-
循环活性污泥法(cyclic activated sludge technology, CAST)作为一种基于序批式反应器(sequencing batch reactor, SBR)工艺改良的新技术,因其运行简便、结构紧凑及运行费用低等优点而被广泛应用于城镇污水处理厂中[1-2]。CAST反应池通常由选择池、缺氧池和好氧池3部分构成。在生物选择池内,将原水和混合液按体积比为5∶1的比例混合,使回流污泥处于高负荷条件下,这能有效抑制丝状菌的增殖,避免污泥膨胀[3-4]。由于污泥回流过程中会带有一定量的硝态氮(NO3−-N),反硝化菌在选择池和缺氧池中利用有机物将NO3−-N还原为氮气(N2)的同时,也将原水中的有机物储存为细胞内碳源[5],这为好氧池内的同步硝化-反硝化脱氮(simultaneous nitrification and denitrification, SND)创造了条件。BIAN等[6]同时研究CAST工艺的脱碳与脱氮性能,结果表明,TN主要通过以亚硝酸盐为间歇产物的同步硝化-反硝化机制去除,曝气期间同步硝化-反硝化的发生是由于反应器悬浮载体中存在微缺氧环境所致。WANG等[7]指出通过改变关键操作条件(温度,DO等)可以控制脱氮路径,控制同步硝化-反硝化成为主要脱氮路径,并在不同温度下通过调整有机负荷改善脱氮效率。WANG等[8]在对CAST系统进行脱氮性能的评估中,同样证实同步硝化-反硝化脱氮贡献与操作条件有关,通过优化操作条件可提高同步硝化-反硝化过程的脱氮性能,推测DO在1 mg·L−1时亚硝酸盐氧化菌的抑制作用会影响亚硝酸盐的积累。然而,目前关于CAST工艺的脱氮路径及脱氮特性的报道不多。基于此,对CAST工艺的脱氮性能进行评价十分必要。
为此,本研究以某污水处理厂CAST工艺为研究对象,通过对典型周期内氮组分、污泥浓度等进行测定,结合污泥活性、同步硝化-反硝化速率和饱食-饥饿(feast-famine)等批次实验,评价了该工艺的脱氮性能,以期为我国城市污水处理厂CAST工艺的设计、运行及水厂提质增效提供参考。
某污水处理厂CAST工艺的脱氮性能评价
Evaluation of nitrogen removal performance of the CAST process in a wastewater treatment plant
-
摘要: 通过对某污水处理厂循环活性污泥法工艺(cyclic activated sludge technology, CAST)中选择池、缺氧池和好氧池中氮组分和污泥浓度进行测定,结合污泥活性、同步硝化-反硝化(simultaneous nitrification and denitrification, SND)速率及饱食-饥饿(feast-famine)批次实验,评价该处理工艺的脱氮性能。结果表明,好氧池内同步硝化-反硝化和沉淀过程中的内源反硝化(endogenous denitrification, ED)脱氮对总氮去除的贡献占据主导,分别为(35.50±4.15)%和(62.86±4.13)%,而缺氧池反硝化(DEN)脱氮贡献仅为(1.64±0.05)%;溶解氧(dissolved oxygen, DO)浓度对CAST工艺脱氮性能有极大影响,控制好氧池中DO浓度为1~1.5 mg·L−1时可获得最佳脱氮效果,CAST工艺的TN去除率可达84.51%;饱食-饥饿批次实验证明,饥饿时长为36 h时对乙酸(HAc)的吸收能力最强,可达每1 g VSS消耗0.173 g HAc,依此可推算出CAST工艺的最佳回流比为45%。Abstract: The nitrogen removal performance of CAST process in a wastewater treatment was evaluated by measuring the nitrogen components and suspended solids in the selective, anoxic and aerobic tanks, combined with the simultaneous nitrification and denitrification (SND) rate and feast-famine batch tests. The results showed that the contribution to total nitrogen(TN) removal through SND in aerobic tank and endogenous denitrification at sedimentation stage were dominated, which were (35.50±4.15)% and (62.86±4.13)%, respectively, while the denitrification in anoxic tank only accounted for (1.64±0.05)%. The Dissolved oxygen (DO) concentration had a great influence on the nitrogen removal performance of CAST process. The best nitrogen removal effect happened when the DO concentration in aerobic pool was controlled at 1~1.5 mg·L−1, and the TN removal rate of CAST process could reach 84.51%. The Feast-Famine batch tests proved that the maximum absorption of HAc occurred at the famine duration of 36 h, being up to 0.173 g HAc per 1 g VSS consumption. Based on this result, the optimal reflux ratio could be estimated to be 45%.
-
表 1 进出水水质
Table 1. Quality of influent and effluent
mg·L−1 水样 COD NH4+-N NO3−- N TN PO43--P 进水 188±22 32.7±7.60 — 40.50±9.50 2.98±1.15 出水 20±3 1.60±1.30 6.74±3.59 11.30±2.20 0.07±0.06 表 2 CAST工艺典型周期各途径脱氮贡献占比
Table 2. Contribution of each pathway to nitrogen removal
脱氮方式 脱氮量/g 占比/% 反硝化脱氮 526.01±19.91 1.64±0.05 内源反硝化脱氮 20 093.13±1 291.55 62.86±4.13 同步硝化-反硝化脱氮 11 366.27±1 553.06 35.50±4.15 总脱氮 31 985.40±1 212.71 100 表 3 不同饥饿时长下活性污泥对HAc的吸收量
Table 3. Uptake of HAc by activated sludge at different famine durations
饥饿
时长/h /$ \Delta{M}_{\mathrm{H}\mathrm{A}{\mathrm{c}}_{0}} $
(mg·L−1) /$ \Delta{M}_{{\mathrm{N}\mathrm{O}}_{3}^{-}} $
(mg·L−1) /$ \Delta{M}_{{\mathrm{N}\mathrm{O}}_{2}^{-}} $
(mg·L−1) /$ \Delta{M}_{\mathrm{H}\mathrm{A}{\mathrm{c}}_{1}} $
(mg·L−1) /$ \Delta{M}_{\mathrm{H}\mathrm{A}{\mathrm{c}}_{2}} $
(mg·L−1)5 335.16 79.35 74.87 91.31 243.84 24 394.68 101.39 88.34 128.47 266.2 36 468.91 103.59 94.3 124.77 344.14 48 407.25 102.71 93.03 124.46 282,79 72 376.14 96.54 84.47 121.76 254.38 表 4 CAST、A2/O和氧化沟工艺脱氮指标
Table 4. Denitrification indicators of CAST, A2/O and oxidation ditch processes
mg·L−1 工艺 进水COD 进水NH4+-N 进水TN 出水COD 出水NH4+-N 出水TN CAST 188±23 32.70±7.60 40.50±9.50 20±3 1.60±1.30 11.40±2.20 A2/O 249±38 36.12±5.38 44.36±4.87 18±3 0.32±0.26 8.30±1.26 氧化沟 643±136 35.12±4.89 47.50±5.33 21±3 1.07±0.57 8.47±1.01 -
[1] 邓伟斌. 南方某污水处理厂CAST工艺提标改造[J]. 中国给水排水, 2016, 32(16): 3-4. [2] 王俊, 王琴, 陈杰云, 等. CAST工艺处理小城镇污水的运行模式优化研究[J]. 中国给水排水, 2011, 27(19): 17-20. [3] MERVYN C, 朱明权. 循环式活性污泥法(CAST)的应用及其发展[J]. 中国给水排水, 1996, 12(6): 4-10. doi: 10.3321/j.issn:1000-4602.1996.06.001 [4] 孙剑辉, 闫怡新, 徐文刚. 循环式活性污泥法(CAST)的设计要点[J]. 中国给水排水, 2003, 19(1): 89-91. doi: 10.3321/j.issn:1000-4602.2003.01.028 [5] 孟栋. 利用剩余活性污泥合成聚羟基脂肪酸酯的研究进展[J]. 生物工程学报, 2019, 35(11): 2165-76. [6] BIAN D J, GUO H Y, ZHANG W H, et al. Simultaneous C and N removal in a hybrid CAST reactor[C]. 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, 2009: 5145-5146. [7] WANG Y Y, ZHANG Z X, YAN M, et al. Impact of operating conditions on nitrogen removal using cyclic activated sludge technology (CAST)[J]. Journal of Science and Health Part A:Toxic/Hazardous Substances & Environmental Engineering, 2010, 45(3): 370-376. [8] WANG S P, YU J J, LIU Y H, et al, Achieving and maintaining of short-cut nitrification in a cyclic activated sludge system[J]. Water Science and Technology, 2011, 64(10): 2016-2022. [9] 国家环境保护局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002. [10] 钱亮, 贺北平, 刘瑞东, 等. 西安市第四污水处理厂一期工程升级改造经验总结[J]. 中国给水排水, 2016, 32(2): 74-78. [11] 田敏, 崔涛, 吕恺, 等. 西安市第四污水处理厂A2/O工艺的脱氮性能评价[J]. 中国给水排水, 2020, 36(13): 1-6. [12] 徐凤, 李佩武, 刘艳辉. 曝气量对CAST工艺脱氮性能的影响[J]. 天津城市建设学院学报, 2010, 16(4): 281-284. [13] 彭党聪, 王志盈, 袁林江. 活性污泥系统非平衡增长理论及其应用[J]. 中国给水排水, 2001, 17(2): 19-21. doi: 10.3321/j.issn:1000-4602.2001.02.006 [14] MAJONE M, DIRCKS K, BEIM J. Aerobic storage under dynamic conditions in activated sludge processes. The state of the art[J]. Water Science & Technology, 1999, 39(1): 61-73. [15] 拉马尔奥, 王凤石. 废水处理概论[M]. 北京: 中国建筑工业出版社, 1982.