填料简单,复氧效果好,污染物去除性能优异,提高了土地利用率,建造位置选择较为灵活,在分散式污水处理中有独特的优势。
  • 我国是抗生素生产和使用大国,抗生素产量约占全球总产量的20%~30%[1]。与此同时,会产生大量的抗生素菌渣,据统计,我国每年菌渣总产量高达2×106 t[2]。此外,新鲜的菌渣含水率高达90%以上,极易腐败发臭,其中残留的抗生素会造成水土环境的污染,加剧细菌耐药性,危害人群健康[3-4]

    目前,抗生素菌渣的处理处置技术主要包括焚烧、填埋和堆肥等[5]。2021年新版《国家危险废物名录》[6]禁止将菌渣作为肥料和饲料的添加剂。因此,寻找适合的菌渣处理处置方法是亟待解决的问题。厌氧消化是一种可将高有机质废弃物资源化利用的处理方式。经过厌氧消化后的沼渣不再具有生物毒性,可进一步被处理加工成高品质的肥料。因此,菌渣的厌氧消化处理更能实现其减量化、资源化和无害化[7-8]。含固率(TS)对系统内pH、挥发性脂肪酸(VFAs)、氨氮、微生物群落结构及抗生素抗性基因都有一定的影响[9-10],是厌氧消化的重要影响因素。PELLERA等[11]研究表明,不同底物的TS对厌氧发酵进程有较大影响。近年来,针对TS对污泥、粪便、秸秆以及厨余垃圾厌氧消化影响的研究已相对广泛[12-13],但针对TS对抗生素菌渣厌氧消化影响的研究相对较少。

    邹书娟等[14]的研究表明,菌渣中挥发分含量较高,主要以C、O、N和H为主,含有蛋白质和糖类等化合物。土霉素具有广谱性,在医疗和动物养殖方面均有较为广泛的应用[15],故本研究以土霉素菌渣为研究对象。研究TS对土霉素菌渣厌氧消化系统稳定性以及残留抗生素去除的影响,并对最佳TS下系统优势菌群进行分析。以期为抗生素菌渣的减量化、资源化和无害化处理提供参考。

    厌氧接种污泥取自河北省石家庄某制药废水处理厂的厌氧反应器,对其进行为期20 d的活化培养,然后加入实验所用的土霉素菌渣进行10 d左右的驯化。土霉素菌渣取自河北省石家庄市某制药厂。将高压板框压滤之后的土霉素菌渣经过破碎机粉碎过100目的筛子后备用。厌氧污泥及土霉素菌渣初始理化性质见表1

    表 1  厌氧污泥及土霉素菌渣初始理化性质
    Table 1.  Initial physical and chemical property of anaerobic sludge and oxytetracycline residue
    供试样品pHTSVSSCOD/(mg·L−1)氨氮/(mg·L−1)土霉素残留/(mg·kg−1)
    厌氧污泥6.4~7.22.65%1.12%2.33
    土霉素菌渣2.3-2.846.5%36.75%787.6721.032 106.47
     | Show Table
    DownLoad: CSV

    实验设置5组不同的含固率(4%、8%、12%、16%和20%),每组设置3个平行。实验装置为自动甲烷潜力测试系统(Automatic Methane Potential Test System),该系统包括3个部分,厌氧消化发生单元、CO2吸收单元以及气体测量设备。厌氧消化发生单元包括15个厌氧反应器,每个反应器容积为500 mL,设置有效容积为400 mL。在每个反应器内加入240 mL经过培养驯化的污泥,根据设置好的TS加入相应体积的土霉素菌渣和蒸馏水,以加入相同体积接种物的反应作为空白处理(CK)。用0.1 mol·L−1的NaOH和HCl将初始消化液的pH调节至6.8~7.2。实验开始前充入2~3 min的氮气以排出反应装置中的空气,所有反应器的温度均控制在(35±1) ℃。每2 d取其上清液,用作理化性质的检测,直到反应结束,另取结束后的样品,对其中残留土霉素的质量浓度进行检测。

    菌渣的TS和VS采用重量法测定;pH采用自动电位滴定仪测定(PHS-2F,上海仪电科学仪器股份有限公司);产气量由产甲烷潜力测试系统记录(AMPTSⅠ,北京碧普华瑞环境技术有限公司)(实际产气量扣除空白组的产气量)。将所有样品高速离心(8 000 r·min−1、10 min),取上清液过0.25 μm滤膜,对所得滤液进行氨氮、化学需氧量(COD)和VFAs的测定。氨氮采用纳氏试剂法,紫外分光光度计测定(UV-5100,上海元析仪器有限公司);SCOD和TCOD采用重铬酸钾法,快速消解分光光度计测定(5B-3B(V8),北京连华永兴科技发展有限公司);VFAs采用气相色谱法测定(GC7900/氢火焰检测器,上海天美科学仪器有限公司);土霉素残留采用液相色谱法测定(LCMS8050,日本岛津公司)。

    产气情况反映系统内微生物对有机物的利用情况以及厌氧消化的进程,是衡量厌氧消化系统性能的关键因素之一[16]。不同TS下累积产气量和日产气量变化规律见图1

    图 1  不同TS厌氧消化系统内累积产气量和日产气量变化
    Figure 1.  Variation curves of cumulative gas production and daily gas production in anaerobic digestion systems with different TS

    图1(a)可看出,当TS为8%时,累计产气量最大。但单位VS产气量(以每gVS计)分别为101.87、78.56、40.22、29.81和26.36 mL·g−1,产气效率随TS的增加而降低,这与杨祎楠等[17]的研究结果相似。尽管当TS为8%时累积产气量最大,但其有机物的利用率较TS为4%时降低了22.3%。

    图1(b)可以看出,反应开始时,日产气量迅速增加,在4 d之内达到第1个产气高峰,经过一段时间的产气迟滞后,逐渐上升达到第2个产气峰值。这可能是因为,在反应前期有机物的含量较高,反应开始前系统的pH设定为厌氧微生物适宜生存的范围,微生物代谢速率快。刘中军等[18]的研究表明,微生物在活性较高的情况下会加快水解酸化的进程。在产甲烷的同时,CO2和H2等非甲烷气体的产量也随之增加,故导致反应前期日产气量达到峰值。随着反应的进行,可能由于VFAs的积累、氨氮抑制以及残留抗生素的毒害作用等原因,使产甲烷菌的活性受到了不同程度的抑制,故导致TS分别为8%、12%、16%和20%的反应组均出现了较长的产气迟滞,且TS越大迟滞期越长。5个TS下的第2个产气高峰出现的时间分别为第10、28、36、42和46 d,峰值随TS的增加而增大。王乐乐等[19]的研究表明,高TS的反应由于发酵液黏度高,气­固­液传质过程受阻碍,在发酵后期仍保持较高的甲烷产量,这与本研究结果相似。

    尽管高TS的反应体系在发酵后期仍具有较高的产气潜力,但其存在产气迟滞的现象,且随TS的增加迟滞期越长。因此,综合考虑产气效率、有机物利用效率以及发酵周期等因素,在有限的时间内,TS大于8%时产气优势无太大差别。

    厌氧消化处理是依靠系统内的产酸菌和产甲烷菌共同作用的结果,微生物的生长与环境条件的关系非常密切。在消化过程中,水解酸化菌分解有机物生成大量的VFAs。同时,含氮大分子逐渐分解,产生大量的氨氮[20]。体系内稳定的环境是依靠消化过程中产生的弱酸、弱碱共同作用的结果。因此,pH、氨氮以及VFAs的变化是考察系统稳定性的重要因素[21],其在不同TS下的变化见图2图3

    图 2  不同TS厌氧消化系统内pH和氨氮的变化
    Figure 2.  Changes of pH value and ammonia nitrogen in anaerobic digestion system of different TS
    图 3  不同TS厌氧消化系统内VFAs的变化
    Figure 3.  Changes of VFAs in different TS anaerobic digestion systems

    图2(a)为pH的变化,5组反应体系初始pH均设置在6.8~7.2之间。随着反应的进行,pH开始下降,在6.0~6.5范围内维持一段时间后开始回升,最后稳定在6.7~7.7之间。但值得注意的是,TS为4%和8%的2组反应分别在第2 d和第4 d出现最低值后迅速上升,而其他3组反应随着TS的增加,在低pH范围内维持的时间变长。产生这一现象的原因可能是,在反应前期,水解酸化菌分解有机物,生成大量的有机酸,故导致pH下降。而大多数产甲烷菌适宜的pH为6.8~7.2,在较低pH下其活性不高,代谢速率缓慢,使得VFAs大量积累[22]。但由于菌渣中含氮大分子逐渐分解,产生大量的氨氮,为体系内提供部分碱度,与产生的酸共同作用,使pH逐渐回升,厌氧消化系统也逐渐趋于稳定[23]

    研究表明,当系统内产生氨氮浓度过高时,反而会对厌氧消化系统产生抑制作用。由图2(b)可以看出,5组反应的氨氮浓度在短时间内都迅速上升。各组反应的最大氨氮浓度随着TS的增加而增加,分别为734.07、2202.69、2915.22、4178.25和4559.77 mL·g−1。JIANG等[24]的研究表明,当氨氮浓度大于3 000 mg·L−1时,会使50%的产甲烷菌失去活性;徐颂等[23]的研究表明,当氨氮浓度大于1 000 mg·L−1时,产甲烷过程就受到了抑制。根据图1(b)中产气特征可发现,TS为12%的反应氨氮浓度整体水平在2 000~3 000 mg·L−1。此时系统由于产生了抑制作用,故导致产气迟滞期相对较长。这与JIANG等[24]和徐颂等[23]的研究中氨氮抑制的限值不同。产生这一现象的原因可能是,氨氮抑制限值受底物的影响较大,菌渣和粪便等物质氮含量较高,在进行厌氧消化时更易受到氨氮的抑制作用。

    厌氧消化过程中有机物水解产生的VFAs是产甲烷菌的主要碳源。由图3可知,VFAs浓度随着TS的增加而增加。TS为4%和8%的2组反应在初期VFAs的浓度达到最大值,而其他3组反应VFAs在反应前期大量积累,当反应进行到20 d左右时才达到峰值。这与图1(b)中出现的产气迟滞现象以及图2(a)中低pH维持的时间相对应。VFAs的这一变化可能是由于,在反应前期,水解酸化菌分解有机物生成大量有机酸,但由于该阶段氨氮的积累、pH的下降,造成产甲烷菌的数量不多且活性不高,产气出现迟滞现象,故导致VFAs的消耗速率小于其水解生成速率,使其大量积累[25]。随着反应的进行,系统逐渐恢复相对的稳定,产甲烷菌的活性也逐渐恢复,VFAs的消耗速率大于其水解速率,浓度逐渐降低。由产气特征和pH变化可发现,当TS大于8%、VFAs的浓度大于4 000 mg·L−1时,会对厌氧消化系统产生抑制作用。

    综上所述,土霉素菌渣厌氧消化系统中氨氮浓度和VFAs的限制分别为2 000和4 000 mg·L−1,这与孟晓山等[26]的研究结果相似。这说明,在土霉素厌氧消化体系内,当TS大于8%时,系统稳定性较差,开始产生抑制作用。而且,VFAs和氨氮的浓度随TS的增加不断增加,抑制作用不断增强。

    不同TS下系统内SCOD和反应前后TCOD的变化以及TCOD的去除率见图4。从图4(a)中可以看出,随着反应的进行,体系内SCOD逐渐升高。TS为4%、8%和12%的3组反应进行到22 d左右时,体系内SCOD达到最大,然后呈下降趋势后趋于稳定。而TS为16%和20%的2组反应体系内SCOD出现2个峰值,在第2个峰值出现后,SCOD一直呈下降趋势。这说明,在发酵后期,TS大的反应仍具有良好的产气性能,但由于系统内出现了明显的抑制现象,造成了产气迟滞,所以有机物利用效率并不高。

    图 4  不同TS厌氧消化系统内SCOD和TCOD的变化
    Figure 4.  Changes of SCOD and TCOD in different TS anaerobic digestion systems

    初始反应体系内的有机物包括2种形式,一种是溶解性的有机物,可以被产酸菌直接利用;另一种是不溶性的有机物,这部分有机物首先要经过水解菌的作用逐渐水解为可溶性的有机物才能进一步被酸化菌利用进而产生VFAs[21]。周富春[27]的研究表明,水解酸化阶段产生的VFAs使消化体系pH较低,导致产甲烷菌的活性不高,有机物水解的速率大于消耗速率,造成可溶性有机物的积累,SCOD逐渐升高。随着系统的逐渐稳定,产甲烷菌活性恢复,有机物的消耗速率大于水解速率,SCOD开始逐渐下降最终达到平稳,与上述pH的变化及产气迟滞现象相对应。

    此外,TCOD的去除率可以体现底物在厌氧消化系统内降解的情况。由图4(b)可知,5组反应中TCOD的去除率分别为90.03%、79.72%、63.15%、56.69%和51.13%,随TS的增加而降低。张涛[28]、高妍[29]的研究表明,COD的去除率随着负荷的升高而降低,而TS的增加意味着反应体系负荷也随之增加,导致TCOD的去除率逐渐降低。

    抗生素菌渣危害性主要包括2方面:一是其有机物含量高;另一方面主要是含有大量残留的抗生素,其进入到环境中会导致微生物产生耐药性,进而威胁到人群健康[4]。土霉素是一种典型的生物抑制药物,当其质量浓度过高时会对厌氧消化系统产生中度甚至重度的抑制作用[30-31]。经检测,土霉素菌渣中残留的土霉素为2 106.47 mg·kg−1。5组反应前后系统内土霉素的质量浓度及其去除效率见表2

    表 2  不同含固率下厌氧消化系统土霉素残留及其去除率变化
    Table 2.  Residual oxytetracycline content and its removal rate in anaerobic digestion system with different solid content
    含固率初始土霉素的质量浓度/(mg·L−1)结束后土霉素的质量浓度/(mg·L−1)去除率
    4%110.5611.2289.85%
    8%219.7737.1087.29%
    12%472.50123.4573.87%
    16%654.39131.4579.91%
    20%835.38269.2167.78%
     | Show Table
    DownLoad: CSV

    表2可以看出,随着TS的增大,系统内土霉素的质量浓度也相应增加。经过厌氧消化反应后,TS为4%和8%的反应残留土霉素分别降低了89.85%和87.29%,而另外3组反应残留土霉素的去除率均小于80%。对比5组实验的产气特征、产气效率以及有机物去除效率可知,残留的土霉素对厌氧菌有毒害作用,会抑制厌氧菌的活性,从而导致系统产气效率和有机物的去除效率降低,会出现产气迟滞现象。而且,随着土霉素质量浓度的增加,这些现象愈发明显,这一结果与朱晓磊[32]和SHI等[33]的研究结果一致。综合考虑5组反应过程中系统内各指标的变化发现,当系统含固率为4%和8%时,土霉素对系统的毒害作用较小,系统也比较稳定。而且,残留土霉素的去除率可达85%以上,可基本实现土霉素菌渣的资源化利用和无害化处理。

    综合比较VS产气效率、有机物降解率以及残留土霉素去除率可知,TS为4%的反应在各方面均优于其他组,故对其体系内微生物群落结构进行了分析,结果如图5所示。

    图 5  TS为4%时体系内微生物群落结构
    Figure 5.  The microbial community structure in TS 4% system

    系统内微生物主要包括水解酸化细菌和产甲烷古菌,细菌在微生物中所占的比例要远高于古菌[34]。由图5(a)可知,在反应初始阶段,细菌和古菌在微生物中所占比例分别为90.32%和5.53%。细菌中的优势微生物在门水平上主要包括放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和绿弯菌门(Chloroflexi),其相对丰度分别为59.74%、13.34%、4.64%和4.14%。古菌中的优势微生物在门、纲、目、科水平上分别为广古菌门(Euryarchaeota)、甲烷微菌纲(Methanomicrobia)、甲烷八叠球菌目(Methanosarcinales)下的甲烷鬓菌科(Methanosaetaceae)和甲烷八叠球菌科(Methanosarcinaceae)。其相对丰度分别为5.46%、5.35%、5.03%、3.89%和1.11%。在反应结束阶段,古菌所占比例有所提高,如图5(b)所示,其丰度达到17.98%。而且,与反应初始阶段相比,水解酸化细菌的群落结构分布相对均匀,主要包括Chloroflexi、Proteobacteria、厚壁菌门(Firmicutes)、Actinobacteria和Bacteroidetes,其相对丰度分别为24.25%、15.94%、11.80%、6.42%和4.60%。在古菌中门、纲、目水平上的优势菌群与反应初始阶段相同,但在科水平上Methanosarcinaceae的相对丰度要大于Methanosaetaceae,达到15.47%。

    研究表明,Actinobacteria、Proteobacteria和Chloroflexi都可水解有机物,并且均以乙酸为主要产物。Actinobacteria的部分菌属还可以产生丙酸;Proteobacteria可利用的物质包括葡萄糖、丙酸盐、丁酸盐等小分子化合物等[35-36];Chloroflexi对单糖和多糖都具有降解能力,还可以分解由Bacteroidetes、Proteobacteria和Firmicutes水解产生的葡萄糖和可溶性小分子有机物,产生乙酸和氢气[37]。在产甲烷古菌中Methanosarcinales可利用的底物较广泛,能将乙酸、甲醇、三甲胺和CO2等物质转化成CH4[38],但Methanosaetaceae中的甲烷鬃菌属(Methanosaeta)是目前已知的唯一以乙酸为底物的产甲烷菌属[39]。因此,可推测土霉素菌渣的厌氧发酵以乙酸型发酵为主。

    1)当TS大于8%时,氨氮浓度大于2 000 mg·L−1、VFAs大于4 000 mg·L−1,对厌氧消化系统产生了抑制作用。此外加上土霉素对微生物的毒害作用,导致系统出现产气迟滞现象。VS产气效率、有机物去除效率和残留土霉素的去除效率均随TS的增加而降低。因此,在有限的时间内TS大于10%并不利于菌渣的厌氧消化。

    2) TS为4%和8%的反应在系统的稳定性、有机物降解率和残留土霉素的去除效率方面有良好的效果,但TS为8%的反应有机物利用效率比4%的反应降低了22.3%。因此,TS为4%的反应在各方面均优于其他组,更能实现菌渣的减量化、资源化和无害化处理。

    3)最佳反应体系内水解酸化的优势菌群包括Actinobacteria、Proteobacteria、Bacteroidetes、Chloroflexi和Firmicutes,产甲烷菌的优势菌群主要包括Methanosarcinaceae和Methanosaetaceae,土霉素菌渣的厌氧发酵以乙酸型发酵为主。

  • 图 1  水平渗滤系统填料结构图

    Figure 1.  Packing structure of horizontal flow infiltration system

    图 2  4个阶段的耗氧有机物(以COD计)沿程去除情况

    Figure 2.  Oxygen consuming organic matter (COD) removal at four stages along the system

    图 3  4个阶段的NH4+-N沿程去除情况

    Figure 3.  NH4+-N removal at four stages along the system

    图 4  系统内部耗氧有机物(以COD计)和NH4+-N的垂向分布情况

    Figure 4.  Vertical distributions of oxygen consuming organic matter (COD) and NH4+-N in the system

    图 5  4阶段耗氧有机物(以COD计)的ρL/ρ*L变化的指数拟合曲线

    Figure 5.  Exponential fitting curve of changes in ρL/ρ* of oxygen consuming organic matter (COD) at four stages with L

    图 6  4阶段NH4+-N的ρL/ρ*L变化的指数拟合曲线

    Figure 6.  Exponential fitting curve of changes in ρL/ρ* of ammonia nitrogen at four stages with L

    图 7  m值与进水质量浓度ρ*的线性关系

    Figure 7.  Linear relationship between m value and influent mass concentration ρ*

    表 1  合成废水水质参数

    Table 1.  Water quality parameters of the synthetic wastewater

    运行阶段COD/(mg·L−1)NH4+-N/(mg·L−1)DO/(mg·L−1)pH
    S1220~38013~357.50~7.847.06~7.47
    S2260~39034~467.25~7.687.08~7.44
    S3470~63039~477.17~7.307.10~7.33
    S4613~69036~487.36~7.627.01~7.06
    运行阶段COD/(mg·L−1)NH4+-N/(mg·L−1)DO/(mg·L−1)pH
    S1220~38013~357.50~7.847.06~7.47
    S2260~39034~467.25~7.687.08~7.44
    S3470~63039~477.17~7.307.10~7.33
    S4613~69036~487.36~7.627.01~7.06
    下载: 导出CSV

    表 2  4阶段各出水口出水DO质量浓度

    Table 2.  DO concentration of each outlet at four stages mg·L−1

    运行阶段 出水口1# 出水口2# 出水口3# 出水口4#
    S1 3.49~4.04 5.91~6.27 6.50~6.89 7.20~7.31
    S2 3.50~3.95 5.83~6.21 6.66~6.78 7.21~7.28
    S3 3.36~3.61 5.81~6.00 6.47~6.77 7.19~7.30
    S4 1.67~2.93 3.60~4.34 3.79~5.59 5.51~5.75
    运行阶段 出水口1# 出水口2# 出水口3# 出水口4#
    S1 3.49~4.04 5.91~6.27 6.50~6.89 7.20~7.31
    S2 3.50~3.95 5.83~6.21 6.66~6.78 7.21~7.28
    S3 3.36~3.61 5.81~6.00 6.47~6.77 7.19~7.30
    S4 1.67~2.93 3.60~4.34 3.79~5.59 5.51~5.75
    下载: 导出CSV

    表 3  4阶段耗氧有机物(以COD计)和NH4+-N指数拟合的相关参数

    Table 3.  Relevant parameters for the index fitting of oxygen consuming organic matter (COD) and ammonia nitrogen at four stages

    水质指标 实验编号 ρ*/(mg·L−1) 去除率/% A m
    COD FT1~FT7 308.34±68.34 93.62±1.57 0.997~0.998 2.691±0.228
    ST1~ST7 325.00±58.33 94.08±1.58 0.997~0.999 3.171±0.233
    TT1~TT7 511.67±25.00 98.69±0.69 0.999~1.001 3.873±0.322
    HT1~HT7 663.34±26.67 96.50±1.05 0.996~0.999 2.425±0.146
    NH4+-N FT1~FT7 27.92±6.44 98.95±0.46 1.003~1.019 1.780±0.264
    ST1~ST7 38.60±2.03 97.97±1.07 1.013~1.026 1.803±0.087
    TT1~TT7 43.90±3.08 97.52±0.51 1.006~1.017 1.848±0.136
    HT1~HT7 44.11±3.85 87.94±2.93 1.023~1.084 0.907±0.140
    水质指标 实验编号 ρ*/(mg·L−1) 去除率/% A m
    COD FT1~FT7 308.34±68.34 93.62±1.57 0.997~0.998 2.691±0.228
    ST1~ST7 325.00±58.33 94.08±1.58 0.997~0.999 3.171±0.233
    TT1~TT7 511.67±25.00 98.69±0.69 0.999~1.001 3.873±0.322
    HT1~HT7 663.34±26.67 96.50±1.05 0.996~0.999 2.425±0.146
    NH4+-N FT1~FT7 27.92±6.44 98.95±0.46 1.003~1.019 1.780±0.264
    ST1~ST7 38.60±2.03 97.97±1.07 1.013~1.026 1.803±0.087
    TT1~TT7 43.90±3.08 97.52±0.51 1.006~1.017 1.848±0.136
    HT1~HT7 44.11±3.85 87.94±2.93 1.023~1.084 0.907±0.140
    下载: 导出CSV

    表 4  4阶段耗氧有机物(以COD计)和NH4+-N的kAkV

    Table 4.  The kA and kV values of oxygen consuming organic matter (COD) and ammonia nitrogen at four stages

    指标 实验编号 m kV/d−1 kA/(m·d−1)
    COD FT1~FT7 2.691±0.228 0.621±0.053 0.280±0.024
    ST1~ST7 3.171±0.233 0.731±0.054 0.329±0.024
    TT1~TT7 3.873±0.322 0.893±0.075 0.402±0.034
    HT1~HT7 2.425±0.146 1.677±0.101 0.755±0.045
    NH4+-N FT1~FT7 1.780±0.264 0.405±0.055 0.185±0.028
    ST1~ST7 1.803±0.087 0.416±0.020 0.187±0.009
    TT1~TT7 1.848±0.136 0.426±0.031 0.192±0.014
    HT1~HT7 0.907±0.140 0.627±0.097 0.283±0.043
    指标 实验编号 m kV/d−1 kA/(m·d−1)
    COD FT1~FT7 2.691±0.228 0.621±0.053 0.280±0.024
    ST1~ST7 3.171±0.233 0.731±0.054 0.329±0.024
    TT1~TT7 3.873±0.322 0.893±0.075 0.402±0.034
    HT1~HT7 2.425±0.146 1.677±0.101 0.755±0.045
    NH4+-N FT1~FT7 1.780±0.264 0.405±0.055 0.185±0.028
    ST1~ST7 1.803±0.087 0.416±0.020 0.187±0.009
    TT1~TT7 1.848±0.136 0.426±0.031 0.192±0.014
    HT1~HT7 0.907±0.140 0.627±0.097 0.283±0.043
    下载: 导出CSV

    表 5  已报道的一些HSSFCWs的kAkV

    Table 5.  The reported kA and kV values of some HSSFCWs

    指标 q/(m·d−1) kV/d−1 kA/(m·d−1) 文献
    NH4+-N 0.047 0.027 [3]
    COD 0.042 0.113~0.135 [17]
    BOD 0.002~0.300 0.170~6.110 0.060~1.000 [28]
    BOD 0.080~0.310 [29]
    COD 0.08 0.136 [30]
    COD 0.055~0.440 0.283、0.271 [31]
    BOD 0.018~0.092 [32]
    NH4+-N 0.013~0.086 [32]
    COD 0.031~0.146 0.060~0.082 [33]
    指标 q/(m·d−1) kV/d−1 kA/(m·d−1) 文献
    NH4+-N 0.047 0.027 [3]
    COD 0.042 0.113~0.135 [17]
    BOD 0.002~0.300 0.170~6.110 0.060~1.000 [28]
    BOD 0.080~0.310 [29]
    COD 0.08 0.136 [30]
    COD 0.055~0.440 0.283、0.271 [31]
    BOD 0.018~0.092 [32]
    NH4+-N 0.013~0.086 [32]
    COD 0.031~0.146 0.060~0.082 [33]
    下载: 导出CSV
  • [1] ZHONG L, DING J, WU T, et al. Bibliometric overview of research progress, challenges, and prospects of rural domestic sewage: Treatment techniques, resource recovery, and ecological risk[J]. Journal of Water Process Engineering, 2023, 51: 103389. doi: 10.1016/j.jwpe.2022.103389
    [2] ROUSSEAU D P L, VANROLLEGHEM P A, PAUW N D. Constructed wetlands in Flanders: A performance analysis[J]. Ecological Engineering, 2004, 23(3): 151-163. doi: 10.1016/j.ecoleng.2004.08.001
    [3] KNIGHT R L, JR V W E P, BORER R E, et al. Constructed wetlands for livestock wastewater management[J]. Ecological Engineering, 2000, 15(1/2): 41-55.
    [4] PENG X X, YANG W, JIN Q, et al. Biofilter-constructed wetland-trophic pond system: A new strategy for effective sewage treatment and agricultural irrigation in rural area[J]. Journal of Environmental Management, 2023, 332: 117436. doi: 10.1016/j.jenvman.2023.117436
    [5] WU H, ZHANG J, NGO H H, et al. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation[J]. Bioresource Technology, 2015, 175: 594-601. doi: 10.1016/j.biortech.2014.10.068
    [6] YANG L, KONG F L, XI M, et al. Environmental economic value calculation and sustainability assessment for constructed rapid infiltration system based on emergy analysis[J]. Journal of Cleaner Production, 2017, 167: 582-588. doi: 10.1016/j.jclepro.2017.08.172
    [7] WANG M C, ZHANG H Z. Chemical oxygen demand and ammonia nitrogen removal in a non-saturated layer of a strengthened constructed rapid infiltration system[J]. Water, Air, & Soil Pollution, 2017, 228(11): 440.
    [8] LI X Y, DING A Z, ZHENG L, et al. Relationship between design parameters and removal efficiency for constructed wetlands in China[J]. Ecological Engineering, 2018, 123: 135-140. doi: 10.1016/j.ecoleng.2018.08.005
    [9] VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1/2/3): 48-65.
    [10] ANDREO-MARTÍNEZ P, GARCÍA-MARTÍNEZ N, QUESADA-MEDINA J, et al. Domestic wastewaters reuse reclaimed by an improved horizontal subsurface-flow constructed wetland: A case study in the southeast of Spain[J]. Bioresource Technology, 2017, 233: 236-246. doi: 10.1016/j.biortech.2017.02.123
    [11] 庞俊玲. 多级土壤渗滤系统处理模拟生活污水研究[D]. 沈阳: 沈阳师范大学, 2022.
    [12] 姚琪. CRI系统COD降解试验及滤池有效高度模型构建[D]. 成都: 西南交通大学, 2012.
    [13] AKRATOS C S, TSIHRINTZIS V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands[J]. Ecological Engineering, 2007, 29(2): 173-191. doi: 10.1016/j.ecoleng.2006.06.013
    [14] 刘家宝. 人工快速渗滤系统污染物去除机理及其处理效果研究[D]. 北京: 中国地质大学, 2006.
    [15] ÇAKIR R, GIDIRISLIOGLU A, ÇEBI U. A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters[J]. Journal of Environmental Management, 2015, 164: 121-128.
    [16] LI J Y, WANG J J, ZHANG Q, et al. Efficient carbon removal and excellent anti-clogging performance have been achieved in multilayer quartz sand horizontal subsurface flow constructed wetland for domestic sewage treatment[J]. Journal of Environmental Management, 2023, 335: 117516. doi: 10.1016/j.jenvman.2023.117516
    [17] VYMAZAL J. Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years?[J]. Chemical Engineering Journal, 2019, 378: 122117. doi: 10.1016/j.cej.2019.122117
    [18] 何江涛, 段光杰, 张金炳, 等. 污水渗滤土地处理系统中水力停留时间与出水效果的讨论[J]. 地球科学, 2002(2): 203-208. doi: 10.3321/j.issn:1000-2383.2002.02.016
    [19] ZHANG Z, CHEN Y Z, CHEN H H, et al. Novel efficient capture of Cr(VI) from soil driven by capillarity and evaporation coupling[J]. Chemosphere, 2022, 288: 132593. doi: 10.1016/j.chemosphere.2021.132593
    [20] XU W L, ZHANG J Q, LIU Y. NH3-N degradation dynamics and calculating model of filtration bed height in Constructed Soil Rapid Infiltration[J]. Chinese Geographical Science, 2011, 21(6): 637-645. doi: 10.1007/s11769-011-0476-y
    [21] 肖璐. 水平潜流人工湿地净化府河水的试验研究[D]. 保定: 河北农业大学, 2019.
    [22] 曹帆. 人工快渗生物滤池中污染物归趋机制及滤料界面反应动力学研究[D]. 合肥: 合肥工业大学, 2010.
    [23] 石国玉. 人工快渗系统处理工业园区污水厂尾水研究[D]. 合肥: 合肥工业大学, 2011.
    [24] 陈佼. 人工快渗系统PN-ANAMMOX耦合脱氮性能及机理研究[D]. 成都: 西南交通大学, 2018.
    [25] 许文来. 人工快速渗滤系统污染物去除机理及动力学研究[D]. 成都: 西南交通大学, 2011.
    [26] 陈佼, 李晓媛, 刘欢, 等. 生物炭对人工快渗系统氨氮去除的影响研究[J]. 成都工业学院学报, 2022, 25(3): 35-41.
    [27] 史云鹏, 周琪. 人工湿地污染物去除动力学模型研究进展[J]. 工业用水与废水, 2002(6): 12-15. doi: 10.3969/j.issn.1009-2455.2002.06.004
    [28] ROUSSEAU D P L, VANROLLEGHEM P A, PAUW N D. Model-based design of horizontal subsurface flow constructed treatment wetlands: a review[J]. Water Research, 2004, 38(6): 1484-1493. doi: 10.1016/j.watres.2003.12.013
    [29] AGUADO R, PARRA O, GARCÍA L, et al. Modelling and simulation of subsurface horizontal flow constructed wetlands[J]. Journal of Water Process Engineering, 2022, 47: 102676. doi: 10.1016/j.jwpe.2022.102676
    [30] KANTAWANICHKUL S, KLADPRASERT S, BRIX H. Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus[J]. Ecological Engineering, 2009, 35(2): 238-247. doi: 10.1016/j.ecoleng.2008.06.002
    [31] KONNERUP D, KOOTTATEP T, BRIX H. Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia[J]. Ecological Engineering, 2009, 35(2): 248-257. doi: 10.1016/j.ecoleng.2008.04.018
    [32] ÖÖVEL M, TOOMING A, MAURING T, et al. Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia[J]. Ecological Engineering, 2007, 29(1): 17-26. doi: 10.1016/j.ecoleng.2006.07.010
    [33] TRANG N T D, KONNERUP D, SCHIERUP H H, et al. Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: Effects of hydraulic loading rate[J]. Ecological Engineering, 2010, 36(4): 527-535. doi: 10.1016/j.ecoleng.2009.11.022
    [34] 侯云霞. 人工快速渗滤系统有机物质量浓度随机模型研究[D]. 成都: 西南交通大学, 2014.
    [35] YAN G, XU X, YAO L R, et al. Process of inorganic nitrogen transformation and design of kinetics model in the biological aerated filter reactor[J]. Bioresource Technology, 2011, 102(7): 4628-4632. doi: 10.1016/j.biortech.2011.01.009
    [36] 王春荣, 李军, 王宝贞, 等. 2种不同填料曝气生物滤池处理生活污水的经验模型[J]. 环境污染治理技术与设备, 2005(12): 56-60.
    [37] FERREIRA A G, BORGES A C, ROSA A P. Comparison of first-order kinetic models for sewage treatment in horizontal subsurface-flow constructed wetlands[J]. Environmental Technology, 2020(12): 1-17.
  • 期刊类型引用(2)

    1. 李卿,孙健,卢卓君,夏娜,汪博飞,邹磊,宋威,万年红,张雪利. 两种基质下水平潜流人工湿地处理污水厂尾水的中试. 湿地科学与管理. 2024(03): 20-25 . 百度学术
    2. 杜岚,汪健,汪浩男. 基于系统动力多目标规划的水资源优化配置方案研究. 浙江水利水电学院学报. 2024(06): 46-52 . 百度学术

    其他类型引用(0)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 16.8 %DOWNLOAD: 16.8 %HTML全文: 68.7 %HTML全文: 68.7 %摘要: 14.5 %摘要: 14.5 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.6 %其他: 99.6 %北京: 0.2 %北京: 0.2 %扬州: 0.2 %扬州: 0.2 %其他北京扬州Highcharts.com
图( 7) 表( 5)
计量
  • 文章访问数:  1594
  • HTML全文浏览数:  1594
  • PDF下载数:  94
  • 施引文献:  2
出版历程
  • 收稿日期:  2023-10-10
  • 录用日期:  2024-01-08
  • 刊出日期:  2024-02-26
廖俭霞, 黄智, 高澍, 宿程远. 水平渗滤系统的污染物去除效果及动力学分析[J]. 环境工程学报, 2024, 18(2): 430-440. doi: 10.12030/j.cjee.202310035
引用本文: 廖俭霞, 黄智, 高澍, 宿程远. 水平渗滤系统的污染物去除效果及动力学分析[J]. 环境工程学报, 2024, 18(2): 430-440. doi: 10.12030/j.cjee.202310035
LIAO Jianxia, HUANG Zhi, GAO Shu, SU Chengyuan. Analysis of performance and kinetics of pollutant removal by a horizontal flow infiltration system[J]. Chinese Journal of Environmental Engineering, 2024, 18(2): 430-440. doi: 10.12030/j.cjee.202310035
Citation: LIAO Jianxia, HUANG Zhi, GAO Shu, SU Chengyuan. Analysis of performance and kinetics of pollutant removal by a horizontal flow infiltration system[J]. Chinese Journal of Environmental Engineering, 2024, 18(2): 430-440. doi: 10.12030/j.cjee.202310035

水平渗滤系统的污染物去除效果及动力学分析

    通讯作者: 黄智(1972—),男,博士,教授,77466325@qq.com
    作者简介: 廖俭霞 (1999—) ,女,硕士研究生,2633055639@qq.com
  • 1. 广西师范大学环境与资源学院,桂林 541006
  • 2. 珍稀濒危动植物生态与环境保护教育部重点实验室 (广西师范大学) ,桂林 541006
基金项目:
国家自然科学基金资助项目(52060003)

摘要: 基于人工快渗(CRIS)和水平潜流人工湿地(HSSFCWs)构建了水平流人工渗滤系统(HFCIS),研究了该系统对耗氧有机物(以COD计)、氨氮(NH4+-N)的沿程去除情况和污染物在系统内的垂向分布情况,并进行了动力学分析。结果表明,在水力负荷为0.083 m·d−1、进水耗氧有机物(以COD计)浓度为220~630 mg·L−1、NH4+-N质量浓度为13~47 mg·L−1时,COD、NH4+-N的去除率分别为88.6%和91.9%以上。在水力负荷为0.25 m·d−1的条件下,进水耗氧有机物(以COD计)和NH4+-N质量浓度分别为613~690 mg·L−1和36~48 mg·L−1时,总去除率分别为95.5%和78.2%以上。水平方向沿程污染物质量浓度呈现逐渐衰减的趋势,污染物降解符合一阶动力学模型,去除速率常数在CRIS和HSSFCWs的速率常数范围内并处于较高水平。该HFCI系统填料简单,复氧效果好,污染物去除性能优异,提高了土地利用率,建造位置选择较为灵活,在分散式污水处理中有独特的优势。

English Abstract

  • 自然土地处理系统因其成本低且运行管理简单的优点而被广泛应用于小规模分散式污水处理,其中人工湿地(constructed wetlands,CWs)在分散式污水处理应用方面最为常见,在世界范围内都有大量建造[13]。但诸多实践结果表明,CWs易受土地面积、气候条件、自身基质和操作参数等因素制约,且经常出现内部溶解氧不足的问题,导致在营养物质去除效果方面不尽如人意[4-5]。人工湿地有机负荷较低,也限制了其使用范围。

    人工快速渗滤系统(constructed rapid infiltration system,CRIS)也属于土地渗滤处理类型,是在传统快速渗滤系统的基础上开发的,常以河砂代替天然土壤充当填料基质[6]。CRI系统运行具备经济和生态上的优势,且无需额外曝气,能综合物理、化学和生物反应机理有效处理污水[7]。目前关于CRIS的研究多集中于垂直流,垂直流CRIS应用研究的相关报道已较为丰富。

    为了更好地满足分散式污水处理的要求,本研究设计构建了一个水平流人工渗滤系统(horizontal flow constructed infiltration system,HFCIS)(简称水平渗滤系统)。该系统结合了CRIS和水平潜流人工湿地(horizontal subsurface flow constructed wetlands,HSSFCWs)的特点,运行时无需种植植物。目前对HFCIS的研究报道极少,对于该技术的滤层结构、进水工艺参数、污染物处理影响因素和规律等,尚无深入的研究。本研究优化了水平渗滤系统的滤层结构和填料组成,并研究该系统在不同污染物质量浓度和水力负荷条件下的沿程去除效果,粗略分析系统内部污染物垂向分布情况,以此建立水平渗滤过程污染物去除的一级反应动力学方程,得出一阶去除速率常数,并与CRIS和HSSFCWs的速率常数做对比,为水平渗滤技术在小型分散式污水处理方面的实际应用化提供参考。

    • 查询相关研究[8]可知,应用HSSFCWs处理废水的耗氧有机物(以COD计)和NH4+-N质量浓度通常分别约200 mg·L−1和20 mg·L−1。但废水所含污染物也可能达到较高质量浓度,如COD值在600 mg·L−1以上、NH4+-N质量浓度在40 mg·L−1以上[9-10]。为了更好地考察HFCI系统的处理性能,将实验分为4个阶段进行,编号为S1~S4,相关水质参数如表1所示。进水的营养物质由糖蜜或葡萄糖和氯化铵提供。

    • 实验装置如图1所示。该水平流人工渗滤系统为自制,室外构建,采用厚度不低于10 mm的PVC板制作,槽体长宽高为2 m×0.2 m×0.4 m,沿长度方向设置有4个出水口,每个出水口之间相距0.4 m,分别编号为1#、2#、3#和4#,4#出水口为最终出水口。槽以一定角度倾斜放置,进水一端抬高约5 cm,使槽的另一端顺利出水。

      槽所用填料为天然砂、碎石和木炭粉。天然砂尺寸为0.25~2 mm;碎石为石灰石,主要成分是碳酸钙,尺寸为2~5 cm;木炭粉是一种常见的用于CRIS的基质,廉价易得,对NH4+-N有较好的吸附效果[11],适量添加进系统也有利于提高有机物的去除效率[12],此处将其过50目筛。填充天然砂和木炭粉的两段区域是废水处理的主要区域,前一段长75 cm,后一段长50 cm。底下一层(20 cm)是以5∶1体积比混合的天然砂与木炭粉的混合填料,上面一层(10 cm)为纯天然砂。孔隙率较大的碎石在槽体前面、中间和后面部分都有填充,每一段长25 cm。

    • 4个运行阶段皆采用间歇进水方式,直接将配制好的废水迅速倾倒于前面碎石段,每次进水量为5 L。S1和S2阶段进水COD值均为300 mg·L−1左右,S3和S4阶段分别提至约550 mg·L−1和650 mg·L−1;S1阶段进水NH4+-N质量浓度在20 mg·L−1左右,S2~S4阶段在40 mg·L−1左右。前3阶段的进水频率为1次·d−1,进水量为5 L·d−1,水力负荷皆为0.083 m·d−1,湿干比为1:5。S4阶段的进水频率增加到3次·d−1,进水量为15 L·d−1,间隔约8 h,水力负荷变为0.25 m·d−1,湿干比为3:5。每天取系统进水及4个出水口出水,水质检测指标为COD和NH4+-N。待系统运行稳定后,检测4个出水口的溶解氧(DO)质量浓度和pH。分别采用快速消解分光光度法和纳氏试剂分光光度法测定水样的COD和NH4+-N。使用便携式pH计和溶氧仪测定水中pH和DO。

      污染物垂向分布实验方法:在系统运行稳定的情况下,某次进水后,出水基本完全时,分别在第1段填料区域L=15、30、45 cm处取上中下层填料,沿程取样点编号A、B、C,上层(5~10 cm)取样为纯天然砂,中(15~20 cm)、下层(25~30 cm)取样为混合填料。之后,取一定体积填料于50 mL锥形瓶中,加入一定量pH=1的硫酸溶液,填料与加入溶液体积比为1:3,保鲜膜密封瓶口后,放入恒温水浴振荡器,25 ℃、160 r·min−1振荡24 h,离心后0.45 μm滤膜过滤,取滤液进行COD和NH4+-N指标的检测分析。对照为不加填料的相应体积溶液。做3次平行,结果取平均值。

    • 1)耗氧有机物(以COD计)的沿程去除效果。4个阶段的进出水COD值及去除率变化如图2所示。4个阶段的进水COD值分别为(300.00±76.67)、(323.33±60.00)、(546.67±76.66)和(651.67±38.34) mg·L−1。出水COD值分别为(18.33±15)、(18.34±11.66)、(16.67±13.33)和(16.67±13.34) mg·L−1。系统运行稳定后平均去除率分别达到94.48%、93.69%、98.98%和96.42%。S1阶段为微生物群落培养阶段,系统刚开始运行时,出水口1#、2#的出水COD值不断下降,且沿程4个出水口出水COD值有非常明显的递减关系。此时系统内部的微生物群落在不断生长富集,生物降解已开始发挥作用,还伴有一定的吸附作用。运行约13 d后,随着系统的生化降解性不断提高,截至出水口1#的COD去除率增加,后面填料区域的降解差异缩小,各出水口耗氧有机物(以COD计)浓度的递减关系逐渐弱化,表明有机物去除开始主要发生在系统的前半部分区域。

      在系统稳定状态下,4个阶段中,截至出水口1#的长度分别能去除约80%、84%、87%和76%的耗氧有机物(以COD计);截至出水口2#的长度分别能去除约87%、92%、96%和83%的耗氧有机物(以COD计),后续耗氧有机物(以COD计)去除率平缓增长。该结果与AKRATOS等[13]在HSSFCWs得到的结果相似,即三分之二的有机物会在系统前三分之一的区域被去除。结果表明,尽管S3和S4阶段中进水COD值和水力负荷有明显提高,但最终COD去除率仍保持在95%以上,表明水平渗滤系统能承受较高有机负荷。

      2) NH4+-N的沿程去除效果。4个阶段的NH4+-N进出水质量浓度及去除率变化如图3所示。4个阶段的NH4+-N进水质量浓度分别为(23.70±10.65)、(40.17±5.83)、(43.00±3.97)和(42.03±5.92) mg·L−1。出水质量浓度分别为(0.80±0.60)、(0.90±0.50)、(1.13±0.93)和(5.28±3.59) mg·L−1,系统运行稳定后平均去除率达到98.75%、97.59%、97.48%和85.30%。在S1阶段,系统内部的NH4+-N质量浓度为沿程降低。期间前3个出水口的出水NH4+-N质量浓度在不断变化,但总去除率在运行15 d后稳定下来。S2和S3阶段加大进水污染物质量浓度后,出水口1#的出水质量浓度逐渐增加,之后保持在一定范围内波动,而出水口2#和3#出水质量浓度都表现为先增加后下降。与耗氧有机物(以COD计)降解规律相同。前3个阶段的NH4+-N降解也主要发生在系统的前段填料区域,截至出水口2#分别能去除约76%、83%和83%的NH4+-N。在水力负荷明显提升的S4阶段中,除了各出水口出水NH4+-N质量浓度都有明显增加,NH4+-N的主要去除区域也有所改变,其中出水口3#、4#间填料区域能去除约40%的NH4+-N,与前3个阶段(14%~17%)相比有明显提高。

      在整个系统运行期间,出水口2#、3#的NH4+-N出水质量浓度总是比较接近,甚至S3阶段稳定期的出水口3#出水质量浓度更高。推测是因为出水口2#、3#之间填料区域对NH4+-N的吸附已经到达极限,有部分NH4+-N解吸返回溶液中。有研究[14]表明,在渗滤过程中,NH4+-N会先被渗滤介质所吸附,之后在硝化菌的作用下被氧化去除,渗滤介质又恢复对NH4+-N的吸附能力,依此循环。S3阶段中,因为流入后段填料区域的溶液中NH4+-N质量浓度较小,培养繁殖起来的硝化菌较少,无法满足快速转化NH4+-N恢复填料吸附能力的要求,就会有部分NH4+-N解吸回到质量浓度较小的溶液中。而S4阶段后期未出现此类情况,此时流入后段填料区域的溶液中NH4+-N质量浓度翻了一倍,利于硝化菌生长。

      综上所述,在较低水力负荷条件下,进水COD值为220~630 mg·L−1时,总去除率为88.6%~99.5%;进水NH4+-N质量浓度为13~47 mg·L−1时,总去除率为91.9%~99.6%。此时系统的最终出水污染物质量浓度能一直保持在较低水平,尽管进水污染物质量浓度有所变动,系统内部也能进行调节,最终达到稳定有效的污染物去除效果。加大水力负荷到0.25 m·d−1后,进水COD值和NH4+-N质量浓度分别为613~690 mg·L−1和36~48 mg·L−1的条件下,总去除率也能分别保持在95.5%~99.5%和78.2%~95.5%。在相似的耗氧有机物(以COD计)进水质量浓度为211~652 mg·L−1、NH4+-N为38.9 mg·L−1和水力负荷为0.042~0.16 m·d−1的条件下,比常规水平潜流湿地系统(COD去除率47%~89%;NH4+-N去除率48.3%)[9,1517]对污染物的处理效果要好。

      有研究[18]表明,CRI系统比CWs系统的处理能力高,其原因在于CRI系统的复氧能力强。因此,该系统运行稳定后,检测各出水口的DO出水质量浓度,结果如表2所示。

      表2可知,S1~S3阶段中系统内部的DO质量浓度为3.36~7.31 mg·L−1;S4阶段的DO质量浓度有所下降,为1.67~5.75 mg·L−1,整个系统内部基本处于好氧环境中。其中,各出水口DO质量浓度呈逐渐增加的趋势。系统运行期间内部DO质量浓度普遍高,可以猜测系统的复氧效率非常好,利于降解有机物的好氧微生物和硝化细菌生长,从而实现优异的耗氧有机物(以COD计)和NH4+-N去除性能。

    • 以出水基本完全、落干期刚刚开始时所取不同高度填料对各污染物的吸附量粗略判断污染物在系统内部的垂向分布情况,并使用origin软件进行单因素方差分析,对沿程各污染物吸附量的垂向变化进行差异性分析。P为显著性系数(0.01≤P<0.05表示显著,P<0.01表示极显著,P≥0.05表示不显著),结果如图4所示。

      图4可知,各层填料对各污染物的吸附量基本满足沿程减小的规律,其中下层的变化趋势最为明显。耗氧有机物(以COD计)的垂向分布最为均匀,A、B、C 3个取样点的上中下层吸附量之间均没有显著性差异。NH4+-N的垂向分布不均匀,各取样点的NH4+-N下层吸附量皆为最高,A、B取样点的各层吸附量间存在显著性差异。越靠近进水端的NH4+-N垂向吸附量差异越明显,随着污染物沿程逐渐降解,各高度层吸附量越接近,垂向分布越均匀。

      因为污水主要在系统下层流动,所以通常下层填料的污染物吸附截留量最大。另一方面,由于自然环境土壤中普遍存在的毛细作用和蒸发作用,溶于溶液中的污染物质会被向上的水流带到土壤上、中层,水被蒸发后,一定量的污染物质就会附着在填料表面[19]。耗氧有机物(以COD计)和NH4+-N的垂向分布不同的原因可能在于,充当有机碳源的葡萄糖在水中溶解度较高,所以极易随着水流进行快速迁移。而大多数带正电荷的铵离子很容易首先被底部带负电荷的填料介质和微生物吸附截留下来[14]

    • HFCIS内污染物质量浓度的沿程变化呈现一种逐渐衰减的趋势,假设系统稳定后在水平流向(X轴向)上为理想推流,污染物只在X轴向发生质量浓度变化,反应期间系统内部每个微小单元是混合均匀的。对于理想推流式生物反应器,可采用一级反应动力学方程(式(1))[20]来描述系统内部的污染物降解。

      式中:ρL为系统沿程长度为L处污染物出水质量浓度,mg·L−1ρ*为进水污染物质量浓度,mg·L−1m为污染物去除速率常数,反映系统中污染物降解效率。m值与进水质量浓度ρ*和水力负荷q密切相关。

      根据每天系统进水质量浓度ρ*及各出水口出水质量浓度ρL,计算ρL/ρ*。取每个阶段最后稳定期的7 d数据,分别编号为FT1~FT7、ST1~ST7、TT1~TT7和HT1~HT7,以L为横坐标,ρL/ρ*为纵坐标,设定经过约束点(0,1),进行指数拟合。其中,L为两段填充天然砂和木炭粉区域的长度。

      1)动力学拟合情况。根据沿程COD值和NH4+-N质量浓度数据对式(1)进行指数拟合如图5图6所示。

      耗氧有机物(以COD计)和NH4+-N指数拟合所得A值和m值如表3所示。实际拟合方程如式(2)所示。

      式中:A为系数,修正实际拟合模型与理论模型之间的差距[21]。由图5图6拟合曲线经过数据点情况和表3数据可知,使用式(2)表示有机物和NH4+-N降解动力学有较好的准确性。其中,4个阶段耗氧有机物(以COD计)拟合曲线R2值为0.987~0.999;前3个阶段的NH4+-N拟合曲线R2值为0.873~0.982,S4阶段R2值较低,最高仅0.878。由表3可知,耗氧有机物(以COD计)和NH4+-N拟合所得m值在已报道的垂直流CRIS的m值(mCOD=0.81~3.36;m氨氮=0.01~2.72),甚至处于较高的水平[2226]。整体上看,相同水力负荷条件下,随着进水质量浓度的增加,耗氧有机物(以COD计)去除率及m值呈上升趋势;而NH4+-N去除率随着进水质量浓度增加呈下降趋势,m值却有所升高。水力负荷的增加使耗氧有机物(以COD计)、NH4+-N的去除率和m值都有所降低。

      为了更直观表示进水质量浓度ρ*m值之间的关系,将前3个阶段稳定期的ρ*m值分别为横纵坐标进行线性拟合,结果如图7所示。由图7可知,耗氧有机物(以COD计)进水浓度与m值拟合得到一条明显为上升趋势的直线,ρ*m为显著正相关,相关方程为m=(0.004 5±5.22×10−4)ρ*+(1.503 1±0.20)(R2=0.798)。当水力负荷固定时,系统m值随着进水有机物浓度的增加而增加,输入有机负荷的增加或者减小会带动系统有机物去除速率的上升或者降低,这是系统在不同进水质量浓度下能保持稳定良好出水质量浓度的原因,表明该系统有较高的有机负荷承受能力。这也说明,该系统的耗氧有机物(以COD计)去除速率常数并不是固定的,而是取决于进水质量浓度、水力负荷、填料结构等一系列影响因素。另一方面,NH4+-N进水质量浓度的增加没有明显提高m值,且m值与NH4+-N进水质量浓度间相关性不显著,表明NH4+-N去除还明显受到除进水质量浓度因素之外的限制,可能是因为氧交换速率、硝化菌总量无法在短期内迅速增加,所以导致硝化能力没有随着进水质量浓度增加而明显提高。

      2)动力学常数比较。湿地系统也常采用一级动力学模型来反映污染物去除规律,但与本研究不同的是,HSSFCWs的一阶建模多集中于水力负荷变化的影响,主要考虑水力负荷或水力停留时间与处理效率之间的关系。水平潜流人工湿地的一阶动力学方程(式(3)、式(4))[27]有2种表现形式,可相互转化(式(5)、式(6)和式(7))[28]

      式中:t为水力停留时间,d;Q为流量,m3·d−1n与填料特性有关,此处为填料有效孔隙率,%。kAkV分别为基于面积和体积的一阶速率常数,分别用于确定湿地所需的面积和体积,可分别转化表示为式(8)和式(9)[29]

      kAkV同样反映系统处理效率,该值越大,达到相同去除效果所需湿地面积或体积越小。将HFCI系统所得动力学系数与HSSFCWs的作对比评价,则换算m=(kvn)/qkV=mq/n。将求得各m值及q=0.083/0.25 m·d−1n=36%代入关系式求得kAkV值如表4所示。由表4可知,随着水力负荷增加,耗氧有机物(以COD计)和NH4+-N的kAkV值也有所增加。

      目前已报道的一些HSSFCWs的kAkV值如表5所示。由表4表5可知,在相似的水力负荷率下,HFCIS的速率常数值在报道的HSSFCWs速率常数范围内,与近年来文献报道的潜流湿地速率常数值相比,也处于较高的水平。表明HFCI系统内耗氧有机物(以COD计)和氨氮的反应速率普遍高于HSSFCWs,能在实现污染物高效率去除的基础上大大缩小占地面积。

      生物膜系统中,基质反应速率通常与物质在液相和生物膜相的传质过程密切相关[34]。另一方面,本研究所得污染物降解模型与曝气生物滤池遵循的一级动力学模型相似,即Eckenfelder方程(式(10))[35]

      式中:Kn分别是与微生物量、生物膜活性和填料特性相关的常数[36]

      上述由式(1)、式(2)所求得的m值可近似于式(7)的K/qn。另有研究者从微生物作用出发,推导土地渗滤系统的一级反应速率常数kV近似于vmax/Ks,而vmaxKs均与微生物活性有关[18]。因此,考虑到HFCIS所用天然砂表面较为光滑,系统内部实际微生物量非常少,推测HFCRI系统污染物去除效果更好的原因在于该系统内部基质和氧的传质速率高、微生物活性强。因为填料间空隙很小,导致附着在填料表面的水膜和微生物膜很薄,基质和氧气都能更快速的传质进入微生物细胞,使微生物活性增强。

      本研究计算所得去除速率常数主要用于与水平潜流湿地的去除速率常数作对比,在系统设计方面能在一定程度上预测污染物在系统内部的预期去除效果,从而优化HFCI系统的尺寸设计,以节约成本和占地面积。另一方面,因为湿地传统的一阶模型基于理想推流流态,通常无法完美反映系统内部的流体和污染物行为,且估计的去除速率常数取决于进水质量浓度和水力负荷等因素[37]。根据TRANG等[33]的研究结果,本文以系统从入口到出口的沿程污染物浓度分布为基础估算去除速率常数,或许能更准确地反映系统内部污染物去除的动力学过程。

    • 1)水平渗滤系统有优异的耗氧有机物(以COD计)和NH4+-N去除性能,系统内部的高溶解氧质量浓度利于好氧微生物生存。整个运行期间的耗氧有机物(以COD计)和NH4+-N最终去除率分别为88.61%~99.47%和78.22%~99.58%,最终出水质量浓度满足《城镇污水处理厂污染物排放标准(GB 18918-2002)》一级A类标准。

      2)耗氧有机物(以COD计)的垂向分布均匀,各取样点的上中下层吸附量之间没有显著性差异;NH4+-N主要分布在系统下层进行去除,前段区域不同高度间吸附量存在显著性差异。

      3)沿程污染物出水质量浓度基本呈现逐渐衰减的趋势,以耗氧有机物(以COD计)和NH4+-N相关数据进行动力学拟合,有机物拟合效果更好,其速率常数m与进水质量浓度ρ*为显著正相关,而NH4+-N的m与进水质量浓度之间不存在显著相关关系。水力负荷的增加导致两指标的m值降低,但kAkV值却有所增加。两指标的去除速率常数的变化在CRIS和HSSFCWs的速率常数范围内,甚至处于较高水平。

      4)构建的水平渗滤系统结合了人工快渗和人工湿地的优点,构建、运行和管理简单,具备优异的污染物去除性能和污染负荷承受能力,在污水处理方面可大大改善水质,明显提高了土地利用效率,能很好地满足分散式污水处理的要求。

    参考文献 (37)

返回顶部

目录

/

返回文章
返回