-
我国每年玉米秸秆产量巨大,实现秸秆的资源化利用,不仅可以有效解决秸秆资源结构性过剩问题,还能推动农业生产向绿色、高效、可持续发展的道路迈进。而秸秆生物乙醇,是近年来蓬勃兴起的战略性新兴产业[1-2];作为一种替代的新型可再生绿色能源,具有良好的经济效益和环境效益[3-4]。以秸秆废弃物为代表的木质纤维素类生物质具有产量大、分布广、可再生、价格低等特点,是生物燃料乙醇产业规模化发展的重要原料来源[5]。
秸秆中木质纤维素的复杂结构限制了其高效利用,需对原料先进行预处理后再进行糖化发酵产乙醇[6-8]。吴亚林[9]采用微波辅助小分子有机酸对玉米秸秆进行预处理,发现预处理可以去除木质素并有效提高酶水解的效果。LI等[10]研究了NaOH-纤维素酶联合预处理对玉米秸秆降解速率和还原糖产量的影响,提到该预处理可以有效增强玉米秸秆厌氧消化性能。不同的预处理方法各有利弊,其中生物法预处理凭借环境友好,成本低,副产物少等优势脱颖而出;然而从自然界分离得到的野生菌种产酶能力较弱、稳定性差,将其用于生物预处理效率较低、难以适应工业化生产的要求[11];针对生物法预处理存在的问题,有研究者通过诱变手段对菌种遗传物质进行改造,选育符合要求的高产菌株以强化生物预处理。目前常用的菌株诱变方式主要分为物理诱变和化学诱变两大类[12],物理诱变技术中最常用的就是紫外诱变,该方法操作简单,速度快,对设备要求较低,主要通过破坏DNA的连接,使其形成胸腺嘧啶二聚体,阻碍碱基间的正常配对,从而引起突变或死亡;如刘庆玉等[13]采用紫外诱变筛选获得高效木质素降解菌株,木质素降解率较出发菌株提高了13.6%。化学诱变剂主要有烷化剂、叠氮化物及碱基类似物等,其中甲基磺酸乙酯 (EMS) 是一种高效稳定的烷化剂,可通过烷基化反应诱发嘌呤和嘧啶之间的转换突变,广泛应用于微生物及植物作物的诱变选育中,具有较高的突变频率。ALI等[14]采用不同浓度的EMS对野生菌株lsl-3进行诱变,得到突变菌株EMS-cys2的乙酰木聚糖酯酶活性较野生菌株有明显增强。
以上研究表明,紫外及甲基磺酸乙酯等诱变手段对于提高微生物酶活性具有一定作用,但目前大多研究集中在不同诱变剂的单一诱变,对于木质素降解菌株的复合诱变选育研究较少,刘登辉[15]采用复合诱变手段选育纤维素酶高产菌株,结果表明复合诱变具有协同效应,较单一诱变效果更好。ETHIRAJ等[16]研究发现UV-EMS复合诱变获得的突变菌株蛋白酶活性 (3 437.6 EU·mL−1) 高于单独的UV诱变 (3 234.9 EU·mL−1) 和单独的EMS诱变菌株酶活性 (2 797 EU·mL−1) ,复合诱变有利于正向突变的累积从而提高诱变效率。因此,本研究以自然筛选出的木质素降解菌株——皮特不动杆菌Acinetobacter pittii FM1为出发菌株,采用紫外线和甲基磺酸乙酯 (UV-EMS) 复合诱变手段进行菌株的诱变选育,并添加突变菌株对秸秆进行预处理及发酵产乙醇试验研究,以期为秸秆的生物法预处理发展提供参考。
UV-EMS复合诱变强化生物预处理秸秆产乙醇
Enhanced biological pretreatment of straw for ethanol production by UV-EMS composite mutagenesis
-
摘要: 玉米秸秆中木质纤维素结构复杂,采用安全、绿色的生物法对秸秆进行预处理,可以有效提高其能源转化效率进而实现秸秆的减量化及高效资源化利用。针对目前生物预处理法中存在的野生菌株产酶能力较弱、酶活性低的问题,在优化条件下对野生木质素降解菌株FM1进行紫外线照射 (UV) 与甲基磺酸乙酯 (EMS) 复合诱变,并将筛选获得的突变菌株UEM2应用于秸秆生物乙醇制备的预处理过程中,通过秸秆木质素降解率及乙醇产量等指标来对比探究诱变对秸秆预处理的影响。结果表明,UV-EMS复合诱变使菌株木质素降解酶活性得到有效提高,对秸秆的生物法预处理起到了一定的强化作用,且效果优于单一诱变;UEM2预处理后木质素降解率达到38.86%,比FM1处理组提高了63.55%;通过同步糖化发酵(SSF),测定UEM2组生物乙醇质量浓度达到12.17 mg·mL−1,是FM1组的1.36倍,进一步验证了诱变对预处理的强化效果。该研究结果可为秸秆生物法预处理的应用和发展提供理论参考。Abstract: The structure of lignocellulose in corn straw is complex. Using safe and green biological methods to pre-treat straw can effectively improve its energy conversion efficiency and achieve the reduction and efficient resource utilization of straw. In response to the problems of weak enzyme production ability and low enzyme activity of wild strains in current biological pretreatment methods, this study conducted a combination of ultraviolet radiation (UV) and ethyl methanesulfonate (EMS) mutagenesis on the wild lignin degrading strain FM1 under optimized conditions, and applied the selected mutant strain UEM2 to the pretreatment process of straw bioethanol preparation. The effects of mutagenesis on the pretreatment effect of straw were compared and explored through indicators such as straw lignin degradation rate and ethanol yield. The results showed that UV-EMS composite mutagenesis effectively increased the activity of lignin degrading enzymes of the strain, and played a certain strengthening role in the biological pretreatment of straw, and the effect was better than single mutagenesis. After pretreatment with UEM2, the lignin degradation rate reached 38.86%, which was 63.55% higher than that of the FM1 treatment group. By simultaneous saccharification fermentation (SSF), the bioethanol yield in the UEM2 group was determined to reach 12.17 mg·mL−1, which was 1.36 times higher than that of the FM1 group, further verifying the strengthening effect of mutagenesis on pretreatment. The research results can provide theoretical reference for the application and development of straw biological pretreatment.
-
表 1 培养基种类及配制
Table 1. Types of media and preparation methods
序号 培养基种类 培养基配方 1 LB液体 (固体) 培养基 蛋白胨10 g·L−1,酵母浸粉5 g·L−1,NaCl 10 g·L−1, (琼脂16 g·L−1) 2 初筛培养基 苯胺蓝0.1 g·L−1溶于LB培养基 3 复筛培养基 木质素磺酸钠3 g·L−1,(NH4)2SO4 2 g·L−1,K2HPO4 1 g·L−1,KH2PO4 1 g·L−1,MgSO4 0.2 g·L−1,
CaCl2 0.1 g·L−1,FeSO4 0.05 g·L−1,MnSO4 0.02 g·L−14 产酶发酵培养基 蛋白胨5 g·L−1,葡萄糖4 g·L−1,K2HPO4 2 g·L−1,KH2PO4 1 g·L−1,CaCl2 1 g·L−1 注:培养基均调节pH=7,并于121 ℃灭菌20 min。 表 2 正交试验设计
Table 2. Orthogonal experimental design
水平 因素 A诱变剂
体积分数/%B诱变
时间/minC诱变
温度/ ℃D菌悬液浓度/
(CFU·mL−1)1 0.4 30 25 105 2 0.5 35 28 106 3 0.6 40 30 107 表 3 正交试验结果
Table 3. Orthogonal test results
序号 因素 致死率/% A B C D 实验1 1 1 1 1 83.34 实验2 1 2 2 2 76.69 实验3 1 3 3 3 77.08 实验4 2 1 2 3 81.23 实验5 2 2 3 1 93.38 实验6 2 3 1 2 92.48 实验7 3 1 3 2 89.25 实验8 3 2 1 3 90.16 实验9 3 3 2 1 96.39 均值1 79.037 84.707 88.660 91.033 — 均值2 89.130 86.743 84.867 86.140 — 均值3 91.930 88.647 86.570 82.923 — 极差 12.893 3.940 3.793 8.110 — 表 4 复筛菌株褪色圈及菌落直径
Table 4. The diameters of the fading ring and colony of the re-screened strains
菌株编号 褪色圈直径D/cm 菌落直径d/cm UEM1 4.27 1.35 UEM2 5.26 1.23 UEM3 3.58 1.08 UEM4 4.11 1.26 UEM5 5.12 1.45 UEM6 5.39 1.33 UEM7 4.4 1.28 UEM8 4.79 1.16 UEM9 4.16 1.09 UEM10 4.22 1.29 UEM11 3.73 1.12 UEM12 3.98 1.25 UEM13 4.66 1.31 -
[1] SADEGHINEZHAD E, KAZI S N, BADARUDIN A, et al. Sustainability and environmental impact of ethanol as a biofuel[J]. Reviews in Chemical Engineering, 2014, 30(1): 51-72. [2] 王梦, 田晓俊, 陈必强, 等. 生物燃料乙醇产业未来发展的新模式[J]. 中国工程科学, 2020, 22(2): 47-54. [3] ANTAR M, LYU D M, NAZARI M, et al. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110691. doi: 10.1016/j.rser.2020.110691 [4] SARAVANAN A, YAASHIKAA P R, SENTHIL K P, et al. Techno-economic and environmental sustainability prospects on biochemical conversion of agricultural and algal biomass to biofuels[J]. Journal of Cleaner Production, 2023, 414: 137749. doi: 10.1016/j.jclepro.2023.137749 [5] 王凯军, 石川, 刘越. 有机固废厌氧发酵产物的转化制备与应用进展[J]. 环境工程学报, 2021, 15(6): 1840-1861. doi: 10.12030/j.cjee.202007004 [6] RAUD M, KIKAS T, SIPPULA O, et al. Potentials and challenges in lignocellulosic biofuel production technology[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 44-56. doi: 10.1016/j.rser.2019.05.020 [7] 姚晓琰, 王润娟, 吕学斌, 等. 碱液预处理玉米秸秆的条件优化及添加剂的选择[J]. 环境工程学报, 2014, 8(7): 3011-3017. [8] WANG S Z, SUN X X, YUAN Q P. Strategies for enhancing microbial tolerance to inhibitors for biofuel production: A review[J]. Bioresource Technology, 2018, 258: 302-309. doi: 10.1016/j.biortech.2018.03.064 [9] 吴亚林. 玉米秸秆制备燃料乙醇的预处理和酶解工艺研究[D]. 扬州: 扬州大学, 2019. [10] LI X X, YAN X H, YE M Y, et al. Enhancement of anaerobic digestion performance of corn straw via combined sodium hydroxide-cellulase pretreatment[J]. Biochemical Engineering Journal, 2022, 187: 108652. doi: 10.1016/j.bej.2022.108652 [11] TALEBNIA F, KARAKASHEV D, ANGELIDAKI I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation[J]. Bioresource Technology, 2010, 101(13): 4744-4753. doi: 10.1016/j.biortech.2009.11.080 [12] THURAKIT T, PATHOM A W, PUMAS C, et al. High-efficiency production of biomass and biofuel under two-stage cultivation of a stable microalga Botryococcus braunii mutant generated by ethyl methanesulfonate-induced mutation[J]. Renewable Energy, 2022, 198: 176-188. doi: 10.1016/j.renene.2022.08.029 [13] 刘庆玉, 姚影, 张敏, 等. 紫外诱变筛选高效木质素降解菌株的研究[J]. 可再生能源, 2010, 28(4): 58-61. doi: 10.3969/j.issn.1671-5292.2010.04.014 [14] ALI S, MAHMOOD S. Mutagenesis of a thermophilic Alkalibacillus flavidus for enhanced production of an extracellular acetyl xylan esterase in semi-solid culture of linseed meal[J]. Waste and Biomass Valorization, 2020, 11(7): 3327-3335. doi: 10.1007/s12649-019-00665-2 [15] 刘登辉. 高产纤维素酶菌株的选育研究[D]. 武汉: 武汉工程大学, 2022. [16] ETHIRAJ S, GOPINATH S, RAVI V, et al. Enhancement of serrapeptase hyper producing mutant by combined chemical and uv mutagenesis and its potential for fibrinolytic activity[J]. Journal of Pure and Applied Microbiology, 2020, 14(2): 1295-1303. doi: 10.22207/JPAM.14.2.25 [17] ZHANG Y, HE M L, ZOU S M, et al. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation[J]. Bioresource Technology, 2016, 207: 268-275. doi: 10.1016/j.biortech.2016.01.120 [18] 诸葛荣夏. 腐浆中木质纤维降解菌的筛选及复合菌系构建[D]. 南京: 南京林业大学, 2020. [19] GANESH K A, SEKARAN G, KRISHNAMOORTHY S. Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium[J]. Bioresource Technology, 2006, 97(13): 1521-1528. doi: 10.1016/j.biortech.2005.06.015 [20] 李红亚, 李术娜, 王树香, 等. 产芽孢木质素降解菌MN-8的筛选及其对木质素的降解[J]. 中国农业科学, 2014, 47(2): 324-333. doi: 10.3864/j.issn.0578-1752.2014.02.012 [21] DAHNUM D, TASUM S O, TRIWAHYUNI E, et al. Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch[J]. Energy Procedia, 2015, 68: 107-116. doi: 10.1016/j.egypro.2015.03.238 [22] 郭栋豪. 60Co-γ辐照预处理玉米秸秆制备乙醇的研究[D]. 长沙: 湖南大学, 2018. [23] PHWAN C K, CHEW K W, SEBAYANG A H, et al. Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae[J]. Biotechnology for Biofuels, 2019, 12: 191. doi: 10.1186/s13068-019-1533-5 [24] MADADI M, ZHAO K L, WANG Y M, et al. Modified lignocellulose and rich starch for complete saccharification to maximize bioethanol in distinct polyploidy potato straw[J]. Carbohydrate Polymers, 2021, 265: 118070. doi: 10.1016/j.carbpol.2021.118070 [25] 何川, 章登政, 张俊, 等. 重铬酸钾-DNS比色法测定发酵液中乙醇含量[J]. 生命科学研究, 2013, 17(1): 1-4, 10. doi: 10.3969/j.issn.1007-7847.2013.01.001 [26] 马东林. 优良玫瑰糖多孢菌的选育及在黄酒应用上促进发酵机理解析[D]. 无锡: 江南大学, 2022. [27] SHAFIQUE S, BAJWA R, SHAFIQUE S. Molecular characterisation of UV and chemically induced mutants of Trichoderma reesei FCBP-364[J]. Natural Product Research, 2010, 24(15): 1438-1448. doi: 10.1080/14786410903132399 [28] 杨珠英. 紫外及甲基磺酸乙酯诱变选育竹红菌甲素高产菌株的研究[D]. 苏州: 苏州大学, 2013. [29] KHALID N, ASGHER M, QAMAR S A. Evolving trend of Boletus versicolor IBL-04 by chemical mutagenesis to overproduce laccase: Process optimization, 3-step purification, and characterization[J]. Industrial Crops and Products, 2020, 155: 112771. doi: 10.1016/j.indcrop.2020.112771 [30] 郁红艳. 农业废物堆肥化中木质素的降解及其微生物特性研究[D]. 长沙: 湖南大学, 2007. [31] 陈跃辉. 三国吴简腐蚀斑微生物的分离鉴定及其木质素降解性能研究[D]. 长沙: 中南大学, 2009. [32] 胡悦, 李汉文, 喻晨, 等. LiCl-ARTP复合诱变选育高产碱性蛋白酶菌株及其发酵条件优化[J]. 中国酿造, 2021, 40(2): 59-65. doi: 10.11882/j.issn.0254-5071.2021.02.012 [33] KUN R S, GOMES A C S, HILDEN K S, et al. Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation[J]. Biotechnology Advances, 2019, 37(6): 107361. doi: 10.1016/j.biotechadv.2019.02.017 [34] XIA X K, ZHANG Y E, LEI S J, et al. Identification and iterative combinatorial mutagenesis of a new naringinase-producing strain, Aspergillus tubingensis MN589840[J]. Letters in Applied Microbiology, 2021, 72(2): 141-148. doi: 10.1111/lam.13379 [35] WANG J L, CHEN P Z, LI S P, et al. Mutagenesis of high-efficiency heterotrophic nitrifying-aerobic denitrifying bacterium Rhodococcus sp. strain CPZ 24[J]. Bioresource Technology, 2022, 361: 127692. doi: 10.1016/j.biortech.2022.127692 [36] MOTAUNG T E, MOKHOTHU T H. The influence of supermasscolloider on the morphology of sugarcane bagasse and bagasse cellulose[J]. Fibers and Polymers, 2016, 17(3): 343-348. doi: 10.1007/s12221-016-5430-2 [37] 伦晓中, 寇巍, 赵勇, 等. 膨化预处理玉米秸秆的还原糖酶解工艺研究[J]. 环境工程学报, 2013, 7(1): 317-322. [38] 侯进菊. 稻草秸秆酶解糖化残渣基吸附剂的制备及其强化纤维素乙醇生产的机制研究[D]. 上海: 华东师范大学, 2022. [39] 冯磊, 王宁, 寇巍, 等. 底物浓度对玉米秸秆乙醇发酵及残渣甲烷发酵的影响[J]. 环境工程学报, 2019, 13(1): 186-194. doi: 10.12030/j.cjee.201807058 [40] 孙哲, 孙昕, 李鹏飞, 等. 基于提高乙醇产率的常压室温等离子体微藻诱变育种[J]. 中国环境科学, 2021, 41(8): 3733-3739. doi: 10.3969/j.issn.1000-6923.2021.08.030