-
纺织印染工业是我国的传统支柱产业[1]、重要民生产业和创造国际化新优势的产业,在拉动内需、满足人民衣着需求和外贸创汇等方面作出了巨大贡献。然而,纺织工业存在着生产耗水量大、废水排放量大、污染物排放量大和废水处理难度大的四大用水问题[2-5],其产生的具有高色度、高碱度、高COD、高含盐量及含重金属离子等特性的印染废水对于自然环境和人体有着严重危害[6-9],且废水成分复杂、中间产物繁多,包括芳香类化合物、苯胺类、氯化物或溴化物以及多种含有带氢键的物质等[10-13],属于难处理工业废水之一[14]。近年来随着资源利用、节能环保等刚性约束日益增强,国家对纺织印染废水的排放和治理提出了更高的要求。国务院颁布的“水十条”将印染行业列为重点整治行业之一,并提出行业废水需深度处理回用,《印染行业“十四五”发展指导意见》指出要坚持绿色发展,加强污染防治,促进印染行业水重复利用率进一步提高到45%,所以印染废水的中水回用和近零排放具有重要意义。
目前,印染废水通常采用混凝沉淀+水解酸化+生物化学法进行常规处理[15-17],生化出水采用双膜法(膜生物反应器(membrane bioreactor,MBR)/高强度浸没式膜过滤(high-strength submerged membrane filtration,HMF)+反渗透/纳滤(RO/NF))处理工艺[18-20]进行中水回用,对RO/NF浓水处理至纳管达标排放。但将处理后的RO/NF浓水直接排放不仅会带来无机盐资源浪费,还会造成环境破坏[21]。最近研究出的一种小孔径超滤膜能够实现无机盐与有机小分子的高效分离,其孔径介于超滤膜与纳滤膜之间,截留分子质量为500~2 000 Da,但经此膜处理后的浓缩液污染物浓度上升到一个新的水平,通过常规的深度处理很难达标排放。
芬顿氧化法具有处理效率高、操作简单、运行便捷等优点,在处理印染废水时,能够降解污水中存在的持久性有机污染物,具有十分广阔的应用前景[22-27]。本研究采用芬顿法、物化法及类芬顿法对印染废水小孔径超滤膜浓缩液进行深度处理研究,寻求最佳处理方案及其最优条件,保障产水水质达到《纺织染整工业水污染物排放标准》(GB 4287-2012)排放要求,为印染废水近零排放提供工程实践依据。
-
实验用水取自浙江绍兴某印染厂,印染废水经预处理后,进入HMF和NF工艺,再经过小孔径超滤膜处理得到浓缩液(以下简称浓缩液)即为实验用水,具体流程如图1所示。实验4次水样命名为S1、S2、S3和S4,分别进行芬顿正交实验、单因素实验、最优条件的确定和验证实验及其他类比实验,水质如表1所示,由表1可知,浓缩液的水质恶劣,所含的污染物质被进一步浓缩,浓缩液呈现高色度、高COD特性,且水质波动性较大。
经超滤膜处理后的浓缩液碱度过高,直接采用芬顿氧化处理时,在酸性条件下如不进行除碱处理,一方面在反应过程中将会产生大量气泡导致添加的药剂大部分会随着气泡溢出且不能与水体中的污染物质充分接触反应,从而导致污染物去除效果差;另一方面HCO- 3离子是羟基自由基的抑制剂,会捕获羟基自由基,从而导致催化氧化作用下降[28]。当pH<4.0时,水中的CO2- 3和HCO- 3转化为H2CO3[29],加入H2SO4至pH<4.0后持续曝气2 h除去游离态的CO2,废水中碱度可完全去除。
-
本实验采用芬顿法,如图2所示。将去除碱度的浓缩液投加酸碱调节设定的实验pH,加入定量的七水硫酸亚铁(FeSO4·7H2O)和过氧化氢(H2O2)试剂,采用磁力搅拌形式辅助反应到达设定时间后继续投加等量FeSO4·7H2O和H2O2试剂,总反应时长2 h。结束后将溶液回调至设定pH,加入0.1%质量浓度为1 g·L−1的聚丙烯酰胺(polyscrylamide,PAM),经慢速搅拌10 s均匀后静置0.5 h,根据测定的水质结果分析其处理效果。采用芬顿法、物化法和类芬顿法对水样进行处理,检测水质并进行技术经济论证。
1)正交实验。设置水样反应初始pH、反应回调pH、H2O2投加量、FeSO4·7H2O投加量和2次加药时间间隔时间等5个因素,考察不同因素对芬顿法处理浓缩液的影响程度和效果,匹配去除色度和COD的最优方案。
2)单因素实验。正交实验确定水样色度和COD去除效果最佳的影响因素组,在此基础上分别设置各H2O2投加量、FeSO4·7H2O投加量、反应初始pH、2次投加药剂间隔时间及反应回调pH等单一因素的不同量,分别对色度和COD进行单因素实验,进行单因素实验时其他因素量不变以确定最佳去除效果的因素方案,每个因素3次平行实验,检测出水水质指标确定最优结果。
将H2O2投加量分别设定为1 000、1 500、2 000、2 500、3 000 mg·L−1和500、1 000、1 500、2 000、2 500 mg·L−1,FeSO4·7H2O投加量分别设定为4.09、8.18、12.27、16.36、20.45 g·L−1,反应初始pH分别设定为3.0、3.5、4.0、4.5、5.0和2.5、3.0、3.5、4.0、4.5,2次投加药剂间隔时间分别设定为20、30、40、50、60 min,反应回调pH分别设定为6.5、7.0、7.5、8.0、8.5分别进行实验,将各单因素实验处理前后的污染物质量浓度进行测定,测定多个平行样取值以减少误差。
3)最优条件的确定和验证。单因素实验确定最佳去除色度和COD的对应因素条件,根据条件再次划分影响因素水平,分别测定pH、COD、色度、氨氮、总氮、总磷、SS、六价铬、苯胺和二氧化氯等水质指标,判定处理后水样综合水质最优的因素条件。
4)其他类比实验。物化实验采用絮凝剂处理去除碱度的水样,检测产水水质,对比芬顿法的处理效果和经济性。取去除碱度的水样分别调节适当pH后分别加入定量聚合硫酸铁(polymeric ferric sulfate,PFS)和聚合氯化铝(polymeric aluminium chloride,PAC)搅拌均匀,加入定量PAM搅匀静止后取上清液。
类芬顿实验采用活性炭(activated carbon,AC)负载六水三氯化铁(FeCl3·6H2O)作为催化剂代替FeSO4·7H2O,催化剂与H2O2加入待处理水样中,在铁离子含量相同情况下与芬顿对比处理效果以及经济适用性。
-
水样pH、电导率、浊度分别使用上海雷磁pHSJ-4F仪、上海雷磁DDSJ-308A电导率仪、哈希2100Q便携式浊度仪进行测定;COD使用兰州连华5B-1F(VB)仪器,采用快速消解分光光度法(HJ/T 399 -2007)进行测定;色度使用水质色度的测定-铂钴比色法(GB/T 11903-1989)进行测定;SS使用水质悬浮物的测定-重量法(GB/T 11901-1989)进行测定;碱度使用水质钙和镁总量的测定-EDTA滴定法(GB7477-1987)进行测定;氨氮使用水质氨氮的测定-纳氏试剂分光光度法(HJ 535-2009)进行测定;总氮使用水质总氮的测定-碱性过硫酸钾消解紫外分光光度法(HJ 636-2012)进行测定;总磷使用水质总磷的测定-钼酸铵分光光度法(GB 11893-1989)进行测定;六价铬使用水质六价铬的测定-二苯碳酰二肼分光光度法(GB 7467-1987)进行测定;二氧化氯使用水质二氧化氯和亚氯酸盐的测定-连续滴定碘量法(HJ 551-2016)进行测定;苯胺使用水质苯胺类化合物的测定-N-(1-萘基)乙二胺偶氮分光光度法(GB 11889-1989)进行测定。
在各实验前后,收集前后水样,计算污染物质的去除率,去除率R由式(1)进行计算。
式中:Cb表示反应前的污染物质量浓度,mg·L−1,Ca表示为反应后的污染物质量浓度,mg·L−1。
-
本研究采用表2所示的5因素4水平的因素水平表(Lg(45))进行正交实验,以初步探究芬顿法最佳处理效果影响因素参数值。其中H2O2投加量与COD的质量比约1∶3,即H2O2初始投加量500 mg·L−1,后每个水平增加500 mg·L−1。FeSO4·7H2O投加量采用与H2O2初始量摩尔比1:1,即FeSO4·7H2O初始投加量4.09 g·L−1,后每个水平对应增加。正交实验结果如表3所示。
根据正交实验极差分析结果(表4和表5)可知,无论是水质色度去除效果还是COD去除效果,芬顿法处理各因素的影响程度较大的都为H2O2和FeSO4·7H2O投加量,其他因素影响效果远小于前两者。实验结果初步确定色度去除的最优方案为反应初始pH=4.0、FeSO4·7H2O投加量为12.27 g·L−1、H2O2投加量为2 000 mg·L−1、投药间隔时间为40 min及反应回调pH=7.5,其中质量比COD∶H2O2=1∶1.4,摩尔比H2O2∶FeSO4·7H2O=4∶3;COD去除的最优方案组为反应初始pH=3.5、FeSO4·7H2O投加量12.27 g·L−1、H2O2投加量1 500 mg·L−1、投药间隔时间40 min及反应回调pH=7.5,其中质量比COD∶H2O2=1∶1.1、摩尔比H2O2∶FeSO4·7H2O=1∶1。
-
1) H2O2投加量。H2O2投加量是对反应体系影响最大的因素。由图3可见,随着H2O2投加量增加,水样的色度、COD去除效果呈现先增大后减小的趋势。H2O2为芬顿体系中的氧化剂,投加量可直接影响水样的最终处理效果,体系主反应为式(2),Fe2+主要起催化作用,Fe2+催化H2O2生成具有强氧化性的·OH氧化水中有机物质为CO2和H2O[30]。当H2O2投加量过低时,产生的·OH较少难以氧化大量的有机物质;随着H2O2含量逐渐增加,·OH产量升高,氧化效果增强;当H2O2投加量过多时,将出现处理效果减弱现象,体系中式(3)~(5)反应强,此时Fe3+消耗大量H2O2生成·O2H同时抑制·OH的产生,而过多的H2O2还会继续与·OH和·O2H发生自消耗反应,使H2O2利用率大大下降[31]。最终确定去除色度最优H2O2投加量2 500 mg·L−1,去除COD最优H2O2投加量2 000 mg·L−1。
2) FeSO4·7H2O投加量。FeSO4·7H2O在体系中主要起催化作用。由图4可见,水样中色度和COD的去除率随FeSO4·7H2O的增加呈现先上升后下降趋势。Fe2+促进H2O2有效分解生成·OH,催化剂的投加量直接影响H2O2的利用率和氧化效果。当Fe2+含量过低时,不利于H2O2正向分解,·OH生成速率较慢含量较少,故水中有机物降解不足;随FeSO4·7H2O含量增大,H2O2分解速率不断加快,但达到一定量时过多的Fe2+会使处理效果降低,Fe2+使H2O2快速分解生成的·OH又与过量的Fe2+进行反应式(6),大量的·OH被Fe2+消耗的同时也会与H2O2发生自消耗反应,·OH的有效利用率下降,处理效果变差[32]。最终确定去除色度和COD最优FeSO4·7H2O投加量为16.36 g·L−1。
3)反应初始pH。芬顿反应体系受pH影响较强[33],一般初始环境为酸性才能发挥较高氧化作用,针对浓缩液,设定不同初始反应pH会影响芬顿反应进程。由图5可得,pH的增大对水样中色度和COD的降解效果整体呈先增后减趋势。反应初始pH过低时,大量的H+会抑制反应式(3)的正向进行,减缓Fe3+转化为Fe2+的再生过程,从而抑制H2O2有效催化分解;反应初始pH过高时,不利于反应式(2)正向进行,从而抑制·OH的产生,且高pH时H2O2易发生非有效分解,体系氧化效果减弱。结果表明,当pH为3.5~4.5时色度去除效果较好,在pH为4时COD去除效果最佳,剩余COD为130 mg·L−1,对应去除率可达88.5%。
4) 2次投加药剂时间间隔。分2次投加药剂于反应体系中,药剂能够更加均匀地溶于液体中,利用率也能够相应提高,其加药时间间隔会对反应体系有所影响。由图6可见,加药时间间隔对整体水质去除效果影响不大,但间隔时间过长或过短都会影响反应的最终处理效果。加药时间间隔时间过短时,第一次投加药剂还未完全与水样中的污染物进行反应,氧化降解不完全,此时再次加入新的药剂将会影响二次反应的进程,·OH也会发生不利的消耗;加药时间间隔过长将会影响整体降解反应的连续性,氧化分解的诸多中间污染物没能够及时进行彻底降解,相互反应也将带来整体的去除效果下降。加药时间间隔在40~60 min时,体系对水样的整体去除效果表现较优。
5)反应回调pH。芬顿体系的最后一步为调节产水pH并添加絮凝剂,其主要作用是使污水中存在的大量Fe2+和Fe3+以及其中的污泥进行絮凝沉淀,从而水质澄清。由图7可以看出,当产水pH调节中性及碱性时都有明显的去除效果,由于反应后体系内存在的铁离子以Fe3+铁离子为主,沉淀的最优pH为6.5~7.5,与实验结果相匹配,最终得出出水pH调节在6.5时,整体降解效果最优。
通过前两阶段正交实验和单因素实验研究芬顿法去除色度和COD最优条件,2种方式的影响因素最优条件相似。在单因素实验批次水样中,当反应初始pH=4.5、H2O2投加量2 500 mg·L−1、FeSO4·7H2O投加量16.36 g·L−1、加药时间间隔40 min和反应回调pH=6.5时,色度去除效果最佳;当反应初始pH=4.0、H2O2投加量2 000 mg·L−1、FeSO4·7H2O投加量16.36 g·L−1、加药时间间隔60 min和反应回调pH=6.5时,COD去除效果最佳。
-
工业废水的处理往往不是根据单一水质作为评判标准,需要对多项水质指标进行综合评测,从而确定最终的影响因素最优条件。根据之前通过色度和COD水质指标得到了2个最优条件,已将范围缩小并确定质量比COD∶H2O2=1.4~1.8,摩尔比H2O2∶Fe2+=0.8~1,进而调整反应初始pH、H2O2投加量和投药间隔时间,进行最终的实验验证,实验条件见表6,实验结果见表7。
根据表7可得,浓缩液经过优化条件后的芬顿工艺处理后,其色度、COD、总氮、总磷、SS和苯胺等都有明显的去除效果。反应过程加入了大量的Fe2+,最终物化形成大量铁泥沉降,但液体中仍有铁离子存在,可能存在部分有机物矿化反应导致离子量增加,综合产生电导率上升现象。氨氮出现不减反增现象可能由于在芬顿氧化过程中部分含氮物质反应转化为氨氮所致。总体而言,在6个条件实验的去除效果相差不大且均符合《纺织染整工业水污染物排放标准》(GB 4287-2012)排放要求,由此可见,采用芬顿法可用于处理印染废水膜浓缩液,效果良好且稳定性较高。综合比较,实验条件4的整体处理效果较优,即H2O2投加量为3 000 mg·L−1、FeSO4·7H2O投加量为25.12 g·L−1、反应初始pH=4、反应回调pH=6.5及加药时间间隔60 min,其中质量比COD∶H2O2=1∶1.3、摩尔比H2O2∶Fe2+=1∶1。
-
现已确定芬顿处理浓缩液的最优条件,再进行物化实验和类芬顿实验与其对比,综合判定各工艺的处理效果和技术经济适用性。物化实验分别采用质量百分比为10% PFS和6% PAC投加到已去除碱度并调节适当pH范围后的膜浓缩液中,投加量均为1%,反应10 min后加入质量浓度1 g·L−1的PAM,投加量为0.1%,轻搅拌后自然沉淀取上清液检测。类芬顿实验采用共浸渍法将FeCl3·6H2O负载于活性炭作为催化剂[34],代替传统芬顿催化剂FeSO4·7H2O,FeCl3·6H2O多作为类芬顿反应体系中负载铁盐的种类之一[35-36],在处理印染废水方面也有一定应用[37]。FeCl3·6H2O和活性炭制备催化剂投加量分别为19 g·L−1和50 g·L−1,根据芬顿最佳条件,投加量确定类芬顿H2O2投加3 300 mg·L−1,催化剂投加35 g·L−1。
由表8实验结果可知,在最优条件下处理浓缩液,COD去除率可达90%以上,色度去除率可达95%以上。相比之下,采用PFS和PAC物化处理效果COD去除率均小于50%,色度去除效果同样不良,PFS和PAC作为无机高分子混凝剂主要作用为絮凝沉淀,投入水中可形成大量络合离子,对水中胶体和颗粒物具有高度电中和及桥联作用,从而吸附沉降部分COD和悬浮物,但无法进行深度处理,需配合其他工艺联合使用才能得到优良效果。类芬顿实验兼具高级氧化和吸附作用,COD与色度去除率均高达97%以上,但各药剂投加量与芬顿相对应增添了大量活性炭成本,调控成本同时保障处理效果可为膜浓缩液提供处理方案。
-
采用同批水样对4种方法吨水处理费用进行分析,原水COD值为2 694 mg·L−1,根据目前市场价格,各药剂单价如下:H2SO4为600元·t−1,H2O2(30%)为1 200元·t−1,FeSO4·7H2O为230元·t−1,NaOH为5 000元·t−1,PAM为15 000元·t−1,AC为8 000元·t−1,FeCl3·6H2O为1 200元·t−1,PFS为535元·t−1,PAC为310元·t−1。列出各法所需药剂用量见表9,则PFS和PAC处理成本分别为12.95 元·t−1和12.60 元·t−1,但效果不佳;初步类芬顿法在不涉及类芬顿催化剂及其相关药品再利用的情况下,类芬顿法的处理成本为319.98元·t−1,类芬顿法需进一步优化,综合考虑负载催化剂的用量和重复使用性以及相关药品的再利用情况,进而增强其实用性;芬顿法按照实验最终得出最优因素条件下处理成本为31.82元·t−1,具有一定的实际应用性。
-
1)采用芬顿法处理印染废水小孔径超滤膜浓缩液,H2O2投加量对处理效果的影响最大。当COD∶H2O2质量比为1∶1.3、H2O2∶Fe2+摩尔比为1∶1、反应初始pH为4.0及反应回调pH为6.5时,处理效果最佳。
2)在芬顿法的最优条件下,COD去除率达90%以上,色度去除率达95%以上,产水氨氮、总氮、总磷、六价铬、SS、二氧化氯和苯胺等均达到《纺织染整工业水污染物排放标准》(GB 4287-2012)排放要求,处理效果稳定。
3)采用物化法处理膜浓缩液的效果不佳,类芬顿法处理膜浓缩效果较好但经济成本较高,可优化工艺为后续对膜浓缩液处理提供工程参考。
芬顿法处理印染废水小孔径超滤膜浓缩液
Fenton process treating small pore-sized ultrafiltration membrane concentrate of printing and dyeing wastewater
-
摘要: 印染废水属于难处理工业废水,具有排放量大、污染物含量高等特性。在可持续发展的背景下,印染废水实现零(近零)排放成为必然趋势。目前采用催化氧化法处理膜浓缩液是实现零(近零)排放的常规方法,但该方法存在催化药剂投加量大、处理效果差及二次污染等问题。采用芬顿法,以印染废水小孔径超滤膜浓缩液为实验用水,考察了H2O2和FeSO4·7H2O投加量、pH及加药时间间隔等因素对处理效果的影响。结果表明,在COD∶H2O2质量比为1∶1.3、H2O2∶Fe2+ 摩尔比为1∶1,反应初始pH=4.0,反应回调pH=6.5,加药时间间隔60 min的条件下,处理效果最优,出水COD、色度、氨氮和总氮等主要水质指标均达到《纺织染整工业水污染物排放标准》(GB 4287-2012)排放要求,出水水质稳定,较其他条件能够获得较高的经济效益。与此同时,将芬顿法与物化和类芬顿法进行了对比分析,结果表明,芬顿法处理印染废水膜浓缩液具有较高的经济性,为进一步工程实践提供依据。Abstract: Printing and dyeing wastewater is a kind of refractory industrial wastewater, which has the characteristics of large discharge and high pollutant content. In the context of sustainable development, zero (nearly zero) discharge of printing and dyeing wastewater has become an inevitable trend. At present, the treatment of membrane concentrate by catalytic oxidation is a conventional method to achieve zero ( nearly zero) emission, while it has the problems of large dosage of catalytic agent, poor treatment effect and secondary pollution. In this study, Fenton method was used to treat the small pore-sized ultrafiltration membrane concentrate of printing and dyeing wastewater. The effects of H2O2 and FeSO4·7H2O dosage, pH and dosing time interval on the treatment effect were investigated. The results showed that the best treatment effect occurred at mass ratio COD : H2O2 of 1:1.3, molar ratio H2O2 : Fe2+ of 1:1, initial pH 4.0, callback pH 6.5 and dosing time interval of 60 min. All the main water quality indexes such as COD, color, ammonia nitrogen and total nitrogen in the effluent could meet the emission requirements of ‘Discharge Standard of Water Pollutants for Textile Dyeing and Finishing Industry’ (GB 4287-2012). The effluent quality was stable, this method could obtain higher economic benefits than other conditions. At the same time, this study compared the Fenton method with the physicochemical and Fenton-like methods. The results showed that the Fenton method had higher economy in treating membrane concentrate of printing and dyeing wastewater, which provides a basis for further engineering practice.
-
随着环保形势的日益严峻,污染物排放标准愈加严格,尤其是导致水体富营养化的氮元素,如北京市最新标准《北京地方水污染排放标准》(DB 11/307-2013)规定,污水厂出水TN不得高于15 mg·L−1。污水生物处理过程中氮元素的去除是在硝化和反硝化反应共同作用下实现的,但由于我国城镇污水厂进水碳源普遍不足导致反硝化效率低下,使得碳源不足成为制约出水TN达标的重要因素[1]。为解决这一问题,在水厂运行过程中,一般通过投加甲醇等补充碳源的方式提高脱氮效率[2]。然而投加补充碳源不仅增加了运行成本,也会增加剩余污泥的产量[3]。与此同时,在生物处理过程中,微生物将有机物同化为自身细胞物质,以剩余污泥的形式被排出系统。这不仅增加后续污泥处理的成本,还造成了其所含丰富碳源的浪费[4]。在此背景下,研究者们提出多种剩余污泥破解方法并将其作为碳源回用。QIANG等[5]采用臭氧污泥破解液回流至A2/O系统,除磷效果得到明显改善。LIU等[6]研究了污泥水力破解后作为碳源对反硝化速率的影响,发现反硝化速率增加,TN去除率增加。LIU等[7]将碱解发酵污泥破解液作为A2/O系统的反硝化补充碳源,脱氮除磷率均得到明显的提高,并且与传统工艺相比有巨大的经济优势;KONDO等[8]进一步研究了剩余污泥破解回流比对强化反硝化脱氮的影响,发现当污泥破解量为总污泥量9.40%时,剩余污泥排放量减少50%,反硝化效果提高。
高铁酸盐作为一种氧化性强、绿色、多功能的新型氧化剂,在污泥处理领域已得到了广泛研究和应用,相关研究[9-11]证实了高铁酸盐具有良好的污泥溶胞性能,能有效地破坏污泥细胞,溶出胞内物质。在氧化破解污泥的过程中,Fe6+可被还原为Fe3+,Fe3+可以改善污泥的沉降性能和脱水性能[12-14]。为实现高铁酸盐的工艺利用,本研究采用复合高铁酸盐溶液(composite ferrate solution,CFS)破解污泥,将破解液回流至A/O系统强化反硝化脱氮,即高铁酸盐氧化-A/O工艺(ferrate oxidation-A/O,FO-A/O),详细考察了不同剩余污泥回流比(25%、50% 和100%)对污泥浓度、污泥活性(SOUR)、污泥沉降性能(SVI)及系统出水水质的影响,重点考察了污泥减量效果和脱氮效果,为实现污泥减量及强化脱氮提供参考。
1. 实验材料与方法
1.1 实验装置
实验装置由A/O工艺模型和FO污泥破解装置2部分组成(见图1)。在A/O模型中,缺氧池、好氧池和二沉池有效容积分别为4.3、16.4和11.7 L,缺氧池设搅拌器,以确保泥水均匀混合,好氧池底部设置曝气砂头。FO污泥破解装置同时具备污泥破解和沉淀2个功能,沉淀完成后,调节上清液pH,上清液经蠕动泵进入进水箱,与污水混合后一同进入A/O工艺模型。
1.2 污泥来源及工艺进水
实验所用污泥取自天津市北辰区某污水厂,该厂采用A2/O工艺处理生活污水且运行效果良好。工艺进水为模拟生活污水,模拟生活污水由自来水添加葡萄糖、氯化铵、磷酸二氢钾及微量元素[5]配制而成,其水质指标为:COD=223.33 mg·L−1,BOD5=126.90 mg·L−1,TN=30.04 mg·L−1,
NH+4 -N=29.17 mg·L−1,NO−3 -N=0.18 mg·L−1,NO−2 -N=0.09 mg·L−1,TP=3.31 mg·L−1,pH=6.0~7.5。1.3 实验药品
CFS为实验室自制,其中
FeO2−4 浓度为30.91 g·L−1,ClO−浓度为38.63 g·L−1,OH−浓度为90.27 g·L−1,其他所用化学药品均为国产分析纯。1.4 实验方法
将活性污泥接种至A/O工艺模型启动装置,待出水C、N达到一级A标准后调试完成,A/O模型运行参数为进水流量48 L·d−1、好氧区水力停留时间8.3 h、缺氧区水力停留时间2.1 h,污泥龄15 d、污泥回流比70%、消化液回流比200%、硝化液回流比200%、好氧池溶解氧3.5~7.0 mg·L−1、缺氧池溶解氧0.2~0.5 mg·L−1。
实验装置的运行分为A/O阶段(对照组)和FO-A/O阶段,FO-A/O阶段又分为3种工况,3种工况下剩余污泥破解回流比(r)分别为25%、50%、100%,其中剩余污泥破解回流比指每日被CFS破解的剩余污泥与系统排出剩余污泥干重之比。破解剩余污泥时CFS投加量按50 mg·g−1(以Fe6+计)投加,反应时间为24 h。
本研究采用污泥产率系数(YOBS)表征系统运行过程中污泥产率的变化,采用比好氧速率(SOUR)表征污泥活性的变化,二者的计算如式(1)和式(2)所示。
YOBS=QWXW+(Q−QW)XeQ(S0−Se) (1) U0=ΔmDOXt (2) 式中:YOBS为污泥产率系数,g·g−1;QW为剩余污泥量,L·d−1;Q为进水量,L·d−1;XW为剩余污泥浓度,mg·L−1;Xe为出水悬浮物浓度,mg·L−1;S0为进水SCOD浓度,mg·L−1;Se为出水SCOD浓度,mg·L−1;U0为污泥比耗氧速率,mg·(g·h)−1;ΔmDO为DO减少量,mg·L−1;X为混合液SS浓度,g·L−1;t为测试时间,h。
1.5 分析方法
MLSS、MLVSS、SVI、SS均采用重量法测定,COD采用快速消解法、
NH+4 -N、TP、TN、NO−3 、NO−2 均采用分光光度法[15]测定,水质指标测定前使用0.45 μm微孔滤膜过滤;SOUR采用膜电极法[16]测定。2. 结果与讨论
2.1 污泥减量情况
实验研究了在污泥破解回流比r分别为25%、50%和100%时的FO-A/O工艺的污泥产率系数,分析了污泥破解回流比对污泥减量效果的影响,结果如图2所示。可以看出,污泥产率系数YOBS随着r的增加而明显降低。r=100%时,YOBS=0.04 g·g−1,与A/O对照组(YOBS=0.09 g·g−1)相比减少了55.56%。这是由于在FO-A/O运行过程中产生的部分剩余污泥被CFS溶胞破解,CFS中所含
FeO2−4 、ClO−以及OH−通过氧化[17-18]、皂化[19]的方式破坏污泥细胞,释放出胞内物质,并将难溶的大分子有机物转为容易被微生物所摄取利用的小分子有机物,最终作为碳源被重新利用,从而导致YOBS的降低。当r=50%时,YOBS=0.048 g·g−1,污泥产量较A/O工艺减量46%,该工艺的污泥产率系数低于臭氧+A2/O工艺(YOBS=0.1 g·g−1)和K2FeO4+A2/O工艺(YOBS=0.21 g·g−1)。2.2 污泥破解回流比对污泥性能的影响
污泥破解液回流至A/O系统引入Fe3+,可能会对污泥性能产生影响,因此,本研究探讨了不同剩余污泥破解回流比对A/O工艺中污泥浓度、污泥活性和污泥沉降性能的影响,结果见图3。由图3(a)可知:随着r的升高,污泥浓度逐渐升高,这是由于污泥破解液中含有易降解有机物;随着r的增加,易降解有机物增加,导致微生物数量增加,从而使得污泥浓度有所增加。另外,工艺运行过程中,VSS/SS变化幅度不大,维持在0.74左右,表明破解液回流不会造成系统内惰性物质的积累。
实验进一步研究了污泥破解液对污泥活性的影响,结果见图3(b),SOUR的计算方法见式(2)。由图3(b)可知,当r为25%和50%时,SOUR分别为7.21 mg·(g·h)−1和7.77 mg·(g·h)−1,均较对照组(6.2 mg·(g·h)−1)有所提高;当r增加至100%,SOUR有所下降。分析其原因是:一方面,由于在r为25%和50%时,适量的Fe3+进入A/O系统,好氧条件下,Fe3+可以作为氧化细胞色素的电子受体,也可以用于多种酶的合成,但过高浓度的Fe3+会对某些酶的活性产生抑制作用[20];另一方面,破解液中含有腐殖酸等难被微生物降解利用的物质,微生物对此类物质降解速率慢,降解速率决定微生物对水中DO的摄取量,随着此类物质的增加,对DO的摄取量减少,SOUR降低。回流的Fe3+除对SOUR产生影响外,还有助于污泥沉降性能的提高,结果见图3(c)。从图3(c)可以看出,随着r的增加,SVI逐渐减小,这源于破解液中Fe3+的絮凝作用,其改变了污泥絮体的大小和结构,强化了污泥密度与水密度之间的差异,使MLSS增大,进而导致SVI减小,改善污泥沉降性能,从而有利于后续污泥脱水处理。但当r=100%时,污泥沉降性能较r=50%时变化不大,这可能是由于此时污泥活性降低所致。
2.3 出水水质情况
1)对有机物的去除效果。COD与BOD5为常用的有机污染参数,实验通过测量进出水COD与BOD5的变化来研究有机物的去除效果,结果如图4所示。可以看出,尽管进水COD、BOD5随着r的提高有所增加,但出水COD与BOD5浓度与A/O对照组相比基本保持恒定,均能达到《城镇污水处理场污染物排放标准》一级A标准排放要求。这表明污泥破解液具有良好的可生化性,微生物能够较好地适应并降解破解液回流引入的有机物。此外,在A/O对照组和FO-A/O工艺运行过程中,污泥负荷(F/M)均低于0.15 kg·(kg·d)−1,处于低负荷状态运行,低负荷状态下微生物对COD和BOD5的去除率较高。
2) FO-A/O工艺的脱氮效果。氮是导致水体富营养化的主要元素,也是污水厂深度处理的主要目标物,实验详细研究了污泥破解液作为碳源时FO-A/O工艺对不同形态氮的去除效果,结果见图5。由图5(a)~(d)可见,随着r的提高,破解液中大量氮元素进入A/O系统,导致系统氮负荷增加。但在r=25%和50%工况时,FO-A/O系统对TN、
NH+4 -N的脱除效果均优于A/O对照组,由图5(c)和图5(d)可见,出水NO3-N、NO2-N相比A/O对照组也有所降低,这表明在r为25%和50%时,硝化反硝化效率均有所提高。一方面,这是由于破解液回流改善了系统的C/N比,A/O对照组、r=25%和r=50%时的C/N分别为7.44、7.56和7.79,碳氮比增加为反硝化反应提供了更多的碳源;另一方面,Fe3+作为一种酶促反应激活剂,提高了微生物体内酶的反应效率[21],对硝化和反硝化反应均有一定促进作用。继续增加r至100%时,氮负荷进一步增大,C/N降低,脱氮效果较A/O对照组下降。从FO-A/O工艺运行监测结果可以看出,r的取值对脱氮效果有明显影响,r=50%时,TN的去除率为68.36%~77.59%。该结果优于臭氧+A2/O工艺和K2FeO4+A2/O工艺,与碱解发酵+A2/O和机械法+SBR工艺效果基本相当。由此可见,确定合理的剩余污泥破解回流比是实现污泥减量同步强化脱氮的关键。为了进一步证实不同剩余污泥破解回流比下破解液作为补充碳源对反硝化脱氮的强化作用,对进出系统的碳、氮进行物料衡算,其中剩余污泥中的COD、TN含量按0.80 g·g−1和0.07 g·g−1[22]计算,衡算的结果如表1所示。可以看出,随着r的增加,碳矿化率逐渐提高,r=100%时,矿化率为93.13%;对氮而言,在A/O对照组及r=25%、r=50%时,随着r的增加,矿化率增大,r=50%时,氮矿化率为71.07%,继续增大r至100%,矿化率虽有所降低,但仍高于对照组。另外,由于剩余污泥的破解回流,随剩余污泥排出系统的碳和氮减少。以上计算结果表明,氮矿化率的提高与碳的矿化率相关,证实了污泥破解液回流引入的有机物被反硝化菌利用,起到强化系统脱氮的作用。
表 1 C和N物料衡算Table 1. Overall mass balances of C and N elements运行工况 C的质量/g N的质量/g 进水 矿化 出水 剩余污泥 进水 矿化 出水 剩余污泥 A/O 214.39 181.73 25.96 6.70 28.84 15.98 12.39 0.47 r=25% 246.31 222.96 18.05 5.30 32.59 20.62 11.60 0.37 r=50% 275.79 253.71 18.18 3.90 35.50 25.23 10.00 0.27 r=100% 308.08 284.43 21.15 2.50 44.16 24.96 19.03 0.17 3)进出水TP浓度变化。由于CFS含有大量Fe6+,Fe6+在破解污泥过程中被还原为Fe3+,而Fe3+可以通过混凝、沉淀等方式去除水中的磷[23-24],为了明确这部分Fe3+对TP的影响,在实验中监测了进出水TP的变化规律,如图6所示。可以看出,r为25%和50%工况时,进水TP负荷稍有提高,但污泥破解液回流增加了进水碳源,使得污泥活性提高(图3(b)结果),同时引入Fe3+,2种作用同时作用使得TP去除率上升。而当r=100%时,系统对磷的去除效果急剧恶化,出水TP浓度高于A/O对照组。这是由于r=100%时,全部剩余污泥被溶胞破解回流,系统进水TP负荷升高,同时污泥活性大幅度降低(图3(b)),使得磷在系统中累积[25],从而使得出水TP浓度升高,出水水质恶化。在最佳回流比条件下,对TP的平均去除率为39.09%,高于K2FeO4+A2/O工艺的32%。
2.4 技术经济分析
运行维修费用在工艺处理系统中占有重要地位,包括药剂费、人工费、电费、维修费及污泥处理费用。本研究在A/O工艺的基础上增加了CFS的费用,1 t污泥需要投加Fe6+ 0.40 kg,其药剂成本约为169元·t−1,相同药剂投加量下市售固体K2FeO4的药剂成本为9 900元·t−1(市售1 400元·kg−1,纯度约20%),同时由于污泥减量46%,因此,减少了后续46%的污泥处理费用(污泥填埋费用约为200元·t−1,污泥焚烧约为100~300元·t−1,污泥堆肥为90~150元·t−1),由此可见,此方法有一定的应用前景。
3. 结论
1)在传统A/O工艺基础上,增加FO污泥减量装置可以取得良好的污泥减量效果,在r=50%时,YOBS=0.048 g·g−1,相比A/O工艺,污泥减量了46%,此时出水COD、TN、
NH+4 -N分别为18.83、10.43和4.05 mg·L−1,达到《城镇污水处理场污染物排放标准》一级A标准排放要求。该工艺中药剂制备成本低于固体K2FeO4,且减少了后续污泥处置量,具有一定的应用前景。2)破解液污泥回流增加了进水SCOD值,导致微生物量增加,污泥浓度提高,但不会造成系统内惰性物质积累。回流引入的Fe3+可改善污泥沉降性,且适量的Fe3+可作为电子受体,也可用于细胞内多种酶的合成,促进污泥活性,但过多Fe3+则会产生毒害作用,导致污泥活性降低。
3)污泥破解液回流可提高系统C/N比,且C、N物料衡算结果表明,污泥碳源可被反硝化菌有效利用,起到强化脱氮的效果,且回流的Fe3+对硝化、反硝化反应和除磷均有一定的促进作用,但r=100%回流会导致C/N比降低,脱氮、除磷效果降低。
-
表 1 实验用水水质
Table 1. Quality of experimental water
水样 pH 色度/倍 浊度/NTU 电导率/(mS·cm−1) COD/(mg·L−1) 总碱度(以CaCO3计)/(mg·L−1) S1 8.5 1 800 0.73 21.10 1 443 2 752 S2 8.6 1 900 0.83 19.50 1 414 2 638 S3 8.6 3 500 2.25 19.24 2 300 2 552 S4 8.6 5 500 1.19 18.80 2 694 2 430 表 2 正交实验因素水平表
Table 2. Factor level table for orthogonal experiments
水平 反应初始pH(A) FeSO4·7H2O投加量(B)/(g·L−1) H2O2投加量(C)/(mg·L−1) 投药间隔时间(D)/min 反应回调pH(E) 1 2.5 4.09 500 30 6.5 2 3.0 8.18 1 000 40 7.0 3 3.5 12.27 1 500 50 7.5 4 4.0 16.36 2 000 60 8.0 表 3 影响因素正交实验结果
Table 3. Orthogonal experimental results of influencing factors
序号 A B C D E 色度去除率/% COD去除率/% 1 1 1 1 1 1 3.81 62.50 2 1 2 2 2 2 89.32 83.29 3 1 3 3 3 3 94.15 87.50 4 1 4 4 4 4 95.48 83.56 5 2 1 2 3 4 62.54 72.77 6 2 2 1 4 3 69.58 73.55 7 2 3 4 1 2 97.73 90.92 8 2 4 3 2 1 96.60 89.87 9 3 1 3 4 2 77.48 83.16 10 3 2 4 3 1 96.03 88.29 11 3 3 1 2 4 84.67 72.37 12 3 4 2 1 3 93.75 85.00 13 4 1 4 2 3 90.40 81.18 14 4 2 3 1 4 92.53 83.68 15 4 3 2 4 1 92.15 84.61 16 4 4 1 3 2 77.65 65.13 表 4 正交实验色度结果极差分析
Table 4. Range analysis of orthogonal experiment color result
序号 A/% B/% C/% D/% E/% 均值11 70.69 35.96 58.93 71.95 72.15 均值12 81.61 86.86 84.44 90.25 85.55 均值13 87.98 92.18 90.19 82.59 86.97 均值14 88.18 90.87 94.91 83.67 83.81 极差R1 17.49 33.62 35.98 18.29 14.82 表 5 正交实验COD结果极差分析
Table 5. Range analysis of orthogonal experiment COD result
序号 A/% B/% C/% D/% E/% 均值21 79.21 74.90 68.39 80.53 81.32 均值22 81.78 82.20 81.41 81.68 80.63 均值23 82.21 83.85 86.05 78.42 81.81 均值24 78.65 80.89 85.99 81.22 78.09 极差R2 3.56 8.95 17.66 3.25 3.71 表 6 确定影响因素条件表
Table 6. Determined condition table of influencing factors
条件 反应初始pH FeSO4·7H2O投加量/(g·L−1) H2O2投加量/(mg·L−1) 投药间隔时间/min 反应回调pH 1 3.8 25.12 3 000 60 6.5 2 4.0 25.12 3 000 40 6.5 3 4.2 25.12 3 000 60 6.5 4 4.0 25.12 3 000 60 6.5 5 4.0 25.12 3 400 60 6.5 6 4.0 25.12 3 800 60 6.5 表 7 检测水质表
Table 7. Detection of water quality table
序号 pH 浊度/NTU 色度/倍 电导率/(μS·cm−1) COD/(mg·L−1) 氨氮/(mg·L−1) 总氮/(mg·L−1) 总磷/(mg·L−1) 六价铬/(mg·L−1) SS/(mg·L−1) 二氧化氯/(mg·L−1) 苯胺/(mg·L−1) 限值 6~9 — 80 — 200 20 30 1.5 不得检出 177 0.5 不得检出 浓缩液 8.6 12.2 3 500 1 924 2 300 5.59 76.90 2.58 未检出 26 未检出 1.4 1 7.0 0.4 65 2 920 144 10.05 28.67 0.05 未检出 未检出 未检出 未检出 2 7.0 0.4 70 2 940 144 9.92 27.94 0.07 未检出 未检出 未检出 未检出 3 7.0 2.0 75 2 950 150 11.54 29.23 0.05 未检出 未检出 未检出 未检出 4 6.5 0.8 60 2 940 138 9.73 26.84 0.06 未检出 未检出 未检出 未检出 5 6.7 1.3 70 2 970 135 10.05 28.76 0.06 未检出 未检出 未检出 未检出 6 6.5 0.6 55 3 020 143 9.78 28.15 0.06 未检出 未检出 未检出 未检出 表 8 物化实验、类芬顿实验、芬顿实验处理水质效果对比
Table 8. Comparison of the treatment effects on the water quality by physicochemical experiment, Fenton-like experiment and Fenton experiment
水样 COD/(mg·L−1) COD去除率/% 色度/倍 色度去除率/% 原水 2 694 — 5 500 — PFS处理水 1 366 49.29 2 500 54.55 PAC处理水 1 964 27.10 4 800 12.73 类芬顿处理水 68 97.48 10 99.82 芬顿处理水 172 93.62 80 98.55 表 9 不同实验方法吨处理废水所需药剂
Table 9. The reagent dosage for treating wastewater by different experimental methods kg·t−1
水处理法 H2SO4 H2O2(30%) FeSO4·7H2O NaOH PAM AC FeCl3·6H2O PFS PAC PFS法 4 — — 2.0 0.001 — — 1 — PAC法 4 — — 2.0 0.001 — — — 0.6 类芬顿法 4 11 — 1.5 0.001 35 13.3 — — 芬顿法 4 11 26.98 2.0 0.001 — — — — -
[1] LI F, XIA Q, GAO Y Y, et al. Anaerobic biodegradation and decolorization of a refractory acid dye by a forward osmosis membrane bioreactor[J]. Environmental Science-Water Research & Technology, 2018, 4(2): 272-280. [2] OLLER I, MALATO S, SANCHEZ-PEREZ J A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination: A review[J]. Science of the Total Environment, 2011, 409(20): 4141-4166. doi: 10.1016/j.scitotenv.2010.08.061 [3] YANG C, LI L, SHI J L, et al. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane[J]. Journal of Hazardous Materials, 2015, 284: 50-57. doi: 10.1016/j.jhazmat.2014.11.011 [4] KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676-4697. doi: 10.1016/j.jece.2018.06.060 [5] 薛罡. 印染废水治理技术进展[J]. 工业水处理, 2021, 41(9): 10-17. doi: 10.19965/j.cnki.iwt.2021-0433 [6] 赵岩, 李洪军, 胡晓聪. 混凝沉淀+A/O+Fenton工艺处理印染废水[J]. 资源节约与环保, 2021(4): 105-106. doi: 10.3969/j.issn.1673-2251.2021.04.057 [7] WANG X, HUANG F, YU M, et al. Multilayer adsorption of organic dyes on coal tar-based porous carbon with ultra-high specific surface area[J]. International Journal of Environmental Science and Technology, 2021, 18(12): 3871-3882. doi: 10.1007/s13762-020-03093-1 [8] 廖秀珺. 环境工程中印染废水特征分析及处理方法研究[J]. 资源节约与环保, 2021(3): 116-117. doi: 10.3969/j.issn.1673-2251.2021.03.063 [9] 陈婷, 赵琪, 陈泉源, 等. 不同光源照射下天然含铁矿物催化H2O2深度处理印染废水效果对比[J]. 环境工程学报, 2021, 15(5): 1558-1566. doi: 10.12030/j.cjee.202011100 [10] 王珺. 印染废水生化尾水中溶解性有机物特征及去除研究[D]. 广州: 暨南大学, 2016. [11] 戴鸿军, 李红丽, 周国旺, 等. GC-MS分析印染废水处理中有机污染物的降解特性[J]. 浙江大学学报(理学版), 2014, 41(1): 72-77. [12] 朱利杰, 范云双, 谢康, 等. 印染废水RO浓水水质分析[J]. 中国环境科学, 2019, 39(11): 4646-4652. doi: 10.3969/j.issn.1000-6923.2019.11.020 [13] 张秀蓝, 董亮, 郭婧, 等. 印染废水中苯胺的快速测定-高效液相色谱荧光法[J]. 环境化学, 2021, 40(7): 2265-2267. [14] YANG B, XU H, YANG S N, et al. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor[J]. Bioresource Technology, 2018, 264: 154-162. doi: 10.1016/j.biortech.2018.05.063 [15] AMINI B, Otadi M, Partovinia A. Statistical modeling and optimization of Toluidine Red biodegradation in a synthetic wastewater using Halomonas strain Gb[J]. Journal of Environmental Health Science and Engineering, 2019, 17: 319-330. doi: 10.1007/s40201-019-00350-5 [16] 孔舒宸. 印染废水处理方法研究进展[J]. 中国资源综合利用, 2019, 37(1): 70-73. doi: 10.3969/j.issn.1008-9500.2019.01.021 [17] 梁培瑜, 沈紫飞, 吴永明, 等. 高级氧化-水解酸化-A/O组合工艺处理印染废水[J]. 工业水处理, 2022, 42(11): 107-112. doi: 10.19965/j.cnki.iwt.2022-0030 [18] 陈彦安, 徐百龙, 杜平, 等. 印染废水中水回用及RO浓水深度处理工程实例[J]. 工业水处理, 2023, 43(1): 157-162. doi: 10.19965/j.cnki.iwt.2022-0140 [19] 郭紫阳, 阿如汗, 金铁瑛, 等. 处理印染废水的HMF与MBR技术对比[J]. 西安工程大学学报, 2022, 36(3): 38-45. doi: 10.13338/j.issn.1674-649x.2022.03.005 [20] 李灿, 黄斌, 古航坤, 等. 厌氧膜生物反应器-纳滤/反渗透处理印染废水[J]. 水处理技术, 2021, 47(6): 98-103. doi: 10.16796/j.cnki.1000-3770.2021.06.020 [21] 王岩, 王奇梁, 许以农, 等. 电渗析用于印染废水膜浓缩液盐回用工艺研究[J]. 膜科学与技术, 2022, 42(3): 122-128. doi: 10.16159/j.cnki.issn1007-8924.2022.03.016 [22] XU H, YU T L, GUO X X, et al. Fe3+/H2O2 Fenton degradation of wastewater containing dye under UV irradiation[J]. Desalination and Water Treatment, 2016, 57(38): 18028-18037. doi: 10.1080/19443994.2015.1088804 [23] ISMAIL G A, SAKAI H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal[J]. Chemosphere, 2022, 291: 132906. doi: 10.1016/j.chemosphere.2021.132906 [24] JING X J, YUAN J S, CAI D N, et al. Concentrating and recycling of high-concentration printing and dyeing wastewater by a disc tube reverse osmosis-Fenton oxidation/low temperature crystallization process[J]. Separation and Purification Technology, 2021, 266. [25] 张庆喜, 何如民, 黄启镜, 等. 芬顿氧化法深度处理工业废水尾水中试研究[J]. 广东化工, 2022, 49(14): 145-147. doi: 10.3969/j.issn.1007-1865.2022.14.049 [26] 赵凯, 胡睿华, 李灌乔, 等. 印染行业废水深度处理及资源化利用技术研究[J]. 辽宁化工, 2022, 51(5): 688-691. doi: 10.3969/j.issn.1004-0935.2022.05.030 [27] 王玉番, 鞠甜甜, 王永, 等. US/UV-Fenton体系处理不同工段的印染废水[J]. 环境工程学报, 2017, 11(5): 2754-2761. doi: 10.12030/j.cjee.201601225 [28] 曾宁. 紫外光—双氧水高级氧化技术对饮用水中典型致嗅物质去除的研究[D]. 西安: 西安建筑科技大学, 2018. [29] 郑三强, 罗兴国, 李兴彬, 等. 真空制盐两碱净化过程成垢离子的脱除及控制[J]. 化学工业与工程, 2022, 39(1): 58-65. doi: 10.13353/j.issn.1004.9533.20210306 [30] 吴锡峰, 杨恺. 芬顿氧化法对抗生素废水深度处理的实验研究[J]. 海峡科学, 2017, 121(1): 19-21. doi: 10.3969/j.issn.1673-8683.2017.01.006 [31] 李再兴, 左剑恶, 剧盼盼, 等. Fenton氧化法深度处理抗生素废水二级出水[J]. 环境工程学报, 2013, 7(1): 132-136. [32] 闫镇枭, 韩颖, 杨虎君, 等. 两级芬顿处理垃圾渗滤液纳滤浓缩液膜浓缩液的研究[J]. 山东化工, 2022, 51(12): 207-209. doi: 10.3969/j.issn.1008-021X.2022.12.063 [33] DUAN Z H, ZHANG W H, LU M W, et al. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol[J]. Carbon, 2020, 167: 351-363. doi: 10.1016/j.carbon.2020.05.106 [34] LI B, ZHANG L, YIN W, et al. Effective immobilization of hexavalent chromium from drinking water by nano-FeOOH coating activated carbon: Adsorption and reduction[J]. Journal of Environmental Management, 2021, 277: 111386. doi: 10.1016/j.jenvman.2020.111386 [35] ZHANG J, LIU G D, WANG P H, et al. Facile synthesis of FeOCl/iron hydroxide hybrid nanosheets: Enhanced catalytic activity as a Fenton-like catalyst[J]. New Journal of Chemistry, 2017, 41(18): 10339-10346. doi: 10.1039/C7NJ01993A [36] DU P D, DANH H T, HOAI P N, et al. Heterogeneous UV/Fenton-like degradation of methyl orange using iron terephthalate MIL-53 catalyst[J]. Journal of Chemistry, 2020, 2020: 1474357. [37] ZHANG M D, WEI Y F, HUANG M. Treatment of dye wastewater by nano-ferrous modified bentonite assisted advanced oxidation processes[J]. Advanced Materials Research, 2012, 1705(486): 104-107. 期刊类型引用(4)
1. 唐建,张宿义,敖宗华,唐恒军. 高铁酸盐耦合过硫酸盐对污泥减量化研究进展. 资源节约与环保. 2023(03): 5-7+11 . 百度学术
2. 张绪婷. 污泥处理处置技术的应用研究. 科学技术创新. 2020(02): 166-167 . 百度学术
3. 赵凯亮,刘安迪,南彦斌,梁利民,王云霞,陈永志. HRT对改良式A~2/O-BAF反硝化除磷脱氮的影响. 环境科学. 2020(06): 2771-2778 . 百度学术
4. 张天歌,刘永红,王宁. 废水处理过程中污泥减量技术及机理研究进展. 水处理技术. 2020(08): 6-12 . 百度学术
其他类型引用(2)
-