-
水源地生态工程是将人工湿地与水库耦合形成的一种新的人工生态工程系统,被认为是一种具有改善原水水质的有效措施,用以改善微污染河流饮用水源的水质并具有应急存储能力[1]。人工湿地能够有效去除饮用水源中的多种污染物(如氮、磷)[2],然而,人工湿地本身也可能是溶解性有机物(dissolved organic matter, DOM)的来源[3]。通过人工湿地处理后DOM的增加可能来源于3个方面:水生植物的生长、代谢和分解;藻类胞外有机物的释放和溶解;湿地中沉积物的释放[4]。这些DOM通过氯消毒可能形成消毒副产物(disinfection by-products, DBPs)[5],如三卤甲烷(trihalomethanes, THMs)和卤代乙酸(haloacetic acids, HAAs)。PELLERIN等[6]研究了香蒲植物浸出液生物降解后的消毒副产物生成,结果表明,浸出液经过生物降解后三卤甲烷生成势(the trihalomethane formation potential, THMFP)与萨克拉门托-圣华金三角洲的地表水相当,表明维管植物衍生的DOM在地表水中是THMs的前体物。由于前体物的大小会影响DBPs的形成,DOM的分子质量(molecular weight, MW)是饮用水处理过程中的重要特征[7]。然而,在单个MW馏分的DBPs形成方面没有观察到一致的趋势[8]。因此,探究DOM分子质量与DBPs的形成关系,有利于更好地控制DBPs的生成,保障饮用水安全。
近年来,已有大量关于藻类衍生的DOM生成消毒副产物的研究[9-10],藻类释放的胞外和胞内有机物会导致水中的溶解性有机氮(dissolved organic nitrogen, DON)质量浓度升高,被认为是含氮消毒副产物(N-DBPs)前体物的来源。然而湿地中水生动植物的代谢物引入的DOM作为DBPs的前体物的研究不足。本研究模拟盐龙湖生态工程构建实验装置,研究水源地生态工程对水源水水质的影响,利用分子质量分级研究实验装置处理前后微污染原水中DBPs前体物的性质。同时,选择系统中的香蒲根分泌物、菰根分泌物和鲢鱼排泄物这3种水生生物代谢物作为研究对象,探究了氯化消毒反应条件对3种水生生物代谢物消毒副产物生成量的影响,为保障饮用水安全提供参考。
水源地生态工程对消毒副产物生成的影响
The influence of the ecological project in water source area on the production of disinfection by-products
-
摘要: 水源地生态工程可改善饮用水水源水质,但其中的水生生物代谢物可能是消毒副产物(DBPs)前体物的来源。本文构建现场实验装置探究了水源地生态工程对原水水质的影响及原水中主要消毒副产物前体物的来源,考察了氯投量、温度以及pH对香蒲根分泌物、菰根分泌物和鲢鱼排泄物氯化后消毒副产物生成的影响。结果表明,实验装置对NH4+-N、TN和TP的平均总去除率分别为74.93%、53.98%和73.02%,总DOC沿程增加。溶解性有机物(DOM)中分子质量分布在<500 Da的DOC含量总体上呈沿程减少的趋势,>3 000 Da的DOC沿程有所增加。总三卤甲烷生成势(TTHMFP)和总卤乙酸生成势(THAAFP)沿程呈现增加的趋势,分子质量<3 000 Da的有机物中TTHMFP和THAAFP沿程有所下降,分子质量>3 000 Da的TTHMFP和THAAFP呈沿程增加的趋势。考察了装置中3种水生生物代谢物经氯化后得到的二氯乙酸(DCAA)、三氯乙酸(TCAA)、三氯甲烷(TCM)和二氯乙腈(DCAN)4种消毒副产物生成势,均随着氯投量和温度的增加而升高,主要消毒副产物为TCAA。酸性条件有利于抑制DCAA和TCM的生成,碱性条件有利于抑制TCAA的生成,DCAN的生成量总体上随着pH的升高呈现先上升后下降的趋势。Abstract: The ecological project in water source area can improve the quality of drinking water sources, but the aquatic metabolites in it may be the source of disinfection by-product (DBPs) precursors. Small-scale experiments were conducted to study the effects of the ecological project in water source area on the water quality and the origin of main DBPs precursors in raw water. The impacts of reaction time, chlorine dosage, temperature, and pH on the production of DBPs after chlorination of cattail root exudates, zizania root exudates, and silver carp excretions were studied. The results showed that the average total removal rates of NH4+- N, TN, and TP were 74.93%, 53.98%, and 73.02% by the experiments devices, respectively, and DOC increased along the process. The DOC content for the dissolved organic matter (DOM) with the molecular weight distribution <500 Da showed a general decreasing trend, while the DOC content in >3 000 Da DOM increased along the process. The total trihalomethane formation potential (TTHMFP) and total haloacetic acid formation potential (THAAFP) increased along the process. The TTHMFP and THAAFP of organic compounds with a molecular weight less than 3 000 Da showed a decreasing trend along the process, while TTHMFP and THAAFP with a molecular weight more than 3 000 Da showed an increasing trend along the process. The study also determined the formation potential of four DBPs (DCAA, TCAA, TCM, and DCAN) after chlorination and disinfection of three aquatic biological metabolites. TCAA was found to be the primary DBPs. Their output increased with an increase of chlorine dosage and temperature. Acidic conditions were found to be conducive to inhibiting the formation of DCAA and TCM, while alkaline conditions were conducive to inhibiting the formation of TCAA. Overall, the production of DCAN increased initially and then decreased with pH increasing.
-
Key words:
- water source area /
- aquatic metabolites /
- disinfection by-products
-
表 1 实验装置系统组成
Table 1. The composition of pilot-scale constructed wetlands system
名称 尺寸/mm
(长×宽×高×厚度)最大容积/
m3植物 种植密度/
(株·m-2)基质类型 基质
厚度/cm材料 单元数量 挺水植物区 2 650×800×600×15 0.8 香蒲、菰 25 河沙 30 聚丙烯 2 沉水植物区 2 500×1 350×1 000×15 1.6 菹草、金鱼藻 10 土壤 5 聚丙烯 1 深度净化区 3 800×1 600×1 700×15 5.6 菹草、金鱼藻、黑藻 20 土壤 5 聚丙烯 1 表 2 实验装置对NH4+-N、TN和TP的去除效果
Table 2. Removal effect of NH4+-N, TN and TP in system
水样 NH4+-N TN TP 质量浓度/(mg·L−1) 去除率/% 质量浓度/(mg·L−1) 去除率/% 质量浓度/(mg·L−1) 去除率/% 进水 0.84±0.042 — 1.92±0.071 — 0.11±0.010 — 挺水植物区出水 0.55±0.042 48.62±7.65 1.25±0.057 34.91±0.55 0.07±0.013 36.63±5.87 沉水植物区出水 0.36±0.028 41.90±0.85 1.04±0.071 16.84±1.89 0.05±0.004 27.93±7.04 深度净化区出水 0.24±0.014 15.78±3.87 0.89±0.106 15.05±4.42 0.03±0.010 40.63±14.76 总去除率 — 74.93±2.95 — 53.98±3.83 — 73.02±6.57 表 3 不同来源水样消毒副产物生成势
Table 3. Formation potential of disinfection by-products of water samples from different sources
-
[1] GUO Q, YU J, LI X, et al. A systematic study on the odorants characterization and evaluation in a plain reservoir with wetlands ecosystem[J]. Journal of Hazardous Materials, 2020, 393: 122404. doi: 10.1016/j.jhazmat.2020.122404 [2] FAN Y, SUN S, HE S. Iron plaque formation and its effect on key elements cycling in constructed wetlands: Functions and outlooks[J]. Water Research, 2023, 235: 119837. doi: 10.1016/j.watres.2023.119837 [3] SCHOLZ C, JONES T G, WEST M, et al. Constructed wetlands may lower inorganic nutrient inputs but enhance DOC loadings into a drinking water reservoir in North Wales[J]. Environmental Science & Pollution Research, 2016, 23(18): 1-8. [4] PI J, ZHU G, GONG T, et al. Dissolved organic matter derived from aquatic plants in constructed wetlands: Characteristics and disinfection byproducts formation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107991. doi: 10.1016/j.jece.2022.107991 [5] CAI L, HUANG H, LI Q, et al. Formation characteristics and acute toxicity assessment of THMs and HAcAms from DOM and its different fractions in source water during chlorination and chloramination[J]. Chemosphere, 2023, 329: 138696. doi: 10.1016/j.chemosphere.2023.138696 [6] PELLERIN A B, HERNES J P, SARACENO J, et al. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors[J]. Journal of Environmental Quality, 2010, 39(3): 946-954. doi: 10.2134/jeq2009.0487 [7] NISSINEN T K, MIETTINEN I T, MARTIKAINEN P J, et al. Molecular size distribution of natural organic matter in raw and drinking waters[J]. Chemosphere, 2001, 45: 865-873. doi: 10.1016/S0045-6535(01)00103-5 [8] BOLEA E, GORRIZ P M, BOUBY M, et al. Geckeis. Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: A comparative approach[J]. Journal of Chromatography A 2006, 1129: 236-246. [9] HUA L, LAI C, WANG G, et al. Algogenic organic matter derived DBPs: Precursor characterization, formation, and future perspectives: A review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(19): 1-32. [10] WANG X, QIAN Y, CHEN Y, et al. Application of fluorescence spectra and molecular weight analysis in the identification of algal organic matter-based disinfection by-product precursors[J]. Science of the Total Environment, 2023, 882: 163589. doi: 10.1016/j.scitotenv.2023.163589 [11] 刘连清. 盐城市水源水质特征分析及盐龙湖生态工程对原水水质的影响研究[D]. 南京: 东南大学, 2019. [12] 赵艳. 太湖原水微量有机污染物高级氧化与生物预处理耦合降解技术研究[D]. 南京: 东南大学, 2016. [13] 魏晓婷. 于桥水库典型消毒副产物及其前体物研究[D]. 天津: 天津大学, 2014. [14] 方晶云. 蓝藻细胞及藻类有机物在氯化消毒中副产物的形成机理与控制[D]. 哈尔滨: 哈尔滨工业大学, 2010. [15] 夏岩. 城乡统筹区域供水管网中消毒副产物生成规律及影响因素研究[D]. 南京: 东南大学, 2017. [16] 卢少勇, 金相灿, 余刚. 人工湿地的氮去除机理[J]. 生态学报, 2006, 26(8): 2670-2677. doi: 10.3321/j.issn:1000-0933.2006.08.033 [17] YANG Y, LU J, YU H, et al. Characteristics of disinfection by-products precursors removal from micro-polluted water by constructed wetlands[J]. Ecological Engineering, 2016, 93: 262-268. doi: 10.1016/j.ecoleng.2016.05.022 [18] ZHOU X, WANG R, LIU H, et al. Nitrogen removal responses to biochar addition in intermittent-aerated subsurface flow constructed wetland microcosms: Enhancing role and mechanism[J]. Ecological Engineering, 2019, 128: 57-65. doi: 10.1016/j.ecoleng.2018.12.028 [19] HAICHAR F E, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77(7): 69-80. [20] 李海燕, 陈章和. 三种湿地植物的生长及根系溶解性有机碳分泌物研究[J]. 热带亚热带植物学报, 2011, 19(6): 536-542. doi: 10.3969/j.issn.1005-3395.2011.06.008 [21] GUO J, SHENG F, GUO J, et al. Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: The impact of carbon source[J]. Frontiers of Environmental Science & Engineering, 2012, 6(2): 280-287. [22] WATSON K, FARRE M J, BIRT J, et al. Predictive models for water sources with high susceptibility for bromine-containing disinfection by-product formation: implications for water treatment[J]. Environmental Science and Pollution Research, 2015, 22(3): 1963-1978. doi: 10.1007/s11356-014-3408-4 [23] WANG Y, ZHU G. Risk associated with increasing bromide in drinking water sources in Yancheng City, China[J]. Environmental Monitoring and Assessment, 2019, 192(1): 36. [24] XU S, LERI A C, MYNENI S C B, et al. Uptake of bromide by two wetland plants (Typha latifolia L. and Phragmites australis (Cav. ) Trin. ex Steud)[J]. Environmental Science & Technology, 2005, 38(21): 5642-5648. [25] PI J, GONG T, HE M, et al. Aquatic plant root exudates: A source of disinfection byproduct precursors in constructed wetlands[J]. Science of the Total Environment, 2023, 165590. [26] HUA L, TSIA S, WANG G, et al. Increasing bromine in intracellular organic matter of freshwater Algae growing in bromide-elevated environments and its impacts on characteristics of DBP Precursors[J]. Environmental Science & Technology Letters, 2021, 8(4): 307-312. [27] 裴海燕, 李富生, 汤浅晶, 等. 藻细胞破碎释放有机物的特性[J]. 中国环境科学, 2003, 23(3): 272-275. doi: 10.3321/j.issn:1000-6923.2003.03.012 [28] HUA G, RECKHOW D A. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size[J]. Environmental Science & Technology. 2007, 41(9): 3309-3315. [29] KITIS M, KARANFIL T, WIGTON A, et al. Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation[J]. Water Research, 2002, 36(15): 3834-3848. doi: 10.1016/S0043-1354(02)00094-5 [30] LU J, TAO Z, MA J, et al. Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water[J]. Journal of Hazardous Materials, 2009, 162(1): 140-145. doi: 10.1016/j.jhazmat.2008.05.058 [31] FANG C, YANG X, DING S, et al. Characterization of Dissolved Organic Matter and Its Derived Disinfection Byproduct Formation along the Yangtze River[J]. Environmental Science & Technology, 2021, 55(18): 12326-12336. [32] NIU Z, WEI X, ZHANG Y. Characterization of the precursors of trihalomethanes and haloacetic acids in the Yuqiao Reservoir in China[J]. Environmental Science and Pollution Research, 2015, 22: 17508-17517. doi: 10.1007/s11356-015-4954-0 [33] KANOKKANTAPONG V, MARHABA T F, PANYAPINYOPHOL B, et al. FTIR evaluation of functional groups involved in the formation of haloacetic acids during the chlorination of raw water[J]. Journal of Hazardous Materials, 2006, 136(2): 188-196. doi: 10.1016/j.jhazmat.2005.06.031 [34] 陆松柳, 胡洪营, 孙迎雪, 等. 3种湿地植物在水培条件下的生长状况及根分泌物研究[J]. 环境科学, 2009, 30(7): 1901-1905. [35] KRAUS T E C, BERGAMASCHI B A, HERNES P J, et al. Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the Sacramento-San Joaquin River Delta: A geochemical approach[J]. Organic Geochemistry, 2008, 39(9): 1302-1318. doi: 10.1016/j.orggeochem.2008.05.012 [36] VILLA J A, MITSCH W J, SONG K, et al. Contribution of different wetland plant species to the DOC exported from a mesocosm experiment in the Florida Everglades[J]. Ecological Engineering, 2014, 71: 118-125. doi: 10.1016/j.ecoleng.2014.07.011 [37] 张希丽. 湿地植物在水培条件下的根系分泌特征研究[D]. 青岛: 青岛大学, 2019. [38] 孙兴滨, 卢颖, 孙雷, 等. 摇蚊幼虫代谢产物生成氯化消毒副产物的特征[J]. 北京工业大学学报, 2013, 39(11): 1700-1703. doi: 10.11936/bjutxb2013111700 [39] SUN X, SUN L, LU Y, et al. Influencing factors of disinfection byproducts formation during chloramina -tion of cyclops metabolite solutions[J]. Journal of Environmental Sciences, 2014, 26: 575-580. [40] 张小璐, 杨宏伟, 王小仛, 等. 消毒副产物生成的温度影响和动力学模型[J]. 环境科学, 2012, 33(11): 4046-4051. [41] 张涛. 饮用水中消毒副产物二氯乙腈的形成过程和控制技术研究[D]. 杭州: 浙江工业大学, 2014. [42] DEBORDE M, VON GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: A critical review[J]. Water Research. 2008, 42: 13-51. [43] STEFAN D, ERDELYI N, IZSAK B, et al. Formation of chlorination by-products in drinking water treatment plants using breakpoint chlorination[J]. Microchemical Journal, 2019, 149: 104008. doi: 10.1016/j.microc.2019.104008