-
盐酸四环素(tetracycline hydrochloride, TC)是由4个线性稠合苯环组合而成的氢环并苯环的一类广谱抗生素。TC的大量使用导致水环境中抗生素的积累,潜在地威胁生态系统功能和人类健康,传统水处理方法无法有效去除TC[1-2]。目前水中抗生素的去除方法包括光催化[3]、吸附[4]、生物处理[5]、高级氧化[6]和膜分离[7]等。其中,光催化法可能产生毒性更大的中间产物;高级氧化法和膜分离法处理费用过高;吸附法由于处理方法简单且效果好得到广泛应用[8]。但吸附剂再生困难、费用高,高效吸附剂及其简单再生方法的研发已成为吸附法去除水中四环素的关键。
类水滑石(hydrotalcite-like compounds, LDHs)是由常见的正二价和正三价金属离子组成层状双氢氧化物,结构与粘土的相似,通式为[M2+1–xM3+x(OH)2]x+[(An-)x/nmH2O]x-,其中M2+指的是二价金属阳离子(Mg2+、Cu2+、Mn2+、Zn2+、Ca2+),M3+指的是三价金属阳离子(Al3+、Fe3+、Cr3+),An-指可交换的阴离子(CO2- 3、NO- 3、Cl−和SO2- 4) [9-10],通常可通过共沉淀法[11]和水热法[12]合成。类水滑石能够吸附水中各种无机和有机阴离子及抗生素[13-15]。CHEN等[16]用共沉淀法制备Mg-Al水滑石,结果表明,正滴定法或反滴定法制备的水滑石为孔径较大的H1型介孔材料,正反滴定法制备的水滑石为孔径较小的H3型介孔材料,不同方法制备的水滑石结构不同。OGATA等[17]通过水热法制备的Fe-Mg水滑石对六价铬的吸附量为19.80 mg·g−1;潘国祥等[18]通过共沉淀法制备的Fe-Mg水滑石对六价铬的吸附量为71.12 mg·g−1,制备方法不同的同种水滑石的吸附性能不同。吴永娟等[19]通过煅烧法制备的Mg-Fe类水滑石对甲基橙的吸附量为306.7 mg·g−1; LU等[20]通过共沉淀法制备的Ni-Fe水滑石对甲基橙的吸附量为205.76 mg·g−1,阳离子种类不同的类水滑石的吸附性能也不同。由此可见,水滑石的制备方法对水滑石吸附性能的影响有待深入研究。
此外,含有Zn、Cu、Ni、Cr等元素的水滑石具有光催化活性,曹根庭等[21]采用Zn-Al类水滑石光降解亚甲基蓝,紫外光光照180 min后,降解率达到95%; MAO等[22]采用Cu-Al类水滑石降解罗丹明B和Cr(Ⅵ),紫外光光照30 min,去除率达90.1%;徐敏虹等[23]采用Zn-M-Cr水滑石光催化降解罗丹明B,紫外光光照120 min后,降解率达到90.72%。因此,制备兼具吸附和光催化性能的水滑石,先通过吸附去除水中TC,再通过光催化实现吸附剂的再生,为水中TC的去除开辟新道路。
本研究分别采用共沉淀法和水热法制备了具有光催化活性的Cu-Mg-Al类水滑石(LDHs-C和LDHs-H),通过XRD、SEM、BET、FTIR等方法表征了LDHs-C和LDHs-H的理化性质,通过静态实验研究了LDHs-C和LDHs-H对水中TC的吸附性能,探讨了吸附机理,对吸附饱和的吸附剂的光再生效果进行了评价。
制备方法对铜镁铝类水滑石吸附性能的影响
Effect of preparation method on adsorption properties of Cu-Mg-Al hydrotalcite-like compounds
-
摘要: 为了考察制备方法对水滑石结晶形态及吸附性能的影响,同时解决吸附剂再生困难且易产生二次污染的问题,分别采用共沉淀法和水热法合成具有光催化作用的Cu-Mg-Al类水滑石,通过X射线衍射(XRD)、扫描电镜(SEM)、傅里叶变换红外光谱(FTIR) 等方法对制备的材料进行了表征,考察了其对盐酸四环素(TC)的吸附性能,吸附饱和的类水滑石采用紫外光照再生。结果表明,共沉淀法合成的LDHs-C吸附性能优于水热法合成的LDHs-H,对TC的去除率分别为95.2%和75.2%。Cu-Mg-Al类水滑石吸附TC的过程均符合准二级动力学方程和Langmuir吸附等温模型。吸附饱和的吸附剂在紫外线照射下30 min即可实现再生,经4次循环后,LDHs-C对TC的吸附量仍能保持原有的90%以上。Abstract: In order to investigate the influence of synthesis methods on the crystal morphology and adsorption performance of hydrotalcite, and solve the problem of difficult regeneration of adsorbent and easily causing secondary pollution, Cu-Mg-Al hydrotalcite-like compounds (LDHs) with photocatalysis were synthesized by the coprecipitation method and the hydrothermal method, respectively, and the prepared materials were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and other methods, the adsorption of tetracycline hydrochloride (TC) was investigated. The saturated hydrotalcite -like compounds were regenerated under UV light. The results show that the adsorption performance of LDHs-C synthesized by the coprecipitation method was better than that of LDHs-H synthesized by the hydrothermal method, their removal rates of TC were 95.2% and 75.2%, respectively. The adsorption process of Cu-Mg-Al hydrotalcite-like compounds conformed to the quasi second order kinetic equation and Langmuir adsorption isotherm model. The saturated adsorbent could be regenerated by 30min UV irradiation. After 4 cycles, the adsorption capacity of TC on LDHs-C could still maintain over 90% of the original.
-
表 1 LDHs-C和LDHs-H晶胞结构参数
Table 1. The cell parameters of LDHs-C and LDHs-H
吸附剂 D 110/nm a/nm d 003/nm c/nm LDHs-C 0.152 7 0.305 4 0.738 1 2.214 3 LDHs-H 0.152 2 0.304 4 0.734 5 2.203 5 表 2 LDHs-C和LDHs-H的相关孔隙性质参数
Table 2. Porosity parameters of LDHs-C and LDHs-H
吸附剂 全孔面积/(m2·g−1) 孔容/(cm3·g−1) 孔径/nm LDHs-C 51.245 0.305 3.724 LDHs-H 23.938 0.132 3.189 表 3 LDHs-C和LDHs-H吸附TC的动力学模型参数
Table 3. Kinetic model parameters of TC adsorption on LDHs-C and LDHs-H
吸附剂 准一级动力学模型 准二级动力学模型 qe,实验值 qe,计算值 K1 R2 qe,计算值 K2 R2 LDHs-H 14.934 7.492 1.005 0.896 17.995 0.067 0.996 LDHs-C 19.237 4.415 0.471 0.938 19.677 0.247 0.999 表 4 LDHs-C和LDHs-H吸附TC的颗粒内扩散参数
Table 4. Parameters of the intraparticle diffusion model of TC adsorption on LDHs-C and LDHs-H
吸附剂 第1阶段 第2阶段 C Kd1 R2 C Kd1 R2 LDHs-C 13.980 2.376 0.993 18.569 0.205 0.726 LDHs-H 10.999 1.681 0.943 12.972 6.9906 0.944 表 5 LDHs-C和LDHs-H吸附TC的 Langmuir、Freundlich等温线模型参数
Table 5. Langmuir, Freundlich isothermal model parameters of TC adsorption on LDHs-C and LDHs-H
吸附剂 Langmuir模型 Freundlich模型 qm b R2 1/n KF R2 LDHs-C 232.55 0.07 0.984 1.04 13.77 0.957 LDHs-H 68.03 0.12 0.986 0.58 8.44 0.995 表 6 LDHs-C和LDHs-H吸附TC的热力学参数
Table 6. Thermodynamic parameters for TC adsorption on LDHs-C and LDHs-H
吸附剂 T/K ∆G/(kJ·mol−1) ∆H/(kJ·mol−1) ∆S/(J·(K·mol)−1) LDHs-H 298 −21.52 16.98 0.13 308 −22.81 318 −24.10 LDHs-C 298 −23.69 49.28 0.24 308 −26.14 318 −28.59 -
[1] 朱建宇,党清平,杨帆,等. MnFeCu-LDHs活化PMS降解氯四环素的效能及机制[J]. 环境工程学报, 2022, 16(12): 3895-3905. doi: 10.12030/j.cjee.202209108 [2] XU L,ZHANG H,XIONG P,et al. Occurrence,fate,and risk assessment of typical tetracycline antibiotics in the aquatic environment:A review[J]. Science of the Total Environment, 2020, 753: 141975. [3] ZHU Z R,XIA H W,LI H. Boosting photocatalytic degradation efficiency of tetracycline by a visible-light-activated NiMoO4/g-C3N4 heterojunction photocatalyst in the water environment[J]. Solid State Sciences, 2023, 139: 107164. doi: 10.1016/j.solidstatesciences.2023.107164 [4] 张宏,朱振亚,姜英宇,等. 壳聚糖和FeS改性生物炭吸附四环素:吸附机制与位能分布[J]. 环境科学学报, 2020, 40(12): 4306-4317. doi: 10.13671/j.hjkxxb.2020.0202 [5] HU P,SHAO J Y,QIAN G S,et al. Removal of tetracycline by aerobic granular sludge from marine aquaculture wastewater:A molecular dynamics investigation[J]. Bioresource Technology, 2022, 355: 127286. doi: 10.1016/j.biortech.2022.127286 [6] LI Y H,LIN D Y,LI Y F,et al. Nonradical-dominated peroxymonosulfate activation through bimetallic Fe/Mn-loaded hydroxyl-rich biochar for efficient degradation of tetracycline[J]. Nano Research, 2023, 16(1): 155-165. doi: 10.1007/s12274-022-4640-8 [7] XUE Y S,TANG W H,GU H X,et al. Flexible Bi2MoO6/N-doped carbon nanofiber membrane enables tetracycline photocatalysis for environmentally safe growth of vigna radiata[J]. Journal of Alloys and Compounds, 2022, 902: 154-167. [8] 李亚娟,赵传起,洪沛东,等. 磁性还原石墨烯的制备及其对抗生素的吸附性能[J]. 环境工程学报, 2018, 12(1): 15-24. doi: 10.12030/j.cjee.201705157 [9] WANG Z H,ZHANG W,LI C Q,et al. Recent progress of hydrogenation and hydrogenolysis catalysts derived from layered double hydroxides[J]. Catalysts, 2022, 12(11): 1125-1133. [10] LOZANO-LUNAR A,ALVAREZ J I,NAVARRO-BLASCO I,et al. Optimisation of mortar with Mg-Al-Hydrotalcite as sustainable management strategy lead waste[J]. Applied Clay Science, 2021, 212: 336-378. [11] VU V N,PHAM T H T,CHANTHAVONG M,et al. Enhanced photocatalytic degradation of rhodamine-B under led light using CuZnAl Hydrotalcite synthesized by co-precipitation technique[J]. Inorganics, 2022, 10(7): 567-678. [12] MAEGAWA K,ZHANG F,JOHNSON Q,et al. Control of micro- and nanostructures of layered double hydroxides by hydrothermal treatment[J]. Crystal Growth & Design, 2023, 23(4): 2128-2137. [13] GAO F,XU X R,YANG J Y. Removal of p-nitrophenol from simulated sewage using MgCo-3D hydrotalcite nanospheres:Capability and mechanism[J]. Rsc Advances, 2022, 12(41): 27044-27054. doi: 10.1039/D2RA01883G [14] COSANO D,ESQUIVEL D,ROMERO-SALGUERO F J,et al. Efficient removal of nonylphenol isomers from water by use of organo-hydrotalcites[J]. International Journal of Environmental Research and Public Health, 2022, 19(12): 1117-1122. [15] CHEN Y,SHI J,DU Q,et al. Antibiotic removal by agricultural waste biochars with different forms of iron oxide[J]. RSC Advances, 2019, 9(25): 14143-14153. doi: 10.1039/C9RA01271K [16] CHEN R,CHEN T,ZHU C,et al. Effect of coprecipitation method on Mg-Al hydrotalcite properties:application in the synthesis of diethylene glycol di- (methyl carbonate) [J]. Journal of the Iranian Chemical Society, 2020, 17(10): 2507-2513. doi: 10.1007/s13738-020-01945-8 [17] OGATA F,UETA E,KAWASAKI N. Characteristics of a novel adsorbent Fe-Mg-type hydrotalcite and its adsorption capability of As (III) and Cr (VI) from aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 56-63. doi: 10.1016/j.jiec.2017.10.005 [18] 潘国祥 钱萍萍 曹枫,等. 镁铁水滑石衍生复合氧化物制备、表征与吸附六价铬性能[J]. 稀有金属材料与工程, 2012, 41(s3): 41. [19] 吴永娟,王晓兰,闫俊英. Fe3O4/镁铁类水滑石复合物的制备及吸附性能[J]. 工业水处理, 2019, 39(11): 49-53. doi: 10.11894/iwt.2018-0930 [20] LU Y,JIANG B,FANG L,et al. High performance NiFe layered double hydroxide for methyl orange dye and Cr (VI) adsorption[J]. Chemosphere, 2016, 152: 415-422. doi: 10.1016/j.chemosphere.2016.03.015 [21] 曹根庭,薛继龙,夏盛杰,等. 不同阴离子插层锌铝水滑石对亚甲基蓝的光催化性能[J]. 硅酸盐学报, 2016, 44(5): 726-732. doi: 10.14062/j.issn.0454-5648.2016.05.16 [22] MAO N,JIAO Y. CuAl hydrotalcite formed CuAl-Mixed metal oxides for photocatalytic removal of rhodamine B and Cr (VI) [J]. Chemistryselect, 2018, 3(44): 12676-12681. doi: 10.1002/slct.201801888 [23] 徐敏虹,潘国祥,汪小华,等. Zn-M-Cr三元类水滑石的合成及其光催化性能[J]. 硅酸盐学报, 2017, 45(8): 1175-1182. [24] CHATLA A,ALMANASSRA I W,KOCHKODAN V,et al. Efficient removal of eriochrome black T (EBT) dye and chromium (Cr) by hydrotalcite-derived Mg-Ca-Al mixed metal oxide composite[J]. Catalysts, 2022, 12(10): 1247. doi: 10.3390/catal12101247 [25] 刘定鹏,军秦,吕晴等. 以粉煤灰为原料制备镁铝水滑石[J]. 硅酸盐学报, 2020, 48(08): 1341-1347. doi: 10.14062/j.issn.0454-5648.20190736 [26] XU Z,FAN J,ZHENG S,et al. On the adsorption of tetracycline by calcined magnesium-aluminum hydrotalcites[J]. Journal of Environmental Quality, 2009, 38(3): 1302-1310. doi: 10.2134/jeq2008.0246 [27] ZIYAT H,BENNANI M N,DEHMANI Y,et al. Adsorptive performance of a synthesized Mg-Al Hydrotalcite compound for removal of malachite green:Kinetic,isotherm,thermodynamic,and mechanism study[J]. International Journal of Environmental Analytical Chemistry, 2022, 306: 1-20. [28] HUANG P,LIANG Z,ZHAO Z,et al. Synthesis of hydrotalcite-like compounds with drinking water treatment residuals for phosphorus recovery from wastewater[J]. Journal of Cleaner Production, 2021, 301: 126976. doi: 10.1016/j.jclepro.2021.126976 [29] LIU N,WANG M X,LIU M M,et al. Sorption of tetracycline on organo-montmorillonites[J]. Journal of Hazardous Materials, 2012, 225: 28-35. [30] SHAN R-R,YAN L-G,YANG Y-M,et al. Highly efficient removal of three red dyes by adsorption onto Mg-Al-layered double hydroxide[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 561-568. doi: 10.1016/j.jiec.2014.03.019 [31] SONG Z Z,GAO H Y,LIAO G Y,et al. A novel slag-based Ce/TiO2@LDH catalyst for visible light driven degradation of tetracycline:performance and mechanism[J]. Journal of Alloys and Compounds, 2022, 901: 163525. doi: 10.1016/j.jallcom.2021.163525 [32] 柴琴琴,呼世斌,刘建伟,等. 有机改性对凹凸棒黏土吸附四环素类抗生素的影响[J]. 中国环境监测, 2018, 34(5): 95-103. doi: 10.19316/j.issn.1002-6002.2018.05.14 [33] 杨伟伟,高晓红,张鑫,等. 四环素在矿化垃圾上的吸附特性及动态过程[J]. 环境化学, 2022, 41(5): 1726-1735. doi: 10.7524/j.issn.0254-6108.2021122404 [34] ZIYAT H,ELMZIOUI S,NACIRI BENNANI M,et al. Kinetic,isotherm,and mechanism investigations of the removal of nitrate and nitrite from water by the synthesized hydrotalcite Mg-Al[J]. Research on Chemical Intermediates, 2021, 47(6): 2605-2627. doi: 10.1007/s11164-021-04414-w [35] XIAO Q,ZHAO Y,LIAO Y. The adsorption performance of tetracycline over copper oxide[J]. Applied Chemical Industry, 2022, 51(11): 3190. [36] OZCAN A,OMEROGLU C,ERDOGAN Y,et al. Modification of bentonite with a cationic surfactant:An adsorption study of textile dye Reactive Blue 19[J]. Journal of Hazardous Materials, 2007, 140(1-2): 173-179. doi: 10.1016/j.jhazmat.2006.06.138 [37] KWIKIMA M M,CHEBUDE Y,MESHESHA B T. Kinetics,adsorption isotherms,thermodynamics,and desorption studies of cadmium removal from aqueous solutions using bamboo sawdust/rice husk biochar[J]. Biomass Conversion and Biorefinery, 2022, 32: 1-13.