-
纺织印染工业是我国的传统支柱产业[1]、重要民生产业和创造国际化新优势的产业,在拉动内需、满足人民衣着需求和外贸创汇等方面作出了巨大贡献。然而,纺织工业存在着生产耗水量大、废水排放量大、污染物排放量大和废水处理难度大的四大用水问题[2-5],其产生的具有高色度、高碱度、高COD、高含盐量及含重金属离子等特性的印染废水对于自然环境和人体有着严重危害[6-9],且废水成分复杂、中间产物繁多,包括芳香类化合物、苯胺类、氯化物或溴化物以及多种含有带氢键的物质等[10-13],属于难处理工业废水之一[14]。近年来随着资源利用、节能环保等刚性约束日益增强,国家对纺织印染废水的排放和治理提出了更高的要求。国务院颁布的“水十条”将印染行业列为重点整治行业之一,并提出行业废水需深度处理回用,《印染行业“十四五”发展指导意见》指出要坚持绿色发展,加强污染防治,促进印染行业水重复利用率进一步提高到45%,所以印染废水的中水回用和近零排放具有重要意义。
目前,印染废水通常采用混凝沉淀+水解酸化+生物化学法进行常规处理[15-17],生化出水采用双膜法(膜生物反应器(membrane bioreactor,MBR)/高强度浸没式膜过滤(high-strength submerged membrane filtration,HMF)+反渗透/纳滤(RO/NF))处理工艺[18-20]进行中水回用,对RO/NF浓水处理至纳管达标排放。但将处理后的RO/NF浓水直接排放不仅会带来无机盐资源浪费,还会造成环境破坏[21]。最近研究出的一种小孔径超滤膜能够实现无机盐与有机小分子的高效分离,其孔径介于超滤膜与纳滤膜之间,截留分子质量为500~2 000 Da,但经此膜处理后的浓缩液污染物浓度上升到一个新的水平,通过常规的深度处理很难达标排放。
芬顿氧化法具有处理效率高、操作简单、运行便捷等优点,在处理印染废水时,能够降解污水中存在的持久性有机污染物,具有十分广阔的应用前景[22-27]。本研究采用芬顿法、物化法及类芬顿法对印染废水小孔径超滤膜浓缩液进行深度处理研究,寻求最佳处理方案及其最优条件,保障产水水质达到《纺织染整工业水污染物排放标准》(GB 4287-2012)排放要求,为印染废水近零排放提供工程实践依据。
-
实验用水取自浙江绍兴某印染厂,印染废水经预处理后,进入HMF和NF工艺,再经过小孔径超滤膜处理得到浓缩液(以下简称浓缩液)即为实验用水,具体流程如图1所示。实验4次水样命名为S1、S2、S3和S4,分别进行芬顿正交实验、单因素实验、最优条件的确定和验证实验及其他类比实验,水质如表1所示,由表1可知,浓缩液的水质恶劣,所含的污染物质被进一步浓缩,浓缩液呈现高色度、高COD特性,且水质波动性较大。
经超滤膜处理后的浓缩液碱度过高,直接采用芬顿氧化处理时,在酸性条件下如不进行除碱处理,一方面在反应过程中将会产生大量气泡导致添加的药剂大部分会随着气泡溢出且不能与水体中的污染物质充分接触反应,从而导致污染物去除效果差;另一方面HCO- 3离子是羟基自由基的抑制剂,会捕获羟基自由基,从而导致催化氧化作用下降[28]。当pH<4.0时,水中的CO2- 3和HCO- 3转化为H2CO3[29],加入H2SO4至pH<4.0后持续曝气2 h除去游离态的CO2,废水中碱度可完全去除。
-
本实验采用芬顿法,如图2所示。将去除碱度的浓缩液投加酸碱调节设定的实验pH,加入定量的七水硫酸亚铁(FeSO4·7H2O)和过氧化氢(H2O2)试剂,采用磁力搅拌形式辅助反应到达设定时间后继续投加等量FeSO4·7H2O和H2O2试剂,总反应时长2 h。结束后将溶液回调至设定pH,加入0.1%质量浓度为1 g·L−1的聚丙烯酰胺(polyscrylamide,PAM),经慢速搅拌10 s均匀后静置0.5 h,根据测定的水质结果分析其处理效果。采用芬顿法、物化法和类芬顿法对水样进行处理,检测水质并进行技术经济论证。
1)正交实验。设置水样反应初始pH、反应回调pH、H2O2投加量、FeSO4·7H2O投加量和2次加药时间间隔时间等5个因素,考察不同因素对芬顿法处理浓缩液的影响程度和效果,匹配去除色度和COD的最优方案。
2)单因素实验。正交实验确定水样色度和COD去除效果最佳的影响因素组,在此基础上分别设置各H2O2投加量、FeSO4·7H2O投加量、反应初始pH、2次投加药剂间隔时间及反应回调pH等单一因素的不同量,分别对色度和COD进行单因素实验,进行单因素实验时其他因素量不变以确定最佳去除效果的因素方案,每个因素3次平行实验,检测出水水质指标确定最优结果。
将H2O2投加量分别设定为1 000、1 500、2 000、2 500、3 000 mg·L−1和500、1 000、1 500、2 000、2 500 mg·L−1,FeSO4·7H2O投加量分别设定为4.09、8.18、12.27、16.36、20.45 g·L−1,反应初始pH分别设定为3.0、3.5、4.0、4.5、5.0和2.5、3.0、3.5、4.0、4.5,2次投加药剂间隔时间分别设定为20、30、40、50、60 min,反应回调pH分别设定为6.5、7.0、7.5、8.0、8.5分别进行实验,将各单因素实验处理前后的污染物质量浓度进行测定,测定多个平行样取值以减少误差。
3)最优条件的确定和验证。单因素实验确定最佳去除色度和COD的对应因素条件,根据条件再次划分影响因素水平,分别测定pH、COD、色度、氨氮、总氮、总磷、SS、六价铬、苯胺和二氧化氯等水质指标,判定处理后水样综合水质最优的因素条件。
4)其他类比实验。物化实验采用絮凝剂处理去除碱度的水样,检测产水水质,对比芬顿法的处理效果和经济性。取去除碱度的水样分别调节适当pH后分别加入定量聚合硫酸铁(polymeric ferric sulfate,PFS)和聚合氯化铝(polymeric aluminium chloride,PAC)搅拌均匀,加入定量PAM搅匀静止后取上清液。
类芬顿实验采用活性炭(activated carbon,AC)负载六水三氯化铁(FeCl3·6H2O)作为催化剂代替FeSO4·7H2O,催化剂与H2O2加入待处理水样中,在铁离子含量相同情况下与芬顿对比处理效果以及经济适用性。
-
水样pH、电导率、浊度分别使用上海雷磁pHSJ-4F仪、上海雷磁DDSJ-308A电导率仪、哈希2100Q便携式浊度仪进行测定;COD使用兰州连华5B-1F(VB)仪器,采用快速消解分光光度法(HJ/T 399 -2007)进行测定;色度使用水质色度的测定-铂钴比色法(GB/T 11903-1989)进行测定;SS使用水质悬浮物的测定-重量法(GB/T 11901-1989)进行测定;碱度使用水质钙和镁总量的测定-EDTA滴定法(GB7477-1987)进行测定;氨氮使用水质氨氮的测定-纳氏试剂分光光度法(HJ 535-2009)进行测定;总氮使用水质总氮的测定-碱性过硫酸钾消解紫外分光光度法(HJ 636-2012)进行测定;总磷使用水质总磷的测定-钼酸铵分光光度法(GB 11893-1989)进行测定;六价铬使用水质六价铬的测定-二苯碳酰二肼分光光度法(GB 7467-1987)进行测定;二氧化氯使用水质二氧化氯和亚氯酸盐的测定-连续滴定碘量法(HJ 551-2016)进行测定;苯胺使用水质苯胺类化合物的测定-N-(1-萘基)乙二胺偶氮分光光度法(GB 11889-1989)进行测定。
在各实验前后,收集前后水样,计算污染物质的去除率,去除率R由式(1)进行计算。
式中:Cb表示反应前的污染物质量浓度,mg·L−1,Ca表示为反应后的污染物质量浓度,mg·L−1。
-
本研究采用表2所示的5因素4水平的因素水平表(Lg(45))进行正交实验,以初步探究芬顿法最佳处理效果影响因素参数值。其中H2O2投加量与COD的质量比约1∶3,即H2O2初始投加量500 mg·L−1,后每个水平增加500 mg·L−1。FeSO4·7H2O投加量采用与H2O2初始量摩尔比1:1,即FeSO4·7H2O初始投加量4.09 g·L−1,后每个水平对应增加。正交实验结果如表3所示。
根据正交实验极差分析结果(表4和表5)可知,无论是水质色度去除效果还是COD去除效果,芬顿法处理各因素的影响程度较大的都为H2O2和FeSO4·7H2O投加量,其他因素影响效果远小于前两者。实验结果初步确定色度去除的最优方案为反应初始pH=4.0、FeSO4·7H2O投加量为12.27 g·L−1、H2O2投加量为2 000 mg·L−1、投药间隔时间为40 min及反应回调pH=7.5,其中质量比COD∶H2O2=1∶1.4,摩尔比H2O2∶FeSO4·7H2O=4∶3;COD去除的最优方案组为反应初始pH=3.5、FeSO4·7H2O投加量12.27 g·L−1、H2O2投加量1 500 mg·L−1、投药间隔时间40 min及反应回调pH=7.5,其中质量比COD∶H2O2=1∶1.1、摩尔比H2O2∶FeSO4·7H2O=1∶1。
-
1) H2O2投加量。H2O2投加量是对反应体系影响最大的因素。由图3可见,随着H2O2投加量增加,水样的色度、COD去除效果呈现先增大后减小的趋势。H2O2为芬顿体系中的氧化剂,投加量可直接影响水样的最终处理效果,体系主反应为式(2),Fe2+主要起催化作用,Fe2+催化H2O2生成具有强氧化性的·OH氧化水中有机物质为CO2和H2O[30]。当H2O2投加量过低时,产生的·OH较少难以氧化大量的有机物质;随着H2O2含量逐渐增加,·OH产量升高,氧化效果增强;当H2O2投加量过多时,将出现处理效果减弱现象,体系中式(3)~(5)反应强,此时Fe3+消耗大量H2O2生成·O2H同时抑制·OH的产生,而过多的H2O2还会继续与·OH和·O2H发生自消耗反应,使H2O2利用率大大下降[31]。最终确定去除色度最优H2O2投加量2 500 mg·L−1,去除COD最优H2O2投加量2 000 mg·L−1。
2) FeSO4·7H2O投加量。FeSO4·7H2O在体系中主要起催化作用。由图4可见,水样中色度和COD的去除率随FeSO4·7H2O的增加呈现先上升后下降趋势。Fe2+促进H2O2有效分解生成·OH,催化剂的投加量直接影响H2O2的利用率和氧化效果。当Fe2+含量过低时,不利于H2O2正向分解,·OH生成速率较慢含量较少,故水中有机物降解不足;随FeSO4·7H2O含量增大,H2O2分解速率不断加快,但达到一定量时过多的Fe2+会使处理效果降低,Fe2+使H2O2快速分解生成的·OH又与过量的Fe2+进行反应式(6),大量的·OH被Fe2+消耗的同时也会与H2O2发生自消耗反应,·OH的有效利用率下降,处理效果变差[32]。最终确定去除色度和COD最优FeSO4·7H2O投加量为16.36 g·L−1。
3)反应初始pH。芬顿反应体系受pH影响较强[33],一般初始环境为酸性才能发挥较高氧化作用,针对浓缩液,设定不同初始反应pH会影响芬顿反应进程。由图5可得,pH的增大对水样中色度和COD的降解效果整体呈先增后减趋势。反应初始pH过低时,大量的H+会抑制反应式(3)的正向进行,减缓Fe3+转化为Fe2+的再生过程,从而抑制H2O2有效催化分解;反应初始pH过高时,不利于反应式(2)正向进行,从而抑制·OH的产生,且高pH时H2O2易发生非有效分解,体系氧化效果减弱。结果表明,当pH为3.5~4.5时色度去除效果较好,在pH为4时COD去除效果最佳,剩余COD为130 mg·L−1,对应去除率可达88.5%。
4) 2次投加药剂时间间隔。分2次投加药剂于反应体系中,药剂能够更加均匀地溶于液体中,利用率也能够相应提高,其加药时间间隔会对反应体系有所影响。由图6可见,加药时间间隔对整体水质去除效果影响不大,但间隔时间过长或过短都会影响反应的最终处理效果。加药时间间隔时间过短时,第一次投加药剂还未完全与水样中的污染物进行反应,氧化降解不完全,此时再次加入新的药剂将会影响二次反应的进程,·OH也会发生不利的消耗;加药时间间隔过长将会影响整体降解反应的连续性,氧化分解的诸多中间污染物没能够及时进行彻底降解,相互反应也将带来整体的去除效果下降。加药时间间隔在40~60 min时,体系对水样的整体去除效果表现较优。
5)反应回调pH。芬顿体系的最后一步为调节产水pH并添加絮凝剂,其主要作用是使污水中存在的大量Fe2+和Fe3+以及其中的污泥进行絮凝沉淀,从而水质澄清。由图7可以看出,当产水pH调节中性及碱性时都有明显的去除效果,由于反应后体系内存在的铁离子以Fe3+铁离子为主,沉淀的最优pH为6.5~7.5,与实验结果相匹配,最终得出出水pH调节在6.5时,整体降解效果最优。
通过前两阶段正交实验和单因素实验研究芬顿法去除色度和COD最优条件,2种方式的影响因素最优条件相似。在单因素实验批次水样中,当反应初始pH=4.5、H2O2投加量2 500 mg·L−1、FeSO4·7H2O投加量16.36 g·L−1、加药时间间隔40 min和反应回调pH=6.5时,色度去除效果最佳;当反应初始pH=4.0、H2O2投加量2 000 mg·L−1、FeSO4·7H2O投加量16.36 g·L−1、加药时间间隔60 min和反应回调pH=6.5时,COD去除效果最佳。
-
工业废水的处理往往不是根据单一水质作为评判标准,需要对多项水质指标进行综合评测,从而确定最终的影响因素最优条件。根据之前通过色度和COD水质指标得到了2个最优条件,已将范围缩小并确定质量比COD∶H2O2=1.4~1.8,摩尔比H2O2∶Fe2+=0.8~1,进而调整反应初始pH、H2O2投加量和投药间隔时间,进行最终的实验验证,实验条件见表6,实验结果见表7。
根据表7可得,浓缩液经过优化条件后的芬顿工艺处理后,其色度、COD、总氮、总磷、SS和苯胺等都有明显的去除效果。反应过程加入了大量的Fe2+,最终物化形成大量铁泥沉降,但液体中仍有铁离子存在,可能存在部分有机物矿化反应导致离子量增加,综合产生电导率上升现象。氨氮出现不减反增现象可能由于在芬顿氧化过程中部分含氮物质反应转化为氨氮所致。总体而言,在6个条件实验的去除效果相差不大且均符合《纺织染整工业水污染物排放标准》(GB 4287-2012)排放要求,由此可见,采用芬顿法可用于处理印染废水膜浓缩液,效果良好且稳定性较高。综合比较,实验条件4的整体处理效果较优,即H2O2投加量为3 000 mg·L−1、FeSO4·7H2O投加量为25.12 g·L−1、反应初始pH=4、反应回调pH=6.5及加药时间间隔60 min,其中质量比COD∶H2O2=1∶1.3、摩尔比H2O2∶Fe2+=1∶1。
-
现已确定芬顿处理浓缩液的最优条件,再进行物化实验和类芬顿实验与其对比,综合判定各工艺的处理效果和技术经济适用性。物化实验分别采用质量百分比为10% PFS和6% PAC投加到已去除碱度并调节适当pH范围后的膜浓缩液中,投加量均为1%,反应10 min后加入质量浓度1 g·L−1的PAM,投加量为0.1%,轻搅拌后自然沉淀取上清液检测。类芬顿实验采用共浸渍法将FeCl3·6H2O负载于活性炭作为催化剂[34],代替传统芬顿催化剂FeSO4·7H2O,FeCl3·6H2O多作为类芬顿反应体系中负载铁盐的种类之一[35-36],在处理印染废水方面也有一定应用[37]。FeCl3·6H2O和活性炭制备催化剂投加量分别为19 g·L−1和50 g·L−1,根据芬顿最佳条件,投加量确定类芬顿H2O2投加3 300 mg·L−1,催化剂投加35 g·L−1。
由表8实验结果可知,在最优条件下处理浓缩液,COD去除率可达90%以上,色度去除率可达95%以上。相比之下,采用PFS和PAC物化处理效果COD去除率均小于50%,色度去除效果同样不良,PFS和PAC作为无机高分子混凝剂主要作用为絮凝沉淀,投入水中可形成大量络合离子,对水中胶体和颗粒物具有高度电中和及桥联作用,从而吸附沉降部分COD和悬浮物,但无法进行深度处理,需配合其他工艺联合使用才能得到优良效果。类芬顿实验兼具高级氧化和吸附作用,COD与色度去除率均高达97%以上,但各药剂投加量与芬顿相对应增添了大量活性炭成本,调控成本同时保障处理效果可为膜浓缩液提供处理方案。
-
采用同批水样对4种方法吨水处理费用进行分析,原水COD值为2 694 mg·L−1,根据目前市场价格,各药剂单价如下:H2SO4为600元·t−1,H2O2(30%)为1 200元·t−1,FeSO4·7H2O为230元·t−1,NaOH为5 000元·t−1,PAM为15 000元·t−1,AC为8 000元·t−1,FeCl3·6H2O为1 200元·t−1,PFS为535元·t−1,PAC为310元·t−1。列出各法所需药剂用量见表9,则PFS和PAC处理成本分别为12.95 元·t−1和12.60 元·t−1,但效果不佳;初步类芬顿法在不涉及类芬顿催化剂及其相关药品再利用的情况下,类芬顿法的处理成本为319.98元·t−1,类芬顿法需进一步优化,综合考虑负载催化剂的用量和重复使用性以及相关药品的再利用情况,进而增强其实用性;芬顿法按照实验最终得出最优因素条件下处理成本为31.82元·t−1,具有一定的实际应用性。
-
1)采用芬顿法处理印染废水小孔径超滤膜浓缩液,H2O2投加量对处理效果的影响最大。当COD∶H2O2质量比为1∶1.3、H2O2∶Fe2+摩尔比为1∶1、反应初始pH为4.0及反应回调pH为6.5时,处理效果最佳。
2)在芬顿法的最优条件下,COD去除率达90%以上,色度去除率达95%以上,产水氨氮、总氮、总磷、六价铬、SS、二氧化氯和苯胺等均达到《纺织染整工业水污染物排放标准》(GB 4287-2012)排放要求,处理效果稳定。
3)采用物化法处理膜浓缩液的效果不佳,类芬顿法处理膜浓缩效果较好但经济成本较高,可优化工艺为后续对膜浓缩液处理提供工程参考。
芬顿法处理印染废水小孔径超滤膜浓缩液
Fenton process treating small pore-sized ultrafiltration membrane concentrate of printing and dyeing wastewater
-
摘要: 印染废水属于难处理工业废水,具有排放量大、污染物含量高等特性。在可持续发展的背景下,印染废水实现零(近零)排放成为必然趋势。目前采用催化氧化法处理膜浓缩液是实现零(近零)排放的常规方法,但该方法存在催化药剂投加量大、处理效果差及二次污染等问题。采用芬顿法,以印染废水小孔径超滤膜浓缩液为实验用水,考察了H2O2和FeSO4·7H2O投加量、pH及加药时间间隔等因素对处理效果的影响。结果表明,在COD∶H2O2质量比为1∶1.3、H2O2∶Fe2+ 摩尔比为1∶1,反应初始pH=4.0,反应回调pH=6.5,加药时间间隔60 min的条件下,处理效果最优,出水COD、色度、氨氮和总氮等主要水质指标均达到《纺织染整工业水污染物排放标准》(GB 4287-2012)排放要求,出水水质稳定,较其他条件能够获得较高的经济效益。与此同时,将芬顿法与物化和类芬顿法进行了对比分析,结果表明,芬顿法处理印染废水膜浓缩液具有较高的经济性,为进一步工程实践提供依据。Abstract: Printing and dyeing wastewater is a kind of refractory industrial wastewater, which has the characteristics of large discharge and high pollutant content. In the context of sustainable development, zero (nearly zero) discharge of printing and dyeing wastewater has become an inevitable trend. At present, the treatment of membrane concentrate by catalytic oxidation is a conventional method to achieve zero ( nearly zero) emission, while it has the problems of large dosage of catalytic agent, poor treatment effect and secondary pollution. In this study, Fenton method was used to treat the small pore-sized ultrafiltration membrane concentrate of printing and dyeing wastewater. The effects of H2O2 and FeSO4·7H2O dosage, pH and dosing time interval on the treatment effect were investigated. The results showed that the best treatment effect occurred at mass ratio COD : H2O2 of 1:1.3, molar ratio H2O2 : Fe2+ of 1:1, initial pH 4.0, callback pH 6.5 and dosing time interval of 60 min. All the main water quality indexes such as COD, color, ammonia nitrogen and total nitrogen in the effluent could meet the emission requirements of ‘Discharge Standard of Water Pollutants for Textile Dyeing and Finishing Industry’ (GB 4287-2012). The effluent quality was stable, this method could obtain higher economic benefits than other conditions. At the same time, this study compared the Fenton method with the physicochemical and Fenton-like methods. The results showed that the Fenton method had higher economy in treating membrane concentrate of printing and dyeing wastewater, which provides a basis for further engineering practice.
-
随着工业化和城镇化的加速推进,对废水的集中处理备受关注[1]。1932年开始应用的Wuhrmann工艺是最早的脱氮工艺,称之为O/A工艺,遵循硝化、反硝化的流程顺序而设置[2]。然而,在硝化过程中需要供氧,反硝化过程中需要外加碳源,这造成了能耗和碳源的双重浪费。对此,将生物单元的顺序进行倒置,便产生了A/O工艺,A/O工艺成为最早使用的生物脱氮技术。这是工艺单元不同排列顺序构成组合工艺的开端,后续发展的废水生物处理工艺几乎均为厌氧、缺氧/水解、好氧单元的组装(图1)。典型的工艺有A/A/O和O/A/O,组合工艺中的不同单元反应器排序会影响碳源利用和脱氮效果,因此,需要根据废水组成与处理目标选择合适的工艺技术。
厌氧置前的工艺可以控制碳源转化为小分子有机物或者甲烷,提高废水的可生化性,为后续反硝化反应提供碳源。HAO等[3]采用A/A/O工艺处理制革废水,考察了沿程溶解性有机物的浓度变化,发现A1的厌氧水解单元能优先去除小分子量的物质和蛋白质,后续的A/O工艺可更彻底地去除残余有机物。O/A/O工艺可在O1单元反应器中好氧降解部分有机物,实现含氮有机物的氨化,有助于硝化反应的实现。李国令等[4]对比了O/A/O和A/O工艺处理同一城镇污水的结果,在O1单元反应器中降解了大部分有机物,可为O2提供良好的硝化环境,因此,O/A/O脱氮效果优于A/O工艺。A/A/O工艺对高毒性工业废水的处理不具有优势,这是因为A1中的微生物增殖速度慢,难以消除毒性抑制作用。兼顾脱氮和除磷是A/A/O工艺的特征,脱氮效率受回流比的影响,无法实现完全脱除总氮,也存在着与除磷菌在碳源利用分配之间的矛盾。然而,前置好氧的O/A/O工艺因大幅度削减了毒性物质而有利于后续单元硝化菌的生长。与A/A/O工艺不同的是,该工艺不能利用废水中存在的易降解有机物作为碳源进行反硝化脱氮,造成一定程度的碳源浪费。由此可见,前置厌氧或者前置好氧对后续的脱氮工艺有着不同的影响机制,A/A/O工艺多用于生活污水[5-6],而O/A/O工艺可能更适合于工业废水[7]。
焦化废水是典型的高碳氮比工业废水,含有多种高浓度有毒物质。其中的有机污染物主要包括酚类[8]、苯系物、杂环芳烃和多环芳烃等物质[9];其无机物中,S2-、SCN−、CN−等均为典型的毒性物质,并且对废水的COD值有较大的贡献[10]。LI等[11]研究了在相同水力停留时间下A/A/O与A/O工艺分别对焦化废水中COD和NH4+-N的去除效果,发现两者的去除率几乎相同,但A/A/O比A/O工艺对总氮的去除效果更好。汤清泉等[12]比较了A/A/O与O/A/O工艺对焦化废水的处理效果,认为碳氮比是决定二者对总氮去除效果的关键因素。当碳氮比为15~20时可以选择A/A/O工艺,当碳氮比为20~35时则O/A/O工艺效果更好。其原因是:前置好氧单元可以去除高碳氮废水中的有机物而降低后续处理的负荷。本课题组在长期实践的基础上开发了针对焦化废水处理三污泥系统的好氧-水解-好氧流化床脱氮工艺(命名为O/H/O工艺,其中,O1为除碳氨化单元,H为水解脱氮单元,O2为完全硝化单元) [13-15],已有 5个实际工程应用案例,最长运行时间达到12年。O/H/O工艺具有独特的三相分离器,可以保证在不需要污泥回流的情况下实现各个单元反应器独立的污泥特征和生物量,节省了能耗,并促进了污泥生态与水质环境的相容性[16]。新型结构生物三相流化床作为O1反应器,在进水有机负荷达到2.4 kg ·(m3·d)−1 的运行情况下,其耗氧有机物的去除率可以达到93.0%以上,反应器中氧的利用率为50%~60%。面对高毒性、高浓度的焦化废水,A/A/O工艺需要1~2倍稀释后才能进入生物系统,而O/A/O或O/H/O工艺则不需要稀释。
厌氧、水解、好氧单元不同顺序的排列组合构成了不同的废水生物处理工艺技术。在废水性质转化方面,厌氧单元可提高B/C值[17],而好氧单元可降低B/C值,分别有利于异养反硝化与硝化反应;在脱氮模式中,要考虑硝化反硝化[18]、短程硝化反硝化[19]、厌氧氨氧化[20]、自养反硝化[21]、好氧反硝化[22]等原理的选用、协同及条件控制。A/A/O工艺和O/A/O工艺都需要回流才能保持反应器内的污泥浓度,A/A/O工艺的运行属于单污泥系统,O/A/O工艺中设置了2个二沉池,属于双污泥系统,而O/H/O工艺属于三污泥系统。根据废水的性质选择合适的工艺,可以在达标排放的基础上实现能耗与物耗的减量化。由于目前缺乏不同工艺特征的比较,为此,本文分析了不同工艺的碳源利用模式和脱氮模式,提出了一种代表性的焦化废水组成并通过研究A/A/O、O/A/O、O/H/O的组合工艺对焦化废水中核心污染物的去除及其能耗分配关系,阐明了工艺技术选择的原则,为复杂工业废水生物处理技术的工艺优选提供参考。
1. 研究方法
1.1 数据来源
本课题组对国内38个焦化厂进行了实地调查和数据采集,分析了焦化废水的水质特征与地域差异的关系,发现华北、华中、华东地区废水中的COD值略高,华中和西南地区废水的氨氮浓度略低[23]。焦化废水中的含氮物质主要由氨氮、有机氮、SCN−、CN−等组分构成,由于蒸氨工艺的差异,含氮物质的比例各有不同。综合国内外的焦化废水原水水质[24-26],结合我们的调查,为了消除差异性和增强可比性,本文定义代表性的焦化废水组成为: COD为4 000 mg·L−1,苯酚、
-N、SCN−、CN−、S2−以及总氮的质量浓度分别为800、 100、 500、 50、 50 和280 mg·L−1。NH+4 A/A/O工艺借鉴宝武韶钢公司的运行数据,水量为60 m3·h−1,3个单元反应器的水力停留时间分别为34、22和52 h,COD负荷分别为1.22、1.46和0.47 kg·(m3·d)−1;O/H/O工艺参考实验室和焦化厂的运行数据[27-28],废水处理量为60 m3·h−1,3个单元反应器的水力停留时间分别为36、40和24 h,COD负荷分别为2.30、0.38和0.55 kg·(m3·d)−1;选取韩国某厂实验室数据作为O/A/O工艺的案例[29],实验规模为0.03 L·h−1,3个反应器的水力停留时间分别为28.8、12和19.2 h,进水中添加KH2PO4和Na2CO3以维持碱度,在缺氧池中加入3倍总氮浓度的甲醇作为碳源,工艺装置总水力停留时间为2.5 d。通过实际与假设相结合的方法进行分析,以3个焦化厂的实际废水数据(见表1)来剖析不同工艺的碳源利用和脱氮模式。O/A/O和O/H/O工艺的反应器排列顺序相同,反应器的性能和运行模式不同。因此,在分析碳源利用和脱氮模式时只考虑A/A/O与O/A/O的对比,而在能耗分析时,再考虑O/A/O与O/H/O的差异性。
表 1 3种工艺实际运行水质Table 1. Actual operating water quality in three processesmg·L−1 工艺 COD 挥发酚 -NNH+4 SCN− CN− A/A/O 1 727±60 742±69 173±12 175±18 26.2±4.5 O/A/O 2 300±100 635±15 235±15 375±25 - O/H/O 3 451±215 973±74 245±15 450±17 25±3 注:以集水调池的水质作为生物上水。 1.2 过程分析
根据污染物的降解途径计算了污染物的COD当量和TN当量,结果见表2,在生物系统里,SCN−和CN−中的氮转化为氨氮[30-31]。
表 2 不同污染物对COD和总氮的贡献Table 2. Contribution of various pollutants to COD and nitrogen mg·mg-1当量 挥发酚 SCN− CN− S2− NO−3 NO−2 COD当量 2.380 1.100 0.615 2.000 - 0.348 N当量 - 0.241 0.538 - 0.226 0.304 通过分析不同污染物对COD和总氮的贡献,检验废水组成的合理性。如式(1)所示,废水中的含氮量主要由
、NO−3 、NO−2 、SCN−、CN−以及其他有机氮提供。如式(2)所示,废水中的COD主要由有机物和还原性无机离子构成,其中,挥发酚、苯系物、SCN−、S2−的贡献比例比较大,部分难降解的有机物也导致生物出水中检出较高的COD值。NH+4 CTN= 0.226CNO−3+0.538CCN−+0.241CSCN−+CNH+4−N+0.304CNO−2+C其他含氮物质 (1) CCOD= 2.380Cphenol+1.100CSCN−+0.615CCN−+2.000CS2−+0.348CNO−2+C其他有机物 (2) 式中:CTN、
、CNO−3 、CNO−2 、CCN− 、CSCN− -N、C其他含氮物质分别表示总氮、硝酸根、亚硝酸根、氰化物、硫氰化物、氨氮以及其他含氮物质的质量浓度,mg·L−1;CCOD为废水中耗氧有机物(以COD计)的质量浓度,mg·L−1;Cphenol、CS2−、C其他有机物分别表示废水中苯酚、硫离子以及其他有机物的质量浓度,mg·L−1。CNH+4 在每一个单元反应器的出水中,都通过以上的方法进行检验,以确定废水组成的合理关系。
1.3 数据处理
根据式(3)~式(7)计算A/A/O工艺中每个反应器对污染物i总体去除的贡献率,分别以
、PiA1 、PiA2 表示。根据式(8)~式(13)计算O/A/O每个反应器对污染物i总体去除率,分别以PiO 、PiO1 、PiA 表示。PiO2 PiA1=(1+R1)×CiA1-I-CiA1-ECi0×100% (3) PiA2=(1+R1+R2)×CiA2-I-CiA2-ECi0×100% (4) PiO=(1+R1+R2)×CiO-I-CiO-ECi0×100% (5) CiA2-I=(1+R1)×CiA1-E+R1×CiO-E1+R1+R2 (6) CiO-I=CiA2-E (7) PiO1=(1+R3)CiO1-I-CiO1-ECi0×100% (8) PiA=(1+R4+R5)×CiA-I-CiA-ECi0×100% (9) PiO2=(1+R4+R5)×CiO2-I-CiO2-ECi0×100% (10) CiO1-I=Ci0+R3CiO1-E1+R3 (11) CiA-I=CiO1-E+(R4+R5)×CiO2-E1+R4+R5 (12) CiO2-I=CiA-E (13) 式中:i为各种污染物(COD、苯酚、硫氰化物、氰化物、氨氮、亚硝酸根、硝酸根和总氮)。R1和R2分别为A/A/O工艺中污泥回流比和硝化液回流比,污泥回流比取值1,硝化液回流比取值3;R3、R4、R5分别为O/A/O工艺中初沉池回流至O1的污泥回流比、二沉池回流至A的污泥回流比以及硝化液回流比,均取值为1。C0i为未处理废水中污染物i的质量浓度,mg·L−1;
和CiA1−I 、CiA1−E 和CiA2−I 、CiA2−E 和CiO−I 、CiO−E 和CiO1−I 、CiO1−E 和CiA−I 、CiA−E 和CiO2−I 分别表示A1、A2、O反应器和O1、A、O2反应器中污染物i的进水和出水的质量浓度,mg·L−1。CiO2−E 排除水力停留时间对工艺对比造成差异,假设A/A/O与O/A/O工艺具有相同的总水力停留时间,结合文献调研和实际考虑,每个工艺各个反应器的体积比为1:1:2,处理水量为60 m3·h−1。
污染物在反应器中会进行到氨化碳氧化、亚硝化氮氧化或硝化氮氧化3种不同的处理阶段,不同阶段的耗氧量分别根据式(14)~式(16)进行计算。
OS=[a⋅KCOD⋅CCOD+CDO]Q24 000 (14) OS=[a⋅KCOD⋅CCOD+b(1-Kd)×(CN+CCN1.86+CSCN4.14)+(1+RS+Rd)⋅CDO]Q24 000 (15) OS=[a⋅KCOD⋅CCOD+c(1-Kd)×(CN+CCN1.86+CSCN4.14)+(1+RS+Rd)⋅CDO]Q24 000 (16) Kd=(1-NoNi)×100% (17) 式中:Q为生物系统进水量,m3·d−1;a、b、c分别为氧化COD、氨氮到亚硝氮、氨氮到硝态氮的有关的耗氧系数,在本研究中为1.4、3.43、4.57;Os为好氧单元的理论需氧量,kg·h−1;CCOD为耗氧有机物(以COD计)的质量浓度,mg·L−1;CDO为好氧单元溶解氧的质量浓度,mg·L−1;KCOD为COD去除率,%;Rs、Rd分别为活性污泥和硝化液回流比;CN、CCN、CSCN分别为以脱氮为目标的好氧池中含氨氮、氰化物、硫氰化物的质量浓度,mg·L−1;Kd为反硝化率,%;Ni、No分别为脱氮系统进、出水总氮的质量浓度,mg·L−1。
A/A/O中的好氧单元主要发挥硝化作用,通过式(16)和式(17)计算可知其耗氧量;O/A/O工艺中,O1易氧化降解耗氧有机物(以COD计),不考虑硝化作用,耗氧量通过式(14)计算可知;在O2中进行硝化作用,耗氧量通过式(16)和式(17)计算可知;O/H/O工艺与O/A/O工艺相似,但不需要污泥回流,因此,在计算O/H/O工艺中O2的曝气能耗时,式(16)的污泥回流比Rs为0。
污泥回流的能耗是A/A/O与O/A/O工艺所必不可少的,只有通过污泥回流才能保证生物池活性污泥的浓度,回流泵的能耗通过式(18)进行计算。
WS=K⋅Q⋅H (18) K=k183.5 (19) 式中:Ws为污泥回流泵的能耗,kW·h;K是安全系数,由式(19)计算,当水泵功率和污泥回流泵功率超过5 kW时,式(19)中的k取值1.15[32];Q为回流的流量,m3·d−1;H为水泵总水头损失,m。
由于回流污泥含水率高达99.5%~99.9%,所以,污泥回流与废水回流的能耗以相同方法计算。A/A/O与O/A/O工艺的回流比已经明确,O/H/O工艺仅存在硝化液回流,回流比为1,能耗估算值可由泵能耗的公式给出。A/A/O工艺中污泥回流至厌氧池的水头损失为1.5~2 m,硝化液回流至缺氧池的水头损失为1~1.2 m。O/A/O工艺有2个污泥回流系统,二沉池至O1的水头损失为0.5~0.8 m,另一个二沉池至A的水头损失为1~1.5 m。O/H/O不存在污泥回流,硝化液回流的水头损失为1~1.6 m。
2. 结果与讨论
2.1 碳源利用
首先考察了2种工艺中COD的沿程变化,分析2种工艺的碳源利用模式差异。由图2可以看出,在A/A/O工艺中,O单元对耗氧有机物(以COD计)的去除效果最好,A1的水解作用使难降解有机物断链、开环,转化为小分子有机酸,为后续的反硝化脱氮所利用;而在O/A/O工艺中,O1对COD的去除率高达90.0%以上,使后续单元工艺主要为脱氮服务。两者不同的是,A/A/O工艺通过微生物反硝化作用去除了废水中的耗氧有机物,而O/A/O工艺则通过生物耗氧直接氧化废水中的耗氧有机物。
LI等[11]对比了A/A/O与A/O工艺的处理效果,指出2个工艺对于有机物和氨氮的去除效果几乎相同,但A/A/O工艺更有利于总氮脱除,这是因为A/A/O工艺设置了产酸阶段。CHAKRABORTY等[33]发现,在A1中COD的去除率为5%~11%,CN−降解率为35.0%,没有发现苯酚降解的中间产物和甲烷的生成。王子兴等[34]指出,在A/A/O-MBR工艺处理焦化废水的过程中,单个反应器COD去除率分别为9.2%、73.5%、14.7%;经过GC/MS检测分析,苯酚在A1中的降解率为26.7%,而含氮杂环化合物以及苯系物的去除率分别为49.5%和65.8%。此外,有研究[35]表明,在A/A/O工艺中,A1单元去除污染物效果不明显,COD去除率低于10%;A2单元的COD去除率最高,尤其是易降解有机物在此阶段几乎全部被利用;在O单元中,利用异养微生物好氧氧化残留的有机物,CN−和SCN−在O2中也被彻底去除。SHARMA[36]研究了厌氧、缺氧、好氧单个单元的处理效果时发现,好氧单元可去除83.3%的CN− 和62.0%的COD;当加入氰化物后,好氧单元中COD的去除率下降到52.0%。由此可见,废水组成的复杂性会影响单组分的去除效果。马昕等[37]采用O/A/O工艺处理焦化废水时发现,在O1停留时间为16 h时对COD的去除率达到75.0%,这与我们调查的工艺结果相似。由图2(b)可见,在O/A/O工艺中,O1对COD的去除率很高,浪费了部分有机碳源,而添加的外部有机碳源是造成A单元COD去除率降低的原因之一[38];另一方面,O1中的氨化过程可为O2提供良好的硝化环境。以上研究结果表明,2种工艺对废水中碳源的利用在原理上存在非常大的差异。
2.2 脱氮模式
脱氮的效果可通过协调碳源、电子供受体以及DO等因素来实现,故根据2种工艺中氨氮浓度沿流程变化来分析不同脱氮模式的有效性。 由图3可见,虽然O/A/O工艺进水氨氮偏高,但出水氨氮却很低,在O2单元中已经彻底硝化。可见,前置好氧工艺可以为后续O2创造良好的硝化条件。A1去除了27.0%的氨氮,而O1去除了87.5%的氨氮,即在A1中仍然保留着较高浓度的氨氮,而在O1中氨氮几乎完全硝化,这与在进水中是否添加磷盐有关[39]。O1、A1中氨氮浓度的变化以及微生物同化、有机氮氨化、氰化物及硫氰化物氨化等可以同时发生。在工程研究中发现,O1中还存在亚硝化和硝化的可能性[17]。
焦化废水中的含氮物质除了铵离子/氨分子外,还有SCN−、CN−以及含氮有机物。ZHANG等[40]发现,A/A/O中各个单元对氨氮的去除率分别为-2.5%、3%、97%,A1出水中氨氮升高的原因是其他含氮物质氨化作用所致。吕鹏飞等[41]的研究表明,2种流化床工艺的前置厌氧单元对氨氮有少量的降解,氨氮去除率分别为18.1%和35.6%,体现出反应器对于处理效果的影响不同,流化床反应器面对复杂毒性废水比传统的沸腾床反应器表现出更好的耐毒性抑制作用。经过缺氧反应器A2后,氨氮浓度的变化主要有回流导致的直接稀释以及微生物降解的共同作用。GUI等研究了2个A/A/O系统,在硝化液回流比为200%的情况下,氨氮的质量浓度由250 mg·L−1降低至80 mg·L−1[42]。易欣怡等[28]考察了O/H/O工艺的焦化废水处理,发现O1单元能够把氰化物、硫氰化物氧化为氨氮,有机氮全部氨化,从而造成O1出水氨氮浓度的升高;而在H单元中,环状含氮化合物通过水解作用可实现分子开环转变为氨氮,回流液中的硝态氮实现反硝化转变为氮气;接下来的O2单元能够将残余低价状态的含氮化合物转变为硝态氮,所以对氨氮的去除非常彻底。由于多种含氮物质之间具有不同价态转化机制,工艺中合理安排碳源进行脱氮,以及通过回流/超越或微生物功能调控实现总氮的彻底去除将是工艺理论中具有挑战性的研究方向。
2.3 能耗分析
1)各单元反应器的去除效率。能耗分配受工艺的单元反应器组合的影响。单元反应器的不同组合顺序可构成多样的生物处理工艺,前置好氧与厌氧工艺对同一种废水会产生不同的污染物去除效率,较优的工艺应该是在达标排放(即核心污染物去除)的基础上实现时间和空间上的减量化,还要降低二次污染。图4反映了A/A/O和O/A/O工艺污染物浓度的沿程变化。沿流程图中的百分比数据代表反应单元出水污染物浓度占进水中污染物浓度的比例。除了内部降解外,还要考虑因回流引起的反应器内污染物浓度的稀释作用。结合文献调查,综合实际情况,总结出代表性焦化废水典型污染物在单元反应器中的去除效率,如图5所示。其中,假设SCN−和CN−在O/A/O工艺的O1中完全氨化。
2)不同工艺的能耗分配。废水中的污染物在不同工艺各单元反应器中的总体去除率如图6所示。A/A/O工艺对污染物的降解主要集中在O单元中,O/A/O工艺的降解则集中在O1单元中。这两者的差异反映了前置好氧工艺与前置厌氧工艺在曝气能耗上的差别。通过式(14)~式(16)计算,各工艺需氧单元的曝气量如图7所示。A/A/O工艺中O单元的需氧量为102.7 kg·h−1,O/A/O中O1和O2的需氧量分别为260.8 kg·h−1和35.1 kg·h−1。由图7可看出,O/A/O工艺的O1大部分的曝气量是用来去除易降解有机物,因此,需氧量较高。但当废水中有机物的浓度很低时(当不考虑有机物耗氧时),A/A/O工艺氧化含氮物质需氧量为100.4 kg·h−1,O/A/O工艺氧化含氮类物质的需氧量为83.9 kg·h−1。因此,对于脱氮性能,O/A/O工艺比A/A/O工艺能耗更高。这归因于:在O1中解除了SCN−、CN−等有毒物质对A反应器微生物的抑制作用,使得在A中降解的含氮物质相对较多,可以实现O2单元的低能耗硝化反应。因此,当废水中的耗氧有机物的预处理较为彻底时,前置好氧工艺可以实现低耗能高效率脱氮。O/H/O工艺在保留了O/A/O工艺优点的基础上,实现了反应器内部流态化的颗粒污泥特征,氧传质系数是一般活性污泥的2倍左右[43],因此,与O/A/O工艺相比,O/H/O工艺在耗氧量的节能方面更能体现出优势。本课题组根据多年的O/H/O运行经验数据统计得出,在仅考虑脱氮目标时,O/H/O工艺的需氧量约为53.26 kg·h−1。
由图4所示的计算可得出,在A/A/O工艺中,进入A2的废水COD为1 140.0 mg·L−1,硝化液回流的硝酸根为84.4 mg·L−1,在A2中主要去除总氮中的硝酸根,其余的氨氮、SCN−、CN−等含氮物质只是发生了少量的生物降解,经过A2可去除80.0 mg·L−1左右的硝态氮,满足微生物生长的碳源需求量为723.2 g·m−3 (缺氧条件下C∶N∶P = 200∶5∶1),因为废水中含有一定量的有机物,故实际可以供微生物利用的量约为540.0 g·m−3,需要外加碳源122.1 g·m−3 (以甲醇计)。在O/A/O工艺中,进入A单元的废水COD值为633.3 mg·L−1,其总氮类型为硝酸根和氨氮,浓度分别为93.9 mg·L−1和50.0 mg·L−1,在A中降解90.0 mg·L−1的硝态氮,满足微生物正常生长的碳源需求量约为813.6 g·m−3,进入A的废水中可降解有机物的含量约为83.3 g·m−3,不足的碳源需要从外部添加486.9 g·m−3(以甲醇计)。以上的讨论是在不考虑O/A/O工艺中有超越进水的情况,但在实际工程中,往往会使部分集水调节池中的出水以超越O1池的方式进入A池,这样既可以降低O1的曝气能耗,又可减少A单元的外部碳源的需求量。当超越1/3处理量的废水进入A单元时,O1的曝气量变为174.0 kg·h−1 ,超越之后A单元进水的有机物浓度达到977.8 mg·L−1,可供微生物利用的量约为427.8 mg·L−1,因此,折合计算1 m3废水仅需要257.2 g的外加碳源,节省了229.7 g的外部碳源(以甲醇计)。可以看出,O/A/O系统的模式多样性,可以实现总氮的低能耗高效率去除。在实际运行的O/H/O工艺中,由于不需要污泥回流,每个反应器可以灵活调控,因此,O/H/O工艺比O/A/O工艺更容易实现厌氧氨氧化反应,并且可以利用FeS进行自养反硝化脱氮而节省能耗,故实际的O/H/O工艺的外部碳源需求约0~220 g·m−3,具体的需求量取决于厌氧氨氧化与自养反硝化的耦合性能[44]。
污泥回流可以保证生物单元中的污泥浓度即生物量。通过式(18)和式(19)的计算,A/A/O工艺的污泥回流和硝化液回流的总能耗约为42.37 kW·h;O/A/O系统污泥回流与硝化液回流的总能耗约为23.55 kW·h;O/H/O系统只存在硝化液回流,回流能耗约为9.42 kW·h。除了曝气和回流的能耗外,考虑综合因素,3种工艺归纳为2大类:厌氧-缺氧-好氧以及好氧-水解/缺氧-好氧。由于反应器的设置不同,好氧-水解/缺氧-好氧工艺又可以分类为O/A/O和O/H/O,分化出二污泥法和三污泥法,反应器的类型决定了工艺的耗能。若只考虑生物阶段的处理,废水COD在3 000~4 000 mg·L−1、铵离子质量浓度在100~200 mg·L−1时,A/A/O的处理费用为6~8 元·t−1[45,46],O/A/O的处理费用为7~9 元·t−1 [47-49],而O/H/O流化床工艺的处理费用仅为4~5元·t−1,体现了不同技术的成本差异。
2.4 性能比较
单元工艺的摆放顺序不仅决定了整体工艺运行的能耗,还会对冲击负荷、系统中微生物菌落和处理效果产生很大的影响。李国令等[4]指出,热单胞菌属、脱氯单胞菌属是O/A/O工艺好氧池中的优势菌属;热单胞菌属、脱氯单胞菌属、球形红假单胞菌属是O/A/O工艺缺氧池中的优势菌属。WANG等也发现[50],热单胞菌属与硝酸盐还原酶基因呈正相关,对同时厌氧氨氧化-反硝化系统中的硝酸盐还原起重要作用。 WEI等[15]指出,丛毛单胞菌属在反应器O1中对COD去除起到了关键作用,有助于去除O1反应器中的NH4+-N;硫杆菌则在H反应器中起着主要的反硝化作用,AOB和NOB(亚硝化单胞菌和硝化螺菌)对反应器中硝化作用的贡献最大。三污泥法的O/H/O工艺各单元在污染物组成、去除、功能和微生物群落等方面存在显著进步,有望实现厌氧氨氧化脱氮与深度脱氮的结合,也表明废水水质和反应器的组合对微生物功能分布具有调控功能。
根据污泥回流的设置与否,A/A/O、O/A/O、O/H/O工艺可以分为单污泥系统、双污泥系统及三污泥系统,3个工艺的主要区别见表3。据报道,A/A/O工艺中A1单元对COD去除效率小于10%,检测不到甲烷的产生[51]。因此,A/A/O工艺仅仅在缺氧和有氧反应器中实现了对COD的去除。由于回流的存在,A/A/O工艺表现为单污泥特征,异养细菌具有较高的比生长速率,因污泥排放量高而导致其在处理高COD/TN废水时,大量自养硝化细菌被排洗。前置好氧工艺对高浓度毒性废水有很好的抗负荷冲击能力,并且O/H/O工艺中的新型结构流化床反应器的强化传质功能与污泥原位分离原理加强了各单元反应器中的微生物能力[22]。在H单元中,根据投加的电子供体不同而具有多种反硝化模式:如利用O1池的剩余COD作为碳源及其他电子供体进行异养反硝化脱氮;通过投加无机还原性电子供体以利用其作为营养源进行自养反硝化脱氮[21,52],还可以避免二次碳源的污染。另外,有研究表明,控制O1反应器在短程硝化水平,可使亚硝酸盐直接得到富集和积累,然后实现厌氧氨氧化模式脱氮,从而使工艺过程节能效果更好[17,19]。可见,复杂废水的脱氮模式多种多样,需要根据实际情况合理选择或耦合新原理,从而进一步实现低能耗、低物耗目标下的总氮去除。
表 3 不同工艺系统的特点Table 3. Characteristics of different process systems工艺 污泥系统 毒性物质的去除 COD/TN 脱氮途径 能耗影响因素 平均运行单价/(元·m-3) 优点 缺点 A/A/O 单污泥系统 A1对大分子有机物的去除 11.4 异养反硝化 一次回流、一次曝气 7 有利于含氮有机物的水解;反硝化可利用废水中有机物作为碳源 不耐冲击负荷,受毒性抑制,需要稀释进水 O/A/O 双污泥系统 O1对SCN−、CN−的去除及氨化 12.5 异养反硝化、自养反硝化 二次回流、二次曝气 8 耐冲击负荷,进水不需要稀释;硝化效果好 耗氧量大,污泥回流频繁,耗能多 O/H/O 三污泥系统 O1对SCN−、CN−的去除及氨化 13.8 异养反硝化、自养反硝化、厌氧氨氧化及其耦合脱氮 二次曝气 4.5 耐冲击负荷,颗粒污泥耐毒性抑制,硝化效果好,不需要沉淀池;不需要回流 耗氧量大 3. 结论与展望
1)每处理1 m3设定浓度的焦化废水(不考虑O/A/O的超越进水),A/A/O和O/A/O工艺分别需要122.1 g 与486.9 g的外部碳源(以甲醇计)。当废水中的易降解有机物较少且只考虑脱氮目标时,O/A/O工艺的曝气需氧量为83.9 kg·h−1,A/A/O工艺的曝气需氧量为100.4 kg·h−1;当O/A/O工艺中有1/3的进水流量超越至A单元时,其碳源需求量由486.9 g·m−3减至257.2 g·m−3(以甲醇计),曝气量也将显著降低。
2)由于废水组成的复杂性,污染物的降解效率除了受到彼此的相互制约外,工艺条件和反应器的设计也至关重要。具有高毒性、高碳氮含量的焦化废水,更适合于选择前置好氧的工艺。O/H/O工艺由于其独特的三相分离器的设置而节省了污泥回流部分的能耗,反应器中的颗粒污泥更加耐毒性抑制和抗冲击负荷,并且传氧速率高,工艺耗氧量仅为53.26 kg·h−1,外部碳源的消耗可以由486.9 g·m−3降至0~220 g·m−3。
3)反应器的高效性和可控性,使O/H/O工艺比O/A/O工艺更容易实现自养反硝化与异养反硝化协同脱氮、自养型短程反硝化与厌氧氨氧化的协同脱氮等其他脱氮途径,进而使O/H/O工艺成为一种更具潜力的低能耗、低物耗的生物脱氮技术工艺。针对不同的废水水质与物质组成特征,O/H/O工艺能够对不同功能的单元进行组合和编辑,从时间与空间、药剂与能耗、处理效率等方面追求更加丰富的优化模式,以满足各种不同的出水需求,特别是满足总氮浓度趋零的要求。
-
表 1 实验用水水质
Table 1. Quality of experimental water
水样 pH 色度/倍 浊度/NTU 电导率/(mS·cm−1) COD/(mg·L−1) 总碱度(以CaCO3计)/(mg·L−1) S1 8.5 1 800 0.73 21.10 1 443 2 752 S2 8.6 1 900 0.83 19.50 1 414 2 638 S3 8.6 3 500 2.25 19.24 2 300 2 552 S4 8.6 5 500 1.19 18.80 2 694 2 430 表 2 正交实验因素水平表
Table 2. Factor level table for orthogonal experiments
水平 反应初始pH(A) FeSO4·7H2O投加量(B)/(g·L−1) H2O2投加量(C)/(mg·L−1) 投药间隔时间(D)/min 反应回调pH(E) 1 2.5 4.09 500 30 6.5 2 3.0 8.18 1 000 40 7.0 3 3.5 12.27 1 500 50 7.5 4 4.0 16.36 2 000 60 8.0 表 3 影响因素正交实验结果
Table 3. Orthogonal experimental results of influencing factors
序号 A B C D E 色度去除率/% COD去除率/% 1 1 1 1 1 1 3.81 62.50 2 1 2 2 2 2 89.32 83.29 3 1 3 3 3 3 94.15 87.50 4 1 4 4 4 4 95.48 83.56 5 2 1 2 3 4 62.54 72.77 6 2 2 1 4 3 69.58 73.55 7 2 3 4 1 2 97.73 90.92 8 2 4 3 2 1 96.60 89.87 9 3 1 3 4 2 77.48 83.16 10 3 2 4 3 1 96.03 88.29 11 3 3 1 2 4 84.67 72.37 12 3 4 2 1 3 93.75 85.00 13 4 1 4 2 3 90.40 81.18 14 4 2 3 1 4 92.53 83.68 15 4 3 2 4 1 92.15 84.61 16 4 4 1 3 2 77.65 65.13 表 4 正交实验色度结果极差分析
Table 4. Range analysis of orthogonal experiment color result
序号 A/% B/% C/% D/% E/% 均值11 70.69 35.96 58.93 71.95 72.15 均值12 81.61 86.86 84.44 90.25 85.55 均值13 87.98 92.18 90.19 82.59 86.97 均值14 88.18 90.87 94.91 83.67 83.81 极差R1 17.49 33.62 35.98 18.29 14.82 表 5 正交实验COD结果极差分析
Table 5. Range analysis of orthogonal experiment COD result
序号 A/% B/% C/% D/% E/% 均值21 79.21 74.90 68.39 80.53 81.32 均值22 81.78 82.20 81.41 81.68 80.63 均值23 82.21 83.85 86.05 78.42 81.81 均值24 78.65 80.89 85.99 81.22 78.09 极差R2 3.56 8.95 17.66 3.25 3.71 表 6 确定影响因素条件表
Table 6. Determined condition table of influencing factors
条件 反应初始pH FeSO4·7H2O投加量/(g·L−1) H2O2投加量/(mg·L−1) 投药间隔时间/min 反应回调pH 1 3.8 25.12 3 000 60 6.5 2 4.0 25.12 3 000 40 6.5 3 4.2 25.12 3 000 60 6.5 4 4.0 25.12 3 000 60 6.5 5 4.0 25.12 3 400 60 6.5 6 4.0 25.12 3 800 60 6.5 表 7 检测水质表
Table 7. Detection of water quality table
序号 pH 浊度/NTU 色度/倍 电导率/(μS·cm−1) COD/(mg·L−1) 氨氮/(mg·L−1) 总氮/(mg·L−1) 总磷/(mg·L−1) 六价铬/(mg·L−1) SS/(mg·L−1) 二氧化氯/(mg·L−1) 苯胺/(mg·L−1) 限值 6~9 — 80 — 200 20 30 1.5 不得检出 177 0.5 不得检出 浓缩液 8.6 12.2 3 500 1 924 2 300 5.59 76.90 2.58 未检出 26 未检出 1.4 1 7.0 0.4 65 2 920 144 10.05 28.67 0.05 未检出 未检出 未检出 未检出 2 7.0 0.4 70 2 940 144 9.92 27.94 0.07 未检出 未检出 未检出 未检出 3 7.0 2.0 75 2 950 150 11.54 29.23 0.05 未检出 未检出 未检出 未检出 4 6.5 0.8 60 2 940 138 9.73 26.84 0.06 未检出 未检出 未检出 未检出 5 6.7 1.3 70 2 970 135 10.05 28.76 0.06 未检出 未检出 未检出 未检出 6 6.5 0.6 55 3 020 143 9.78 28.15 0.06 未检出 未检出 未检出 未检出 表 8 物化实验、类芬顿实验、芬顿实验处理水质效果对比
Table 8. Comparison of the treatment effects on the water quality by physicochemical experiment, Fenton-like experiment and Fenton experiment
水样 COD/(mg·L−1) COD去除率/% 色度/倍 色度去除率/% 原水 2 694 — 5 500 — PFS处理水 1 366 49.29 2 500 54.55 PAC处理水 1 964 27.10 4 800 12.73 类芬顿处理水 68 97.48 10 99.82 芬顿处理水 172 93.62 80 98.55 表 9 不同实验方法吨处理废水所需药剂
Table 9. The reagent dosage for treating wastewater by different experimental methods kg·t−1
水处理法 H2SO4 H2O2(30%) FeSO4·7H2O NaOH PAM AC FeCl3·6H2O PFS PAC PFS法 4 — — 2.0 0.001 — — 1 — PAC法 4 — — 2.0 0.001 — — — 0.6 类芬顿法 4 11 — 1.5 0.001 35 13.3 — — 芬顿法 4 11 26.98 2.0 0.001 — — — — -
[1] LI F, XIA Q, GAO Y Y, et al. Anaerobic biodegradation and decolorization of a refractory acid dye by a forward osmosis membrane bioreactor[J]. Environmental Science-Water Research & Technology, 2018, 4(2): 272-280. [2] OLLER I, MALATO S, SANCHEZ-PEREZ J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination: A review[J]. Science of the Total Environment, 2011, 409(20): 4141-4166. doi: 10.1016/j.scitotenv.2010.08.061 [3] YANG C, LI L, SHI J L, et al. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane[J]. Journal of Hazardous Materials, 2015, 284: 50-57. doi: 10.1016/j.jhazmat.2014.11.011 [4] KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676-4697. doi: 10.1016/j.jece.2018.06.060 [5] 薛罡. 印染废水治理技术进展[J]. 工业水处理, 2021, 41(9): 10-17. doi: 10.19965/j.cnki.iwt.2021-0433 [6] 赵岩, 李洪军, 胡晓聪. 混凝沉淀+A/O+Fenton工艺处理印染废水[J]. 资源节约与环保, 2021(4): 105-106. doi: 10.3969/j.issn.1673-2251.2021.04.057 [7] WANG X, HUANG F, YU M, et al. Multilayer adsorption of organic dyes on coal tar-based porous carbon with ultra-high specific surface area[J]. International Journal of Environmental Science and Technology, 2021, 18(12): 3871-3882. doi: 10.1007/s13762-020-03093-1 [8] 廖秀珺. 环境工程中印染废水特征分析及处理方法研究[J]. 资源节约与环保, 2021(3): 116-117. doi: 10.3969/j.issn.1673-2251.2021.03.063 [9] 陈婷, 赵琪, 陈泉源, 等. 不同光源照射下天然含铁矿物催化H2O2深度处理印染废水效果对比[J]. 环境工程学报, 2021, 15(5): 1558-1566. doi: 10.12030/j.cjee.202011100 [10] 王珺. 印染废水生化尾水中溶解性有机物特征及去除研究[D]. 广州: 暨南大学, 2016. [11] 戴鸿军, 李红丽, 周国旺, 等. GC-MS分析印染废水处理中有机污染物的降解特性[J]. 浙江大学学报(理学版), 2014, 41(1): 72-77. [12] 朱利杰, 范云双, 谢康, 等. 印染废水RO浓水水质分析[J]. 中国环境科学, 2019, 39(11): 4646-4652. doi: 10.3969/j.issn.1000-6923.2019.11.020 [13] 张秀蓝, 董亮, 郭婧, 等. 印染废水中苯胺的快速测定-高效液相色谱荧光法[J]. 环境化学, 2021, 40(7): 2265-2267. [14] YANG B, XU H, YANG S N, et al. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor[J]. Bioresource Technology, 2018, 264: 154-162. doi: 10.1016/j.biortech.2018.05.063 [15] AMINI B, Otadi M, Partovinia A. Statistical modeling and optimization of Toluidine Red biodegradation in a synthetic wastewater using Halomonas strain Gb[J]. Journal of Environmental Health Science and Engineering, 2019, 17: 319-330. doi: 10.1007/s40201-019-00350-5 [16] 孔舒宸. 印染废水处理方法研究进展[J]. 中国资源综合利用, 2019, 37(1): 70-73. doi: 10.3969/j.issn.1008-9500.2019.01.021 [17] 梁培瑜, 沈紫飞, 吴永明, 等. 高级氧化-水解酸化-A/O组合工艺处理印染废水[J]. 工业水处理, 2022, 42(11): 107-112. doi: 10.19965/j.cnki.iwt.2022-0030 [18] 陈彦安, 徐百龙, 杜平, 等. 印染废水中水回用及RO浓水深度处理工程实例[J]. 工业水处理, 2023, 43(1): 157-162. doi: 10.19965/j.cnki.iwt.2022-0140 [19] 郭紫阳, 阿如汗, 金铁瑛, 等. 处理印染废水的HMF与MBR技术对比[J]. 西安工程大学学报, 2022, 36(3): 38-45. doi: 10.13338/j.issn.1674-649x.2022.03.005 [20] 李灿, 黄斌, 古航坤, 等. 厌氧膜生物反应器-纳滤/反渗透处理印染废水[J]. 水处理技术, 2021, 47(6): 98-103. doi: 10.16796/j.cnki.1000-3770.2021.06.020 [21] 王岩, 王奇梁, 许以农, 等. 电渗析用于印染废水膜浓缩液盐回用工艺研究[J]. 膜科学与技术, 2022, 42(3): 122-128. doi: 10.16159/j.cnki.issn1007-8924.2022.03.016 [22] XU H, YU T L, GUO X X, et al. Fe3+/H2O2 Fenton degradation of wastewater containing dye under UV irradiation[J]. Desalination and Water Treatment, 2016, 57(38): 18028-18037. doi: 10.1080/19443994.2015.1088804 [23] ISMAIL G A, SAKAI H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal[J]. Chemosphere, 2022, 291: 132906. doi: 10.1016/j.chemosphere.2021.132906 [24] JING X J, YUAN J S, CAI D N, et al. Concentrating and recycling of high-concentration printing and dyeing wastewater by a disc tube reverse osmosis-Fenton oxidation/low temperature crystallization process[J]. Separation and Purification Technology, 2021, 266. [25] 张庆喜, 何如民, 黄启镜, 等. 芬顿氧化法深度处理工业废水尾水中试研究[J]. 广东化工, 2022, 49(14): 145-147. doi: 10.3969/j.issn.1007-1865.2022.14.049 [26] 赵凯, 胡睿华, 李灌乔, 等. 印染行业废水深度处理及资源化利用技术研究[J]. 辽宁化工, 2022, 51(5): 688-691. doi: 10.3969/j.issn.1004-0935.2022.05.030 [27] 王玉番, 鞠甜甜, 王永, 等. US/UV-Fenton体系处理不同工段的印染废水[J]. 环境工程学报, 2017, 11(5): 2754-2761. doi: 10.12030/j.cjee.201601225 [28] 曾宁. 紫外光—双氧水高级氧化技术对饮用水中典型致嗅物质去除的研究[D]. 西安: 西安建筑科技大学, 2018. [29] 郑三强, 罗兴国, 李兴彬, 等. 真空制盐两碱净化过程成垢离子的脱除及控制[J]. 化学工业与工程, 2022, 39(1): 58-65. doi: 10.13353/j.issn.1004.9533.20210306 [30] 吴锡峰, 杨恺. 芬顿氧化法对抗生素废水深度处理的实验研究[J]. 海峡科学, 2017, 121(1): 19-21. doi: 10.3969/j.issn.1673-8683.2017.01.006 [31] 李再兴, 左剑恶, 剧盼盼, 等. Fenton氧化法深度处理抗生素废水二级出水[J]. 环境工程学报, 2013, 7(1): 132-136. [32] 闫镇枭, 韩颖, 杨虎君, 等. 两级芬顿处理垃圾渗滤液纳滤浓缩液膜浓缩液的研究[J]. 山东化工, 2022, 51(12): 207-209. doi: 10.3969/j.issn.1008-021X.2022.12.063 [33] DUAN Z H, ZHANG W H, LU M W, et al. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol[J]. Carbon, 2020, 167: 351-363. doi: 10.1016/j.carbon.2020.05.106 [34] LI B, ZHANG L, YIN W, et al. Effective immobilization of hexavalent chromium from drinking water by nano-FeOOH coating activated carbon: Adsorption and reduction[J]. Journal of Environmental Management, 2021, 277: 111386. doi: 10.1016/j.jenvman.2020.111386 [35] ZHANG J, LIU G D, WANG P H, et al. Facile synthesis of FeOCl/iron hydroxide hybrid nanosheets: Enhanced catalytic activity as a Fenton-like catalyst[J]. New Journal of Chemistry, 2017, 41(18): 10339-10346. doi: 10.1039/C7NJ01993A [36] DU P D, DANH H T, HOAI P N, et al. Heterogeneous UV/Fenton-like degradation of methyl orange using iron terephthalate MIL-53 catalyst[J]. Journal of Chemistry, 2020, 2020: 1474357. [37] ZHANG M D, WEI Y F, HUANG M. Treatment of dye wastewater by nano-ferrous modified bentonite assisted advanced oxidation processes[J]. Advanced Materials Research, 2012, 1705(486): 104-107. -