-
21世纪以来,随着农业、医疗、工业的飞速发展,产生大量难降解的污染物。因环保意识和管理制度的欠缺,我国每年有80%以上的工业废水和生活污水未经完善的处理就直接排入河流[1]。随着我国对污染物处理标准的不断完善,污水处理厂的规模和标准也在不断扩大和提高,但传统的污水处理技术难以降解工业废水和特殊行业废水中的微量污染物。因此,研发高效的新型水处理技术具有重要意义。
电催化臭氧技术(electro-peroxone)耦合了O3和电化学技术,克服了传统臭氧氧化和电化学氧化对污染物降解的局限性,并有效利用了产O3过程中逸散的O2,通过两电子还原反应在阴极原位电产H2O2(式(1)),与产生的O3发生臭氧化反应生成HO•(式(2)),并利用体系中的强氧化性物质(HO•、O3)实现有机污染物的快速降解和矿化[2]。有研究[3]表明,在含氯和含溴废水中,电催化臭氧技术可以在有效提高污染物去除的同时,阴极产生的H2O2还可有效淬灭阳极地表水中氯离子和溴离子氧化产生的次氯酸盐和溴酸盐,从而抑制含氯和含溴副产物的生成。与传统臭氧氧化和电化学氧化相比,电催化臭氧工艺可显著提升对二次出水中TOC和COD的去除效果[4],消毒效果也高于臭氧和电化学的总和。外加添加MnO2和H2O2或电化学产生的H2O2可以不同程度地促进O3向HO•的转化[5]。
碳纳米管(carbon nanotubes,CNTs)具有特殊的中空管状结构,与其他多孔材料相比,具有更高的比表面积和电导率,可以有效降低电子传递的内阻[6]。蒽醌类物质常用于产H2O2,其自身的氧化还原能力可以促进分子氧的催化还原,但由于蒽醌的电导率较低,极大地限制了其应用[7]。有研究[8]表明,蒽醌类与碳材料掺杂可以提高H2O2的产量。由于碳纳米管电极吸附能力较强,长时间电解后表面会附着污染物,从而导致电极电催化效果降低。采用聚四氟乙烯作为电极粘合剂,可以提高电极的疏水性,克服电极长时间电解易被污染的问题[9]。
西玛津是一种三嗪类含氮芳香族除草剂,具有一定的毒性,可干扰生物体的内分泌系统和免疫神经系统,被广泛用于防除农林业杂草,在亚洲、欧洲、美洲和澳大利亚的自然环境中常被检测到[10]。传统的生物法或物化法对西玛津去除效率较低,且需要投加药剂。因此,本研究探究了电催化臭氧技术对西玛津的降解效果,以聚四氟乙烯为粘结剂制备碳纳米管/蒽醌修饰(CNT/TBAQ)浸没曝气电极,探究了电极的形貌特征和降解西玛津的性能,在此基础上,考察了电催氧化臭氧技术用于实际有机废水处理的可行性,以期为微污染物的高效减排提供一种有应用前景的技术。
碳纳米管电极强化电催化臭氧降解西玛津
Enhancement of electro-peroxone degradation of simazine by carbon nanotube electrodes
-
摘要: 传统的电催化技术受限于阴极原位电生H2O2的效率,且对某些特定结构污染物的降解能力较差。为提升电极对污染物降解性能和稳定性,使用压片法制备了蒽醌修饰碳纳米管(CNT/TBAQ)电极,构建了一种基于浸没电极的电催化臭氧反应器,并鉴定了反应体系内的活性物质及对西玛津的降解性能。结果表明,当气体流量为0.2 L·min−1,电流密度为7.5 mA·cm−2时,HO•生成量为1.024 µmol·L−1。与单独电催化和单独臭氧技术相比,电催化臭氧技术可以在6 min内完全去除初始质量浓度为5 mg·L−1的西玛津。当臭氧质量浓度10 mg·L−1,电流密度7.5 mA·cm−2时,电催化臭氧技术的矿化效率最高,120 min后TOC去除率为62.25%,相比于电催化氧化、臭氧氧化能耗分别下降了55%和31%,但电催化臭氧技术没有明显降低西玛津中间产物的毒性。经过10次循环使用后,CNT/TBAQ 阴极仍然保持对污染物的去除能力。以上结果表明,以CNT/TBAQ电极为阴极的电催化臭氧技术可以有效提高污染物降解效率,为微量污染物去除提供了一种有前景的技术。Abstract: Conventional electrocatalytic technology is limited by the efficiency of in-situ electrogenerated H2O2 over the cathode, and poor degradability for some pollutants with specific structures. In order to increase the pollutant degradation performance and the stability of electrodes, a self-made anthraquinone-modified carbon nanotube (CNT/TBAQ) electrode was taken as the cathode, and an electro-peroxone reactor based on the submerged and aerated electrode was constructed, which performance on the degradation of simazine by the active substances in the electro-peroxone system was studied. The results showed that the HO· generation was 1.024 µmol·L−1 at the gas flow rate of 0.2 L·min−1 and the current density of 7.5 mA·cm−2. Compared with the technology of electrocatalysis or ozone alone, the electro-peroxone technology could completely remove simazine with an initial concentration of 5 mg·L−1 within 6 min. When the O3 concentration was 10 mg·L−1 and the current intensity was 7.5 mA·cm−2, the mineralization efficiency of electro-peroxone technology was the highest, with the TOC removal rate of 62.25% after 120 min, and the energy consumption was reduced by 55% and 31% compared with electro-catalytic oxidation and ozonation, respectively. However, the electro-peroxone technology did not significantly reduce the toxicity of simazine intermediates. The cathode of the CNT/TBAQ still retained the pollutant removal capacity after ten cycles of use. These results showed that electro-peroxone technology using CNT/TBAQ electrode as the cathode could effectively increase the pollutant degradation efficiency, and provide a promising technology for the removal of trace pollutants.
-
Key words:
- anthraquinone /
- pesticide /
- hydroxyl radical /
- bio-toxicity /
- electro-peroxone
-
表 1 电催化臭氧体系降解西玛津的中间产物
Table 1. Intermediate products of simazine in the electro-peroxone system
序号 分子式 结构式 序号 分子式 结构式 C1 C7H12ClN5 C2 C7H10ClN5O C3 C6H10N5COOH C4 C5H8N5Cl C5 C5H9N5OH C6 C3H4N5Cl C7 C3H4N5OH C8 C3H2N4(OH)2 C9 C3N3(OH)3 -
[1] 高荣伟. 我国水资源污染现状及对策分析[J]. 资源与人居环境, 2018(11): 44-51. doi: 10.3969/j.issn.1672-822X.2018.11.009 [2] JIANG Y, NI P, CHEN C, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Advanced Energy Materials, 2018, 8(31): 1801909. doi: 10.1002/aenm.201801909 [3] YAO W, FU J, YANG H, et al. The beneficial effect of cathodic hydrogen peroxide generation on mitigating chlorinated by-product formation during water treatment by an electro-peroxone process[J]. Water Research, 2019, 157: 209-217. doi: 10.1016/j.watres.2019.03.049 [4] ZHANG Y, ZUO S, ZHANG Y, et al. Simultaneous removal of tetracycline and disinfection by a flow-through electro-peroxone process for reclamation from municipal secondary effluent[J]. Journal of Hazardous Materials, 2019, 368: 771-777. doi: 10.1016/j.jhazmat.2019.02.005 [5] GUO Y, ZHAO E, WANG J, et al. Comparison of emerging contaminant abatement by conventional ozonation, catalytic ozonation, O3/H2O2 and electro-peroxone processes[J]. Journal of Hazardous Materials, 2020, 389: 121829. doi: 10.1016/j.jhazmat.2019.121829 [6] LU Z, CHEN G, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1(2): 156-162. doi: 10.1038/s41929-017-0017-x [7] GAO Y, ZHU W, WANG C, et al. Enhancement of oxygen reduction on a newly fabricated cathode and its application in the electro-Fenton process[J]. Electrochimica Acta, 2020, 330: 135206. doi: 10.1016/j.electacta.2019.135206 [8] VALIM R B, REIS R M, CASTRO P S, et al. Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support[J]. Carbon, 2013, 61: 236-244. doi: 10.1016/j.carbon.2013.04.100 [9] ZHAO Q, AN J, WANG S, et al. Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35410-35419. [10] WANG Z, ZHU W, XU Y, et al. Effects of simazine and food deprivation chronic stress on energy allocation among the costly physiological processes of male lizards (Eremias argus)[J]. Environmental Pollution, 2021, 269: 116139. doi: 10.1016/j.envpol.2020.116139 [11] 王健, 胡稳茂, 王庚超. 功能化碳纳米管膜负载聚(2, 5-二羟基-羟, 4-苯醌硫)柔性电极的制备及在柔性非对称超级电容器中的应用[J]. 功能高分子学报, 2019, 32(2): 184-191. [12] WU K, ZHANG Y, YONG Z, et al. Continuous preparation and performance enhancement techniques of carbon nanotube fibers[J]. Acta Physico-Chimica Sinica, 2022, 38: 2106034. [13] 李新洋, 李燕楠, 祁丹阳, 等. 电-多相臭氧催化工艺深度处理焦化废水[J]. 中国环境科学, 2020, 40(10): 4354-4361. doi: 10.3969/j.issn.1000-6923.2020.10.020 [14] KATSOYIANNIS I A, CANONICA S, VON GUNTEN U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2[J]. Water Research, 2011, 45(13): 3811-3822. doi: 10.1016/j.watres.2011.04.038 [15] CORTEZ S, TEIXEIRA P, OLIVEIRA R, et al. Ozonation as polishing treatment of mature landfill leachate[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 730-734. [16] 朱瑾, 汪文强, 季献华, 等. 原位产H2O2催化臭氧饮用水深度处理中试[J]. 净水技术, 2023, 42(9): 74-79. [17] BAKHEET B, YUAN S, LI Z, et al. Electro-peroxone treatment of Orange II dye wastewater[J]. Water Research, 2013, 47(16): 6234-6243. doi: 10.1016/j.watres.2013.07.042 [18] YUAN S, LI Z, WANG Y. Effective degradation of methylene blue by a novel electrochemically driven process[J]. Electrochemistry Communications, 2013, 29: 48-51. doi: 10.1016/j.elecom.2013.01.012 [19] YAO W, WANG X, YANG H, et al. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process[J]. Water Research, 2016, 88: 826-835. doi: 10.1016/j.watres.2015.11.024