-
焦化废水是典型的高碳氮比且成分复杂的工业废水[1]。其中主要有机污染物为苯酚,约占耗氧有机物(以COD计)的50%~60%,吡啶、喹啉等杂环化合物约占15%~20%,其他主要还有苯衍生物、多环芳烃等物质[2]。生物法因其工艺简单、成本低廉、无二次污染,是常用的焦化废水处理方法之一。红球菌属是一类具有强大降解能力的细菌,很多红球菌均具有降解有机化合物的能力,包括石油烃(链烃、芳香烃和环烷烃等)、有机腈和链霉毒素等[3]。关于红球菌及菌株固定化应用于焦化废水生物处理也有大量学者进行研究。朱顺妮等[4]分离出的一株喹啉降解菌Rhodococcus sp.QL2具有降解苯酚、吡啶、喹啉等焦化废水特征污染物的降解能力。马馨月[5]使用竹炭、海藻酸钠、壳聚糖等载体对Rhodococcus sp. PB-1进行固定化,所制得的固定化微球可以显著提高菌株PB-1的稳定性和降解效率,并且具有循环使用特性。虽然固定化技术可以显著提高微生物的降解效率,但在一些极端营养环境下,比如碳氮比例失衡的废水中,微生物因缺乏可利用碳源或氮源,不能发挥最佳降解效果,需要额外的碳氮源或其他营养的投加补充[6]。传统投加方式多以直投为主,这种方法虽然简单但有可能造成资源浪费和二次污染,采用缓释技术可以控制碳氮源的释放速度,使其在系统内保持一定的有效浓度[7],同时还可以提高资源利用率避免浪费。
近年来,缓释技术也开始用于环境污染治理并显示出很大的应用潜力[8]。XING等[9]以廉价的农业废弃物为碳源,制备了一种内层为大分子碳源、外层为小分子的新型双层缓释碳源微球,研究了花生壳、玉米芯和核桃壳3种农业废弃物在不同粒径下的碳释放性能和反硝化性能,通过改变微球层数来控制微球的碳源释放速率,结果表明,粒径小于0.125 mm的玉米芯具有较好的碳释放性能,双层缓释碳源微球比单层缓释碳源微球具有更大的脱氮潜力。王允等[10]首次以淀粉为碳源原料,聚乙烯醇(PVA)为载体,α-淀粉酶作为添加剂,采用共混技术制备2种脱氮原位反应格栅(PRB)缓释有机碳源(SOC)材料为微生物脱氮提供碳源。研究发现,材料内部形成淀粉分子填充的PVA 网络骨架,缓释碳符合二级动力学过程。HSIA等[11]以稻壳粉、硫酸镁及聚乳酸制备了新型原位硫酸盐释放生物屏障(SRM),用于长期硫酸盐释放,以增强厌氧石油烃的生物降解与硫酸盐还原机制。目前关于缓释材料在环境污染治理中的研究多为缓释碳源和缓释硫酸盐,对缓释氮源材料研究较少,且缓释材料多为单独使用,鲜少与固定化微生物结合研究。
本研究利用实验室保存的Rhodococcus sp.W7为固定化菌株,对比筛选氮源和条件优化制备出了可缓释氮源的固定化微生物颗粒(immobilized microbe particle, IMP),旨在探索固定化微生物在氮匮乏条件下对底物降解能力。通过对颗粒结构表征和缓释性能研究揭示了缓释尿素固定化微生物颗粒(controlled urea immobilized microbe particle, CUIMP)的降解特性和缓释机制。本研究结果对生物法在极端营养环境中发挥修复作用可提供参考。
-
菌株Rhodococcus sp.W7(Genebank MK424264)为本实验室筛选获得,分离自北京某废弃焦化厂污染土壤中。该菌株可高效降解苯酚、吡啶及喹啉等污染物。无氮无机盐培养基包括1.0 g·L−1 NaCl、1.0 g·L−1 K2HPO4、0.5 g·L−1 KH2PO4、0.2 g·L−1 MgSO4,该溶液自然pH=7.0。含氮无机盐培养基包括1.0 g·L−1 NaCl、1.34 g·L−1 NH4Cl、1.0 g·L−1 K2HPO4、0.5 g·L−1 KH2PO4、0.2 g·L−1 MgSO4,该溶液自然pH=7.0。液体LB培养基包括5.0 g·L−1 牛肉膏、10.0 g·L−1 蛋白胨、5.0 g·L−1 NaCl,调节pH为7.0~7.2。固体LB培养基即在液体LB培养基中加入20.0 g·L−1琼脂粉[12]。
-
称取8 g聚乙烯醇、2 g海藻酸钠于烧杯中,搅拌粉末使其混合均匀,加入去离子水后在80 ℃水浴中搅拌使其混合均匀,然后,置于121 ℃条件下湿热灭菌20 min,灭菌完成后常温下冷却至室温,得到凝胶溶液。将一定量的Rhodococcus sp.W7菌悬液与一定量凝胶溶液混合(总体积约为100 mL左右),加入适量氮源,使用玻璃棒在无菌条件下搅拌使其混合均匀,之后静置等待气泡完全消失,再使用20 mL注射器将混合液匀速滴入无菌的交联剂中,放入4 ℃冰箱中交联24 h。交联完成后,使用无菌水清洗固定化颗粒3次以洗去表面交联剂,然后将颗粒浸泡在无氮无机盐培养基中,并放入4 ℃冰箱中保存备用[12]。
-
1)不同种类氮源对制备IMP的影响。选择氯化铵、硝酸钠、尿素为包埋氮源,按照1.2所述方法制备IMP,观察制备过程中和培养过程中颗粒性能的变化。
2)交联方法对制备CUIMP的影响。硼酸交联法:使用电子天平称量3 g CaCl2固体,加入100 mL饱和硼酸溶液中,搅拌溶解得到硼酸交联剂。在此交联剂中交联24 h;硼酸-硫酸钠复合法:在硼酸交联剂中交联2 h后转移至0.5 mol·L−1硫酸钠溶液中再交联22 h。观察制备过程中颗粒性能变化,将两种方法制得的固定化颗粒置于无机盐培养基中培养,10 d后取出,测定2种交联方法制得固定化颗粒溶胀率的差异。
3)不同尿素添加量对制备CUIMP的影响。分别在100 mL凝胶溶液中添加5、10、20、30 g尿素,观察制备过程和培养过程中颗粒的性能及机械强度的变化。
称取20 g CUIMP(湿重,含水率约80%)于100 mL苯酚质量浓度为100 mg·L−1的无氮无机盐培养基中,置于摇床中于30 ℃、180 r·min−1条件下培养,定期更换新鲜无氮无机盐培养基。连续20 d监测固定化颗粒的缓释与降解能力,并在第10天测定颗粒溶胀率的差异。
4)菌液和凝胶溶液体积比对制备CUIMP的影响。调整凝胶溶液的体积分别为95、90、80、70 mL,对应添加菌液(OD600≈2.7)的体积分别为5、10、20、30 mL,即菌液与凝胶溶液体积比为1∶19、1∶9、1∶4、3∶7。制备CUIMP并驯化,将驯化后颗粒投入苯酚质量浓度为100 mg·L−1的100 mL无机盐培养基中,置于摇床中于30 ℃、180 r·min−1条件下培养,间隔一定时间取样测定剩余苯酚质量浓度,每组实验设置3个平行。
-
待CUIMP交联完成后取出,测量剩余交联剂溶液体积。取剩余交联剂1 mL,置于离心机中离心5 min,设置转速为12 000 r·min−1。取上清液,使用紫外分光光度法检测溶液中尿素的质量浓度[13-14],固定化颗粒的尿素包封率根据式(1)进行计算。取适量固定化颗粒,使用滤纸吸去表面水分,称量其质量。将颗粒浸泡于无氮无机盐培养基中培养48 h,取出颗粒,吸去表面水分并称量,颗粒溶胀率[15]根据式(2)进行计算。
式中:H为固定化颗粒的尿素包封率,%;V1为剩余交联剂溶液体积,mL;C1为剩余交联剂溶液中尿素质量浓度,g·mL−1;W1为初始加入尿素质量,g。
式中:Q为颗粒溶胀率,%;W0为浸泡前颗粒质量,g;W1为浸泡后颗粒质量,g。
将粒径大小相同、数量相等的固定化颗粒以10%的固液比加入100 mL无氮无机盐培养基中,置于摇床中在30 ℃、180 r·min−1条件下振荡3 d,观察颗粒的破碎情况[16]。将固定化颗粒置于水平光滑的玻璃板上按压,观察颗粒形状变化及是否回弹判断颗粒弹性。将冷冻干燥后的颗粒进行预处理,采用扫描电镜(JSM-IT300LV)观察颗粒表面及内部结构与样貌[17],分别对制备初期和缓释后期的颗粒进行观察。用滤纸将固定化颗粒表面吸干水分,用傅里叶变换衰减全反射红外光谱仪分析固定化颗粒的官能团,参考ZIBA等[18]的方法:扫描区域为4 000~400 cm−1,分辨率为4 cm−1,扫描16次,测量温度为室温。采用热重分析仪对固定化颗粒的热稳定性进行分析,测试温度为40~800 ℃,升温速率为20 ℃·min−1,采用氮气气氛[19]。
-
1)最佳固液比例选择。制备多瓶100 mL无氮无机盐培养基,分别添加6、8、10、15、20 g(湿重,含水率约80%)CUIMP,即固液比分别为6%、8%、10%、15%、20%(W/V)。加入相同浓度的苯酚溶液,在相同条件下驯化培养。更换新鲜无氮无机盐培养基,使得体系中苯酚质量浓度为100 mg·L−1,置于摇床中在30 ℃、180 r·min−1条件下培养,每隔2 h取样1次,取上清液测定剩余苯酚质量浓度。
2)单底物降解实验。分别配制含100 mg·L−1苯酚、100 mg·L−1吡啶、100 mg·L−1喹啉的无机盐溶液。按照最佳固液比将CUIMP加入至100 mL无氮无机盐培养基中。将锥形瓶置于摇床中在30 ℃,180 r·min−1条件下培养,每隔一段时间取样测定培养基中剩余底物质量浓度。
3)混合底物降解实验。按照最佳固液比将CUIMP加入至100 mL无氮无机盐培养基中。使培养基中苯酚、吡啶、喹啉质量浓度分别为100、10和10 mg·L−1。在30 ℃,180 r·min−1条件下培养,每隔一段时间取样测定培养基中剩余苯酚、吡啶和喹啉质量浓度。
4)降解动力学分析。按照最佳固液比将CUIMP加入苯酚质量浓度分别为100、200、300、500 mg·L−1的无氮无机盐培养基中。在30 ℃,180 r·min−1条件下培养,每隔2 h取样,测定其中剩余苯酚质量浓度[20]。
-
将缓释颗粒经真空冷冻干燥,取10粒干燥后的颗粒,称重。将颗粒置于容器中,加少量超纯水,使用超声波细胞破碎仪[21]在功率比50%(最大功率1000W)条件下将干燥后的颗粒完全破碎成为液体,加入超纯水定容至一定体积,检测破碎后溶液中的尿素含量。
-
苯酚、吡啶、喹啉使用高效液相色谱仪(岛津LC-20AT)进行测定;尿素含量按照对二甲氨基苯甲醛显色分光光度法[22]进行测定。
-
1)包埋不同种类氮源的IMP差异。在制备过程和后期培养过程中,观察到3种氮源制得的IMP在形态和机械强度方面具有明显差异。在清洗交联剂过程中,以氯化铵为氮源的固定化颗粒呈现边缘透明的现象,而以硝酸钠、尿素为氮源的固定化颗粒未出现此种现象。在后续的摇床培养过程中,每日监测颗粒外观变化,结果如表1所示。
以氯化铵为包埋氮源的IMP在培养过程中逐渐变为透明色,且颜色不均,培养基逐渐变为白色浑浊状态。在摇床中振荡约3 d后,可以观察到颗粒机械强度下降,弹性降低,伴有颗粒破碎的现象,随着时间的增加,破碎情况逐渐显著。以硝酸钠为包埋氮源的IMP在培养过程中发生黏连,并出现材料脱落和破碎的现象,培养基液体也逐渐变为白色浑浊的状态,且较为黏稠。这可能与硝酸钠和聚乙烯醇的交联作用有关,使得一部分聚乙烯醇与硝酸钠反应,影响了凝胶溶液比例和硼酸交联效果[23]。在整个制备和培养的过程中,以尿素为包埋氮源的IMP性能最佳,外观形态和机械强度均未出现明显的变化,颗粒的弹性较好,可以满足实际应用需求,故后续实验中选择使用尿素为包埋氮源进行缓释。
2)交联方法对制备CUIMP的影响。使用硼酸-硫酸钠复合法制得的颗粒相比传统的硼酸交联法制得的颗粒在性能上具有明显增强。硼酸交联法制得的颗粒溶胀率在98%~105%,在培养一段时间后颗粒体积大小变化明显,弹性较差。而硼酸-硫酸钠复合法制得的颗粒溶胀率在18%~25%,溶胀率大大降低,颗粒体积仅有轻微变化,机械强度与弹性较好。这可能是因为使用硫酸钠为交联剂二次交联的过程中,未反应完全的羟基、氨基等亲水基可以与硫酸根继续反应,降低了颗粒的亲水性,进而减小了颗粒的吸水溶胀性[24]。颗粒吸水溶胀,可能会导致少量载体及内部营养物质和微生物溶出,影响颗粒的机械强度,加入硫酸钠为交联剂,可以减小固化颗粒的溶胀,减少内部包埋尿素的损失,更有利于颗粒的缓释作用。因此,硼酸-硫酸钠复合法制得的CUIMP在性能上更具有优势,故本论文选择使用硼酸-硫酸钠复合法进行下一步的实验。
3)不同尿素添加量制备CUIMP的差异。尿素添加量对CUIMP的缓释天数和溶胀率可造成明显的影响。如图1(a)所示,随着尿素添加量的增加,CUIMP中可供缓释的氮源增加,可维持更长时间的降解能力。同时,由于尿素中氨基(-NH2)的亲水性,CUIMP溶胀率也随之提高。如图1(b)所示。尿素添加量为5 g时,溶胀率约为8.8%,尿素添加量在10~20 g时,颗粒溶胀性差别较小;溶胀率约为22%左右,而当尿素添加量为30 g时,溶胀率达到30%以上,溶胀率大小对颗粒的机械强度造成影响。综合颗粒的缓释能力和溶胀性,当尿素添加量在10~20 g时,CUIMP的性能最佳,本研究在后续实验中选择10 g尿素添加量制备CUIMP。
4)菌液和凝胶溶液比例对制备CUIMP影响。不同菌液和凝胶溶液比例制得CUIMP降解性能差异如图2所示。在处理100 mg·L−1苯酚2 h时,体积比为1∶19所制得的CUIMP对苯酚的降解率约为25%,低于其它处理;在处理时间达到4 h时,体积比为1∶19所对应的降解率约为68%,而其它体积比制得的CUIMP对苯酚的降解率已达100%。对比1∶9、1∶4、3∶7对应的降解率发现随着菌液体积占比的增加,无明显降解差异。因此,考虑节省应用投入成本,后续选择菌液和凝胶溶液体积最佳比例为1∶9。
5)CUIMP物理性能与外观特征。按照上述方法及条件制得的CUIMP直径约4~5 mm,尿素包封率在98%~99%,颗粒吸水溶胀率在15%~25%。图3为CUIMP在无氮培养基中底物只有苯酚情况下培养数天后表观颜色变化。可以发现,随着培养时间的增加,颗粒颜色由白色变为粉色最后变为较深的橙红色。这因为颗粒内部包埋的微生物为红球菌(菌落呈橙红色),红球菌以颗粒内部尿素为氮源、苯酚为碳源大量生长繁殖,使得颗粒颜色逐渐加深。
-
1)扫描电镜分析。CUIMP经过连续缓释、降解实验,颗粒形貌结构发生了明显变化。如图4(a)和图4(b)所示,缓释前颗粒表面结构较为光滑致密,缓释后则变得较为粗糙,存在大量的中空凸起。这与尹冬雪[25]研究中所对应的结构特征相似,可能是颗粒中的尿素缓慢释放后形成的,同时这些凸起也形成了颗粒内外物质运输的通道。颗粒内部结构在缓释前后也发生了明显的变化,结果如图4(c)、图4(d)所示。缓释前颗粒内部结构较为光滑、呈多孔结构,微生物在其中附着;缓释后,颗粒内部呈现较为规则的结构,孔隙较缓释前数目增多、孔径增大,更有利于氧气和底物传递,这一特点与高华崇等[26]研究结果相似。
2)红外光谱分析。图5为PVA、SA及CUIMP缓释前后的红外光谱图。在波数为3 435 cm−1附近均出现O—H伸缩振动引起的特征峰;在2 924 cm−1和1 419 cm−1附近出现C—H的伸缩振动峰和面内弯曲振动引起的特征峰[27];而1 633 cm−1和1 030 cm−1处的吸收峰分别为海藻酸钠中—COO—的伸缩振动和C—O的伸缩振动引起[27-30],缓释前后的固定化颗粒均在2 350 cm−1出现较弱吸收峰,归属于硼酸的B—H的伸缩振动峰[31]。观察缓释前固定化颗粒光谱图,NH2面内弯曲振动峰出现在1 633 cm−1附近,在此处与C=O形成CO—NH2组峰[28];此外,在1 360~1 020 cm−1 内也可以观察到C—N的峰值[27],这也证实了尿素负载,对比缓释前后图谱,可以发现NH2和C—N的特征峰在缓释后明显减弱,这可能是由于缓释尿素造成基团减少导致。
3)热重分析。图6所示为CUIMP热重分析结果。从热重曲线(TG)和微商热重曲线(DTG)中可见,温度在155~160 ℃时,出现较大的质量损失,IMP质量损失约为85%,CUIMP质量损失约为77.5%,这一阶段主要为颗粒中结合水的脱除,CUIMP相比IMP受热更稳定;第2阶段为160~452 ℃,这一阶段海藻酸钠开始裂解并趋于稳定,生成为较为稳定的中间产物,聚乙烯醇分子链氢键断裂,侧基消除生成水和醋酸,对比图6(a)、图6(b)可以发现,IMP热稳定性较差,在温度为350 ℃左右时便达到最大损失,质量损失约为97%,而CUIMP在452 ℃时达到最大质量损失,受热稳定性更强[19,31]。
-
1)最佳固液比例。不同固液比对降解100 mg·L−1苯酚的影响如图7所示。不同固液比对去除率的影响有明显差异。当固液比为6%和8%时,CUIMP在4 h内对100 mg·L−1的去除率均在25%以下,而当固液比提高到10%时,去除率可达到100%。当固液比为10%以上时,2 h和4 h的去除率与固液比为10%时去除率基本相同。因此,考虑到应用经济性确定最佳CUIMP投加比例为10%。
2) CUIMP降解特性分析。图8(a)、图8(b)、图8(c)为CUIMP降解单底物过程,在无氮环境下,CUIMP可分别在4、8、12 h内完全降解100 mg·L−1苯酚、吡啶、喹啉,相比于IMP有明显的降解优势。将CUIMP置于高碳氮比的混合底物环境中,仍具有良好的降解效果。如图8(d)所示。苯酚、吡啶、喹啉几乎同时达到完全降解,耗时约6 h,与仅降解100 mg·L−1苯酚相比,所需时间约增加2 h。由此可见,CUIMP中的尿素可以供微生物利用,帮助微生物在无氮或高碳氮比的环境下高效降解污染物。
3)苯酚降解动力学分析。以不同初始质量浓度苯酚为唯一碳源,缓释尿素为唯一氮源进行降解动力学研究。如图9所示,当初始苯酚质量浓度为100 mg·L−1时,CUIMP完成降解过程仅需4 h。随着苯酚浓度的升高,降解速率降低,完全降解所需时间延长。为了模拟颗粒降解苯酚的动力学行为,采用多种模型进行拟合[20,32-33],对比发现可以用零级反应方程来描述不同质量浓度下CUIMP的降解过程。
表2列出了不同初始质量浓度苯酚下拟合的回归参数。可以看出相关系数(R2)值均大于0.91,表明不同初始质量浓度的苯酚降解都能较好地用零级反应形式表示。
-
微生物生长降解需要的氮源主要依靠CUIMP内部的尿素缓释。CUIMP内部的尿素含量变化及降解性能变化如图10(a)所示。在制备初期,CUIMP内部的尿素未被利用,尿素含量约为60.6 mg·g−1,之后每日添加100 mg·L−1苯酚进行驯化培养,不额外添加其它氮源。在培养到第5天时CUIMP完全降解100 mg·L−1苯酚需要8 h,颗粒内部尿素含量约为48.9 mg·g−1,释放量约为19%左右。在培养达到第10天时,CUIMP达到最佳降解效果,完全降解100 mg·L−1苯酚仅需4 h,颗粒内部尿素含量约为36.3 mg·g−1,释放量约为40%。这可能是因为尿素通过缓释被微生物利用,使得微生物得以生长繁殖,进而大大提高了苯酚降解性能。随着培养天数不断增加,CUIMP内部尿素含量逐渐减少,颗粒降解性能经过了一个高效降解向降解能力退化的过程,在培养第20天时,CUIMP完全降解100 mg·L−1苯酚需要12 h,颗粒内部尿素含量降为13.8 mg·g−1左右,20 d尿素释放量约为77%。由此可见,CUIMP所包含的尿素提供的氮源能满足固定化微生物每天降解100 mg·L−1苯酚并持续20 d。
另外,在培养到第10天前后时,即CUIMP降解性能最佳时,对CUIMP与IMP进行了降解性能比较。如图10(b)所示,对100 mg·L−1苯酚的降解过程较快,CUIMP在无氮环境下的降解速率与IMP在正常氮源环境下降解速率无较大差别;对于处理200 mg·L−1苯酚,CUIMP在无氮环境下的降解速率要高于IMP在正常氮源环境下的降解速率。由此可见,CUIMP通过利用缓释氮源可达到相当或更佳的降解效果。
-
1)以尿素作为氮源制备的可缓释尿素的固定化微生物颗粒最佳制备条件为:尿素添加比例为10%~20%(W/V)、菌液和凝胶溶液体积比为1:9、交联方法为硼酸-硫酸钠复合法,制得的CUIMP吸水溶胀率小、机械强度高且更有利于颗粒的缓释。
2)无氮条件下,CUIMP可在4、8、12 h内分别完成对100 mg·L−1苯酚、吡啶、喹啉的降解。其对100~500 mg·L−1苯酚的降解符合零级反应动力学模型。此外,CUIMP也可以在6 h内完成对100 mg·L−1苯酚、10 mg·L−1吡啶、10 mg·L−1喹啉的混合底物降解。
3) CUIMP所包含的尿素提供的氮源能满足固定化微生物每天降解100 mg·L−1苯酚并持续20 d。
缓释氮源的固定化Rhodococcus sp.W7颗粒处理焦化废水
Treatment of coking wastewater by immobilized Rhodococcus sp.W7 particles with controlled release of nitrogen source
-
摘要: 本研究将固定化微生物与氮源缓释相结合,以提高一般固定化微生物在氮源缺乏环境中的生物降解效率。利用尿素作为缓释氮源,通过将聚乙烯醇-海藻酸钠混合凝胶(包含尿素)在3% CaCl2 饱和硼酸溶液中一次交联,在0.5 mol·L−1硫酸钠溶液中二次交联,最终制得的缓释尿素固定化微生物颗粒包封率高达98%以上,溶胀率在15%~25%,同时有较高的机械强度。在无氮条件下,颗粒可在4、8、12 h内分别完成对100 mg·L−1苯酚、吡啶或喹啉的降解;在高碳氮比的模拟焦化废水环境下,可在6 h内完成对100 mg·L−1苯酚、10 mg·L−1吡啶及10 mg·L−1喹啉混合底物的降解。另外,固定化微生物颗粒所包含的尿素提供的氮源能满足固定化微生物每天降解100 mg·L−1苯酚并持续20 d。以上研究结果表明所制备的缓释尿素固定化微生物颗粒可应用于氮源匮乏的污水治理中并有较好的应用效果。Abstract: In this study, the immobilized microorganisms coupling with controlled release of nitrogen source was used to improve the biodegradation efficiency of common immobilized microorganisms in nitrogen source deficient environment. Urea was used as the controlled release of nitrogen source. The mixed gel (containing urea) of polyvinyl alcohol and sodium alginate was first crosslinked in 3% CaCl2 saturated boric acid solution and then crosslinked in 0.5 mol·L−1 sodium sulfate solution. The prepared immobilized microbial particles with controlled release of urea had an encapsulation efficiency of higher than 98%, swelling rate of 15%~25% and high mechanical strength. In nitrogen free environments, 100 mg·L−1 phenol, pyridine or quinoline could be biodegraded by these particles within 4, 8 and 12 hours, respectively. In the simulated coking wastewater with high C/N ratio, the mixture of 100 mg·L−1 phenol, 10 mg·L−1 pyridine and 10 mg·L−1 quinoline could be degraded within 6 hours. Meanwhile, the nitrogen source provided by the urea in the immobilized microbial particles could meet the needs of the immobilized microorganisms to degrade 100 mg·L−1 phenol every day for 20 days. The above results show that the prepared immobilized microbial particles with controlled release of urea can be used to treat wastewater lack of nitrogen source and have a good application effect.
-
Key words:
- controlled-release nitrogen sources /
- Urea /
- immobilized microorganism /
- biodegradation
-
中国酒业协会的数据显示,2019年我国啤酒产量达3 765×104 t,每t啤酒需排放的废水量约为3 t[1],其COD约为780~3 610 mg·L−12]。目前常用的厌氧-好氧法处理啤酒废水效果较好,但会产生大量剩余污泥。光合细菌(PSB)可以高效降解啤酒废水中的污染物,同时利用其中C、N、P合成菌体;PSB菌体中富含蛋白质、多糖、类胡萝卜素、叶绿素、辅酶Q10等高价值物质,可广泛用于畜牧、农业、渔业等领域,也可作为食品与药物的原材料,因此,PSB技术是一项非常有潜力的新型污水资源化技术[3-4]。
PSB几乎不产生胞外聚合物(EPS),但沉降性能差,不易实现菌体回收。膜生物反应器(MBR)结合了传统的生物处理单元与膜分离单元[6],通过膜的高效截留作用使微生物被完全截留在反应器内,因而既有利于废水的一步达标[7],也有利于微生物的高效生长、繁殖和富集[8]。国内外学者将PSB、光生物反应器与膜组件结合起来,开发了光合细菌-膜生物反应器(PSB-MBR),在提高污水处理效果的同时可实现菌体的富集与回收[9]。该方法具有操作简便、处理效果好、生物资源回收率高[10]等优点,其菌体回收率可高达99.5%[11]。
膜污染是MBR应用中的关键问题[12],会对反应器的运行性能与效果产生负面影响。QIN等[13]、彭猛[14]研究了PSB-MBR处理啤酒废水的膜污染,发现膜污染较低,推测其原因是该系统的胞外聚合物(EPS)浓度较低。然而,现有PSB-MBR研究均采用较低的运行通量,如HÜLSEN等[15]设定的PSB-MBR恒定通量为2.1 L·(m2·h)−1,其它研究也在类似水平。然而,实际污水处理厂的MBR通量为20~30 L·(m2·h)−1,比现有PSB-MBR系统通量高10倍。如此大的差异,使得现有研究无法反映未来在工业运行中可能的PSB-MBR膜污染。要实现该技术的工业化应用,将其膜通量调整为工业运行通量,会更具有参考价值。
本研究模拟工业通量,设计了PSB-MBR处理啤酒废水的一系列实验,考察了在不同的运行通量、进水COD、温度和PSB浓度下的膜污染变化情况,以期为PSB-MBR的工业化应用提供参考。
1. 材料与方法
1.1 供试原料与反应器
1) PSB菌种。菌种为通用商业菌种,其中红假单胞菌(Rhodopseudomonas palustris)比例超过80%。
2)供试废水。前期实验结果表明,PSB-MBR工艺处理模拟啤酒废水与实际啤酒废水效果一致,为方便操作,本研究采用人工配制啤酒废水。分别对啤酒稀释10、20、30倍,获得模拟废水COD约为7 400、3 700、2 500 mg·L−1,对应高、中、低浓度废水;加入硫酸铵以补充氮源,控制C/N比约为20。
3) PSB-MBR反应器。反应器结构如图1所示,为长方体玻璃反应器,长
宽× 高为30 cm× 8 cm× 45 cm,有效体积10 L。本研究采用分体式MBR,反应器Ⅰ是光生物反应器,提供光源,用于PSB生物处理,处理后的废水进入反应器Ⅱ(膜分离反应器),回收PSB。反应器Ⅰ双侧白炽灯光照,强度为2 000 lux。反应器Ⅱ采用平板膜(FP-T008,PVDF,上海SINAP膜科技有限公司),膜片的长度为22 cm,宽0.6 cm,高32 cm,膜面积为0.1 m2、孔径为0.1× m、运行压力为10~50 kPa。这也是工业上常用的膜品种及运行压力。其它设备包括蠕动泵、氧气泵、沙头、管道、阀门、压力表、控温棒等。μ 1.2 实验方法及运行参数
生物反应器Ⅰ。PSB接种量为200~300 mg·L−1,废水利用氢氧化钠和盐酸溶液调节pH为7.2~7.6。通过氧气泵和DO仪控制溶解氧(DO)为0.2~0.5 mg·L−1,利用控温棒控制温度为约25 ℃,水力停留时间3 d。3种啤酒废水经过PSB处理后,COD分别为171、425、1 005 mg·L−1(均值),COD去除率为80%~93%。
膜分离反应器Ⅱ。该反应器运行参数取值尽量模拟可能的工业运行参数,因此取值范围较窄。生物处理后的废水输送到膜分离反应器Ⅱ中,分别考察不同进水通量、进水COD、运行温度和PSB浓度对运行过程中膜污染的影响。如无特殊说明,反应器Ⅱ的进水COD为170 mg·L−1、PSB浓度为1 000 mg·L−1、温度为25 ℃、运行通量为17.4 L·(m2·h)−1。
运行通量。设置2组反应器的运行通量为17.4、23.4 L·(m2·h)−1,这个范围是常见的污水处理膜通量,比通常的PSB-MBR实验研究高10倍[13-16]。
进水COD。根据生物反应器处理低、中、高废水的出水水质,膜分离反应器进水COD分别设置为170、425、1 000 mg·L−1。
运行温度。利用控温棒控制设定温度分别为常温(25 ℃)、低温(10 ℃),以考察低温下的膜污染。
PSB浓度。前期实验表明,PSB浓度低于1 000 mg·L−1时,污染物去除率低;高于1 500 mg·L−1时,PSB的增值率低;在1 000~1 500 mg·L−1范围内可以同时满足污染物去除与菌体合成以便后续回收利用。因此,控制进入反应器Ⅱ的PSB浓度分别为1 000、1 300、1 500 mg·L−1。
1.3 分析方法
1)水质分析。从反应器中取10 mL的菌-水混合物,在9 000 r·min−1下离心10 min后获得上清液用于水质检测。利用重铬酸钾法快速检测COD[17]。根据国标HJ 535-2009使用TU-1900分光光度计在420 nm的吸光度下分析氨氮[18]。PSB的生物量检测方法参考LU等[19]的方法。
2)膜污染阻力分析。根据达西定律(式1),测量平板膜在过滤过程中随时间变化的膜污染阻力,评估PSB-MBR系统中膜污染程度。
Rt=Rm+Rf=ΔPμ⋅J (1) 式中:Rt为膜的总过滤阻力,m−1;Rm为膜的固有阻力,m−1;Rf为膜丝污染阻力,m−1;ΔP为膜两侧的压力差,Pa;μ为透过液动力学粘度,Pa∙s;J为膜通量,m3·(m2·s)−1。
3)膜污染表征。用扫描电子显微镜(SEM,Hitachi S-4800型)对平板膜表面的微观结构进行观察,对膜表面的污染情况进行表征。将膜片浸泡在超纯水中24 h后,经0.45
膜过滤后取过滤液,采用三维荧光光谱(Hitachi F-7000型)分析膜污染。μm 4)膜清洗。膜清洗有2种方式,其中物理清洗是用清水洗涤膜表面5 min;化学清洗是将膜片浸入0.75%NaClO溶液中浸泡2 h后,用清水冲洗膜表面5 min [14]。
2. 结果与讨论
2.1 操作参数对膜污染的影响
在传统MBR的运行过程中,高运行通量、高COD均会加剧污染物在膜表面的富集,从而加速膜污染的产生;一定的温度条件可能会引起微生物状态的变化,导致EPS浓度升高,进而加剧膜污染。因此,本研究分别考察了不同的运行通量、膜反应器Ⅱ进水COD与PSB浓度、运行温度等对膜的影响。当膜通量下降至初始值的80%时即判定膜受到污染。图2显示了不同操作参数对膜污染阻力的影响。
在膜设计通量范围内,膜通量随着运行通量的增加而增加(图2(a)),而膜阻力也明显随运行通量增加。以23.4 L·(m2·h)−1通量运行时,污染后膜阻力为7.44
1011 m−1,比清洁膜高99.5%;与低运行通量相比,运行通量增加了34.5%,膜阻力增加了18.3%。QIN等[13]在一体式PSB-MBR反应器中以6.25 L·(m2·h)−1的低通量运行时的膜阻力达到了比本研究更高的水平,其原因是QIN等[13]采用了一体式MBR,而本研究所使用的属于分体式MBR(生物反应与膜分离分置2个反应器),本研究结果与唐艳报道的结果[20]一致,分体式MBR的膜污染比一体式低,2个反应器分开调整,也更灵活,更适于未来PSB-MBR系统的工业发展。× 膜分离反应器的进水浓度高,也导致了膜阻力增加,通量下降(图2(b))。当膜的进水COD为1 000 mg∙L−1时,膜通量达到3.42
106 m3·(m2·s)−1,比初始值下降了29.19%,降幅高于其余2组处理,膜阻力则增大了218.5%。进水浓度高带来较高的膜阻力是MBR运行的正常现象[21],这可能是由于高COD导致废水中多糖/蛋白质的浓度的升高,而蛋白质类是造成膜污染的主要物质[22],因此带来了较高的膜阻力。PENG等[16]研究了以5.56 L·(m2·h)−1运行通量处理COD为2 800~4 800 mg∙L−1的啤酒废水时,COD的平均去除率达到了95%,膜通量下降平缓,这与本研究中不同进水COD的膜通量变化基本一致。× 运行温度对膜污染阻力影响较大(图2(c))。低温条件下的污染膜污染阻力为1.06
1012 m−1,高于常温条件(增加了68.5%)。这可能是由于,在低温条件时,PSB的生长和代谢活动大大降低,导致大量的菌体易沉积在膜表面[23],从而导致膜阻力增高,其它MBR膜污染研究者也报道了类似现象[24]。此外,常规An MBR(厌氧膜生物反应器)在常温运行时的膜阻力通常在6.0×1013 m−1以上[20,25],而本研究中PSB-MBR的膜阻力比其小了100倍,可见,在常温条件使用PSB-MBR处理啤酒废水具有一定的优势。× 膜污染随着PSB浓度的上升逐渐加剧(图2(d)),当PSB浓度为1 500 mg·L−1时,污染后的膜通量为3.17
106 m3·(m2·s)−1,相比初始膜通量下降了34.37%;PSB为1 200 mg·L−1时,下降了25.88%;PSB为1 000 mg·L−1时,下降了24.02%。这符合MBR的正常运行现象,微生物浓度越高,对膜阻力造成的影响越大,反应器中大量PSB聚集在膜表面,堵塞膜孔隙,从而导致膜污染迅速产生[26]。而随着PSB-MBR的不断运行,即使是以低通量运行,随着微生物的不断累积,膜通量也会下降70%左右[13],因此需要对系统中的PSB浓度进行控制。× 根据膜阻力变化情况,本研究中进水COD是影响膜污染最重要的因素,其次为PSB浓度、温度、运行通量(1.72×1012 m−1 > 1.12×1012 m−1 > 1.06×1012 m−1 > 7.44×1011 m−1)。而在对An MBR运行影响因素的相关研究中,温度是影响其运行特性最主要的因素,其次是污泥(或COD负荷)[21],这主要是由于温度会导致厌氧微生物通过分泌EPS等物质影响污泥的特性从而使得污泥絮体增大、膜污染加剧[25]。PSB几乎不产生EPS,主要可能是由废水中的有机负荷及菌体代谢造成膜污染。因此,进水COD成为了PSB-MBR模拟工业通量运行的主要影响因素,这也与彭猛[14]使用低通量研究时获得的结果一致。
2.2 PSB-MBR中膜污染分析
设定多次进行物理清洗后,膜通量无法恢复至初始通量的80%时为严重污染。根据2.1节中的结果,设置参数为,膜分离反应器Ⅱ进水COD 170 mg·L−1、PSB 1 000 mg·L−1、常温(25 ℃)、运行通量17.4 L·(m2·h)−1,在该条件下进行膜污染分析。利用SEM对运行后的PSB-MBR系统中膜的表面特性进行了物理分析。图3(a)显示,清洁膜片在放大倍数为5.00 k时表面平滑,无污染物质存在;在放大30.0 k时呈现明显多孔隙结构,可以判断照片中显示的孔隙即为膜片的过滤孔隙。图3(b)显示,严重污染膜在放大倍数为5.00 k的条件下,表面覆满污染物质;而图3(d)则显示污染物中有一些椭球形物体堆积,无法显示原有孔隙结构,这说明膜孔已被堵塞,大分子污染物堆积在膜表面。因此,在模拟工业通量运行时,PSB-MBR会产生较严重的膜污染,大量污染物会覆盖膜的原有结构,导致反应器的后续运行性能下降。而现有的PSB-MBR研究采用比工业通量低10倍的通量,并未发现这么明显的膜污染[15]。
通过三维荧光光谱法对膜表面物质进行了分析,结果如图4所示。图4(a)显示,清洁膜表面主要为亲水性大分子蛋白类有机物,而图4(b)中则显示膜污染物质中含有亲水性大分子蛋白类有机物与有腐殖质。由于进水为模拟啤酒废水,不含大分子蛋白质与腐殖质[27],结合SEM分析结果(图3),可以推测,造成膜污染的主要是有机污染,来自PSB及其降解或分泌物质。
膜污染通常分为3个阶段,分别为初始污染阶段、缓慢污染阶段及跨膜压差(TMP)跃升阶段[28]。在初始污染阶段,膜表面与混合液发生相互作用,粒径小于膜孔径的污染物颗粒进入膜孔,其中一些被吸附于膜孔内,减小了膜孔的有效直径。因此,膜通量由4.83
106 m3·(m2·s)−1轻微下降至4.67× 106 m3·(m2·s)−1。当膜孔吸附趋于饱和时,大分子物质就会被吸附在膜表面上,导致膜孔初步堵塞。在缓慢污染阶段,传统MBR随着运行时间的推移,在膜面上出现了污泥絮体沉积及EPS累积,并逐步形成滤饼层[29]。然而,PSB与传统生物处理中的活性污泥不同,几乎不产生EPS也不能形成微生物絮体,因此,PSB-MBR中第2阶段膜污染机理与其不同。PSB的直径比活性污泥中常见细菌小(低至0.5~1× m)且不形成絮体(类似活性污泥絮体),而所使用的平板膜孔径为0.1μ m,因此,在缓慢污染阶段中,可能是PSB菌体及代谢产物与分解的废水成分逐渐堆积形成滤饼,加快了膜孔的堵塞,膜通量缓慢下降至了4.17μ 106 m3·(m2·s)−1。在TMP跃升阶段,主要是随着各种污染物不断在滤饼层内部被截留、沉积,污染层结构逐渐致密化直到连通性消失,从而导致TMP从0.05 MPa突然升高到0.06 MPa,跨膜通量不断下降,达到3.42× 106 m3·(m2·s)−1。这一现象与传统MBR较为类似,由于其它低通量PSB-MBR研究中并没有对膜污染阶段的详细报道,因此无法进行横向对比。× 2.3 膜清洗
为使已经产生污染的膜恢复膜通量,需要对其进行清洗。膜清洗方法主要分为物理清洗和化学清洗。在反应器运行过程中,对平板膜进行周期性物理清洗(清水冲洗5 min)。由图5所示,初始阶段物理清洗效果很好,膜通量几乎完全恢复。第4次清洗前,膜通量下降到起始膜通量的62%,物理清洗后膜通量100%恢复;第11次物理清洗仍然可以使膜通量恢复至起始膜通量的97%。郭雅妮等的[30]研究表明,传统MBR中物理清洗后膜通量仅恢复至新膜的70%。因此,PSB-MBR系统中物理清洗效果远比传统MBR好,这有利于延长膜片的使用寿命。其原因是,由于PSB几乎不产生EPS,因此,传统MBR中污染最严重也较难清洗的EPS污染在PSB-MBR中几乎没有贡献,从而使得在PSB-MBR系统中物理清洗效果显著。然而,随着物理清洗次数的增加,膜通量恢复效果仍然在缓慢下降,这是因为有机污染逐渐积累,污染层结构逐渐致密化,导致物理清洗效果开始变差。在彭猛[14]的研究中,物理清洗40次,膜通量仍然可以100%恢复。这是因为,其采用的是低通量,其通量仅为本文研究的8%~15%。从图2(a)可知,通量越低,膜阻力越小,越容易恢复。这一结果也表明,在工业通量下,PSB-MBR系统的膜污染虽然比常规MBR低,但是比现有研究低通量PSB-MBR高。
当物理清洗无法使膜通量恢复至80%时,需要采用化学清洗以恢复膜通量。AHMAD等[31]研究了不同化学清洁剂对化学清洗后膜通量的恢复效果,发现用0.75% NaClO溶液的清洗效果最好,可以恢复约98%膜通量并且使膜孔基本恢复。康永和胡肖勇[32]发现,采用2.0%~5.0%的NaClO溶液清洗膜时,既可以去除污垢,又可以去除膜孔内附着的微生物和蛋白质等有机污染物。谢元华等[33]利用0.1%的NaClO溶液浸泡机械清洗后的膜2 h后,过膜阻力几乎完全恢复。根据以上研究,本研究使用NaClO溶液作为化学清洗药品,具体化学清洗方法为0.75% NaClO溶液浸泡2 h。清洗后膜通量100%恢复,4次清洗后仍然可达到这一效果。
此外,本研究采用三维荧光光谱法分析了化学清洗后的膜,结果见图6。化学清洗后的膜表面,主要污染物质是亲水性小分子蛋白类有机物,而由图4(b)可知,污染膜表面主要污染物是腐殖质和大分子蛋白类有机物,表明化学清洗将膜表面的大分子污染物转化成为小分子物质。其原因是NaClO的氧化性及其对微生物细胞的破坏作用。这一现象与常规MBR膜化学清洗相似[34],NaClO碱洗后膜通量几乎完全恢复,这说明有机污染是造成膜污染的主要原因。
3. 结论
1) PSB-MBR模拟工业级别运行通量(17.4 L·(m2·h)−1)时,PSB-MBR膜污染比现有研究中低通量下PSB-MBR膜污染高,但远低于常规MBR污染,其原因是PSB几乎不产生EPS。
2)高运行通量、高PSB浓度、高COD、低温会提高膜阻力,加剧膜污染。
3)造成PSB-MBR系统膜污染的主要来源是PSB菌体本身及其代谢产物。
4)物理清洗无法使膜通量恢复至80%时,化学清洗可以恢复膜通量,通过将原污染物中的腐殖质转变为亲水性小分子蛋白类有机物,解决膜孔堵塞问题。
-
表 1 不同种类氮源的固定化颗粒对比
Table 1. Comparison of immobilized particles with different types of nitrogen sources
氮源种类 颗粒颜色 材料脱落程度 是否黏连 破碎程度 培养基液体颜色状态 NH4Cl 中心白色、边缘透明 ++ N ++ 白色浑浊 NaNO3 白色 + Y + 白色浑浊、黏稠 尿素 白色 − N − 澄清透明 注:++表示严重;+表示轻微;−表示无;Y表示是;N表示否。 表 2 苯酚降解的动力学方程
Table 2. Kinetic equations of phenol degradation
苯酚初始质量浓度C/(mg·L−1) 动力学方程 速率常数k0/(mg·(L·h)−1) R2 100 C=−22.69t+100.61 22.69 0.976 200 C=−14.04t+174.64 14.04 0.914 300 C=−14.64t+283.8 14.64 0.995 500 C=−12.42t+480.26 12.42 0.991 -
[1] 康晓跃, 陈啊聪, 韦托, 等. 工艺组合对焦化废水中核心污染物的去除及其能耗分配[J]. 环境工程学报, 2022, 16(2): 684-696. [2] 张发奎. 微生物固定化技术强化焦化废水生化处理实验研究[D]. 兰州: 兰州交通大学, 2022. [3] 郑淑奇. 四株红球菌的分类鉴定及其降解多环芳烃的途径[D]. 呼和浩特: 内蒙古大学, 2023. [4] ZHU S N, LIU D Q, FAN L, et al. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge[J]. Journal of Hazardous Materials, 2008, 160(2/3): 289-294. doi: 10.1016/j.jhazmat.2008.02.112 [5] 马馨月. 红球菌Rhodococcus sp. 及固定化对苯酚和苯胺去除机理研究[D]. 武汉: 武汉大学, 2020. [6] 刘欢. 淀粉/聚乙烯醇缓释碳源的制备及反硝化应用研究[D]. 济南: 山东建筑大学, 2020. [7] 冯文来, 赵平. 控制释放技术发展及展望[J]. 化学工业与工程, 1996, 13(1): 49-52. [8] WANG L, LIU X. Sustained release technology and its application in environmental remediation: A review[J]. International Journal of Environmental Research and Public Health, 2019, 16(12): 2153. doi: 10.3390/ijerph16122153 [9] XING Y, ZHANG D, CAI L, et al. An innovative double-layer microsphere used as slow-release carbon source for biological denitrification[J]. Water, Air, & Soil Pollution, 2020, 231(3): 1-12. [10] 王允, 张旭, 张大奕, 等. 用于地下水原位生物脱氮的缓释碳源材料性能研究[J]. 环境科学, 2008, 29(8): 2183-2188. [11] HSIA K F, CHEN C C, OU J H, et al. Treatment of petroleum hydrocarbon-polluted groundwater with innovative in situ sulfate-releasing biobarrier[J]. Journal of Cleaner Production, 2021, 295: 126424. doi: 10.1016/j.jclepro.2021.126424 [12] 许文帅. 固定化Rhodococcus sp. W7处理焦化废水的研究及应用[D]. 天津: 天津科技大学, 2021. [13] 刘童斌, 林鹏, 张晓明, 等. 阿托伐他汀钙缓释微球制备方法的优化[J]. 中国组织工程研究, 2022, 26(4): 535-539. [14] 常亚南, 刘浩, 冯成宝, 等. 人工软骨支架中TGF-β1缓释壳聚糖微球对ATDC-5细胞生长的促进作用[J]. 生物工程学报, 2017, 33(4): 664-671. [15] 吴国杰. 固定化载体材料壳聚糖基水凝胶的研究[D]. 西安: 西北工业大学, 2006. [16] 房玉婷. 强化降酚菌固定化微球的制备及性能研究[D]. 西安: 陕西科技大学, 2021. [17] ZHANG Y S, YU Z H, HU Y S, et al. Immobilization of nitrifying bacteria in magnetic PVA-SA-diatomite carrier for efficient removal of NH4+-N from effluents[J]. Environmental Technology & Innovation, 2021, 22: 101407. [18] ZAKERI Z, SALEHI R, MAHKAM M, et al. Optimization of argon-air DBD plasma-assisted grafting of polyacrylic acid on electrospun POSS-PCUU[J]. Journal of Physics and Chemistry of Solids, 2023, 178: 111311. doi: 10.1016/j.jpcs.2023.111311 [19] 李珍珍. 石油烃污染土壤固定化菌剂的缓释修复技术研究[D]. 成都: 西南石油大学, 2018. [20] 朱顺妮, 刘冬启, 樊丽, 等. 喹啉降解菌 Rhodococcus sp. QL2的分离鉴定及降解特性[J]. 环境科学, 2008,29(2): 2488-2493. [21] 邵钱. 基于固定化细胞的三相流化床反应器净化四氢呋喃废气的研究[D]. 杭州: 浙江工业大学, 2013. [22] 苗晓杰, 蒋恩臣, 王佳, 等. 对二甲氨基苯甲醛显色分光光度法检测水溶液中常微量尿素[J]. 东北农业大学学报, 2011, 42(8): 87-92. [23] CHANG C C , TSENG S K. Immobilization of Alcaligenes eutrophus using PVA crosslinked with sodium nitrate[J]. Biotechnology Techniques, 1998, 12(12): 865-868. [24] 茆云汉, 王建龙. 聚乙烯醇固定化微生物新方法的研究[J]. 环境科学学报, 2013, 33(2): 370-376. [25] 尹冬雪. 生物炭微生物缓释肥的制备与特性研究[D]. 长春: 吉林大学, 2020. [26] 高华崇, 乔丽丽, 尹莉, 等. 包埋微生物固定化载体的结构性能研究[J]. 能源环境保护, 2017, 31(1): 29-33. [27] JIANG Z, ZHENG Z, WU J, et al. Synthesis, characterization and performance of microorganism-embedded biocomposites of LDH-modified PVA/SA hydrogel beads for enhanced biological nitrogen removal process[J]. Process Biochemistry, 2022, 121: 542-552. doi: 10.1016/j.procbio.2022.07.033 [28] ARAFA E G, SABAA M W, MOHAMED R R, et al. Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity[J]. Reactive and Functional Polymers, 2022, 174: 105243. doi: 10.1016/j.reactfunctpolym.2022.105243 [29] HEMALATHA K, SOMASHEKARAPPA H, SOMASHEKAR R. Preparation and characterization of MMT doped PVA/SA polymer composites[J]. Advances in Materials Physics and Chemistry, 2014, 4(9): 172-172. doi: 10.4236/ampc.2014.49020 [30] KAMOUN E A, KENAWY E R S, TAMER T M, et al. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation[J]. Arabian Journal of Chemistry, 2015, 8(1): 38-47. doi: 10.1016/j.arabjc.2013.12.003 [31] 谭炳琰, 储昭瑞, 吴桂荣, 等. PVA-SA水凝胶生物载体的制备及其性能研究[J]. 广州大学学报(自然科学版), 2018, 17(2): 81-87. [32] GOVEAS L C, SELVARAJ R, VINAYAGAM R, et al. Biodegradation of benzo (a) pyrene by Pseudomonas strains, isolated from petroleum refinery effluent: Degradation, inhibition kinetics and metabolic pathway[J]. Chemosphere, 2023, 321: 138066. doi: 10.1016/j.chemosphere.2023.138066 [33] SARAVANAN P, PAKSHIRAJAN K, SAHA P. Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source[J]. Journal of Hazardous Materials, 2009, 162(1): 476-481. doi: 10.1016/j.jhazmat.2008.05.069 -