-
义乌市是世界最大的小商品集散中心,经济高速发达且人口密集[1]。城市化的高速发展不可避免地造成了环境污染,义乌市内的水体污染严重。义乌市年平均水资源总量为8.25×109 m3,但人均水资源量却不到700 m3,远低于全国平均水平,因此水资源短缺已严重制约义乌经济社会的可持续发展[2-4]。分质供水能够开发非常规水资源,优化水资源配置,满足城市用水端和水质多样化的需求,是实现水资源可持续发展的有效措施[5-6]。当从市外调水困难时,分质供水是解决义乌市水资源与水环境问题的有效方案。
义乌市将被污染的义乌江江水和生活污水厂尾水分别作为城市杂用水和工业用水的水源。然而,产出的低品质水不能维持管网生物稳定性,造成水体出现黄色絮状物,用水企业膜污染加重等问题,这可能是水源水质差和处理工艺效能不足等因素的结果。江水和污水厂尾水的水质易受自然因素与人为因素的影响[7-9],这可能会导致后续混凝沉淀、介质过滤和消毒等工艺的处理效能下降[10-11]。义乌市分质供水采用传统工艺(混凝沉淀、过滤、消毒)处理义乌江水,双膜(超滤-反渗透)工艺处理污水厂尾水。双膜法的水质净化效果优良,出水较稳定,但传统工艺在处理水质多变的受污染江水的过程中是否能保障水质稳定性还有待商榷。传统工艺中只有混凝沉淀能去除一部分有机质[12-13],剩余的生物可利用性有机质可能会促进管网异养菌大量繁殖,导致管网末端水质恶化。此外,混凝沉淀还极易受到其他因素的影响,例如,低温会影响Al离子的水解和絮体的形成从而降低混凝效果[14],降雨带来的浊度激增也会影响混凝的效果[15]。为解决水质不稳定的问题,调研分质供水系统中水质的变化特征,以及探究处理工艺对溶解性有机质(dissolved organic matter,DOM )的去除效果十分重要。
本研究选取义乌市分质供水系统中的A水厂、B水厂、C水厂3个水厂为研究对象,使用基本水质分析方法和光谱学技术探究了水处理过程中原水水质参数和DOM组成的变化,并使用高分辨率质谱(fourier transform ion cyclotron resonance mass,FT-ICR MS)深入分析了混凝过程中的DOM分子变化情况,为优化水处理工艺和保障水质安全提供理论参考。
义乌市分质供水系统水质变化分析
Analysis of water quality changes in dual water supply system in Yiwu city
-
摘要: 为探究义乌市分质供水系统中水质及有机物的变化特征,分季度调研了3个水厂沿程水质的变化,并采用光谱技术与高分辨率质谱分析了处理工艺对溶解性有机质的去除效果。水质调研结果表明,传统工艺(混凝沉淀-砂滤)对总磷和氨氮的去除率分别达到80%与50%以上,但对水体中的总氮与总溶解性有机碳的去除效果差。双膜法(超滤-反渗透)全面优于传统工艺,可以将营养盐和有机物的浓度降至极低的水平(去除率>90%)。三维荧光结合平行因子分析结果表明,混凝沉淀仅对地表水中陆源腐殖质组分有明显的去除,对类蛋白质组分的去除效果较差。高分辨率质谱的检测结果表明,混凝对木质素、单宁及稠环芳烃等物质有较好的去除效果。在混凝前增设曝气生物滤池并在混凝过程中添加粉末活性炭,能强化工艺对类蛋白质组分和腐殖质组分的去除效果。本研究结果可为水处理工艺优化提供理论依据。Abstract: To explore the changes in water quality and organic matter in the dual water supply system of Yiwu city, the water quality changes along the process in three water treatment plants were investigated in the four quarters, and the removal effects of dissolved organic matter (DOM) by the treatment process were analyzed by spectroscopy technology and high-resolution mass spectrometry. The results showed that the removal rates of total phosphorus and ammonia nitrogen by the traditional process (coagulation/sedimentation-sand filtration) could reach over 80% and 50%, respectively, while the removal effects of total nitrogen and total dissolved organic carbon (DOC) were poor. The ultrafiltration (UF)-reverse osmosis (RO) process was superior to the traditional process, and it could reduce the concentrations of nutrients and organic matter to extremely low levels (removal rate > 90%). EEMs-PARAFAC showed that the coagulation-sedimentation only significantly removed the fractions of terrestrial humic from surface water, but was less effective in removing protein-like fractions. The data of high-resolution mass spectrometry also showed that coagulation had a good effect on the removal of lignin, tannin and condensed aromatic hydrocarbons. By adding a biological aerated filter before coagulation and dosing powdered activated carbon during the coagulation process, the removal effects of protein-like fractions and humic fractions (70% reduction in total fluorescence peak intensity) could be greatly improved. This study can provide a theoretical basis for water treatment process optimization.
-
Key words:
- dual water supply /
- water quality /
- UV spectrum /
- fluorescence spectrum /
- dissolved organic matter
-
表 1 不同水厂对浊度、TDS和电导率的去除率
Table 1. The removal rates of turbidity, TDS and conductivity in different water treatment plants
水厂 浊度去除率% TDS去除率% 电导率去除率% A 80~97 <0.01 <0.01 B 81~97 <0.05 <0.04 C 81~97 96~97 96~98 表 2 5月各水样的DOM的紫外光谱特征参数
Table 2. UV characteristic parameters of DOM in water samples in May
水样 α(355) SUVA254 SUVA260 E2/E3 A原水 3.68 4.82 4.53 6.69 A BAF出水 2.42 4.88 4.59 9.35 A沉后水 0.81 3.25 2.94 17.99 A滤后水 0.23 2.47 2.21 32.69 A出水 0.46 2.63 2.39 36.87 B原水 4.26 5.08 4.79 6.26 B沉后水 1.62 3.96 3.68 15.27 B滤后水 1.39 4.13 3.81 18.31 B出水 1.04 3.66 3.37 21.16 C原水 2.54 3.55 3.23 10.53 C UF水 2.54 3.80 3.46 12.03 C RO水 0.12 3.13 2.71 —— C出水 0 2.82 2.18 —— 表 3 5月、9月各水样的FI、BIX、HIX
Table 3. Fluorescence index, autochthonous index and the humification index of water samples in May and September
水样 5月 9月 FI BIX HIX FI BIX HIX 原水 1.12 1.19 0.27 1.05 1.09 0.41 A BAF出水 1.13 1.20 0.26 1.03 1.07 0.40 A沉后水 1.13 1.22 0.22 1.01 1.09 0.13 A滤后水 1.26 1.40 0.10 1.00 1.10 0.13 A出水 1.21 1.33 0.14 1.30 1.44 0.11 B原水 1.09 1.16 0.31 1.03 1.08 0.41 B沉后水 1.15 1.25 0.27 1.13 1.20 0.36 B滤后水 1.21 1.32 0.23 1.11 1.17 0.35 B出水 1.22 1.34 0.23 1.15 1.26 0.30 C原水 0.96 1.03 0.67 0.95 1.01 0.66 C UF水 0.97 1.05 0.67 0.95 1.01 0.66 C RO水 1.93 2.85 0.04 1.41 1.75 0.27 C出水 1.28 1.73 0.13 1.66 1.69 0.28 -
[1] 张洪刚, 焦茹媛, 王聪, 等. 义乌市水库型水源地保护与水质提升策略研究——以岩口水库为例[J]. 环境保护科学, 2021, 47(2): 9-14. doi: 10.16803/j.cnki.issn.1004-6216.2021.02.002 [2] 鲍倩倩, 谢磊, 周杨军, 等. 水资源紧缺约束下义乌市人口承载力研究[J]. 水利规划与设计, 2020, 30(9): 47-51. doi: 10.3969/j.issn.1672-2469.2020.09.012 [3] 邵志平, 徐圣君, 秦玉, 等. 基于水资源可持续发展与水生态文明建设的义乌“五水共治”新模式[J]. 环境工程学报, 2021, 15(4): 1149-1156. doi: 10.12030/j.cjee.202008096 [4] 邵志平, 朱红斌. 义乌市全域分质供水工作机制探索与实践[J]. 中国水利, 2020, 37(21): 51-52. doi: 10.3969/j.issn.1000-1123.2020.21.023 [5] 白昊阳. 分质供水水资源优化配置研究[D]. 天津: 天津大学, 2005. [6] 田林莉. 城市分质供水系统研究[D]. 四川: 重庆大学, 2007. [7] SCHEILI A, DELPLA I, SADIQ R, et al. Impact of raw water quality and climate factors on the variability of drinking water quality in small systems[J]. Water Resources Management. 2016, 30(8): 2703-2718. doi: 10.1007/s11269-016-1312-z [8] RODRIGUES V, ESTRANY J, RANZINI M, et al. Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of corrego agua limpa, sao paulo (brazil) [J]. Science of the Total Environment. 2018, 622(25): 1553-1561. [9] SHAFIQUZZAMAN M, HAIDER H, BHUIYAN M A, et al. Spatiotemporal variations of DOM components in the kushiro river impacted by a wetland[J]. Environmental Science and Pollution Research. 2020, 27(15): 18287-18302. doi: 10.1007/s11356-020-08192-7 [10] DELPLA I, BOUCHARD C, DOREA C, et al. Assessment of rain event effects on source water quality degradation and subsequent water treatment operations[J]. Science of the Total Environment. 2022, 866(3): 161085-161085. [11] PRICE J I, HEBERLING M T. The effects of source water quality on drinking water treatment costs: a review and synthesis of empirical literature[J]. Ecological Economics. 2018, 151: 195-209. doi: 10.1016/j.ecolecon.2018.04.014 [12] NA S H, KIM M J, KIM J T, et al. Microplastic removal in conventional drinking water treatment processes: Performance, mechanism, and potential risk[J]. Water Research. 2021, 202(13): 117417-117417. [13] LI M, YANG Q, FANG G, et al. Refractory fluorescent dissolved organic matter in conventional and membrane-based drinking water treatment processes[J]. Chemosphere. 2022(4): 293-293. [14] ZHANG Z, JING R, HE S, et al. Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid[J]. Separation and Purification Technology. 2018, 206(29): 131-139. [15] HURST A M, EDWARDS M J, CHIPPS M, et al. The impact of rainstorm events on coagulation and clarifier performance in potable water treatment[J]. Science of the Total Environment. 2004, 321(13): 219-230. [16] ZHANG F, ZHANG W, WU S, et al. Analysis of UV-Vis spectral characteristics and content estimation of soil DOM under mulching practices[J]. Ecological Indicators. 2022, 138(1): 108869-108878. [17] 李惠平. 纳滤膜在高品质饮用水处理中的应用研究[D]: 兰州: 兰州交通大学, 2020. [18] DU Y, ZHANG Y, CHEN F, et al. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change[J]. Science of the Total Environment. 2016, 568(15): 216-225. [19] YANG J, GAO C, ZHANG X. The impacts of precipitation on fluorescent dissolved organic matter (FDOM) in an urban river system[J]. Water. 2022, 14(15): 2323. doi: 10.3390/w14152323 [20] XIANG S, HAN Y, JIANG C, et al. Composite biologically active filter (BAF) with zeolite, granular activated carbon, and suspended biological carrier for treating algae-laden raw water[J]. Journal of Water Process Engineering. 2021, 42(1): 102188-102196. [21] WANG X W, LIU Z Q, XIONG K N, et al. Characteristics and controlling factors of soil dissolved organic matter in the rainy season after vegetation restoration in a karst drainage area, South China[J]. Catena. 2022, 217(1): 106483-106487. [22] JIANG T, WANG D Y, MENG B, et al. The concentrations and characteristics of dissolved organic matter in high-latitude lakes determine its ambient reducing capacity[J]. Water Research. 2020, 169(1): 115217-115217. [23] WANG J J, DAHLGREN R A, CHOW A T. Controlled burning of forest detritus altering spectroscopic characteristics and chlorine reactivity of dissolved organic matter: effects of temperature and oxygen availability[J]. Environmental Science & Technology. 2015, 49(24): 14019-14027. [24] ZHOU Y, XIE Y, WANG M, et al. In-situ characterization of dissolved organic matter removal by coagulation using differential UV-Visible absorbance spectroscopy[J]. Chemosphere. 2019, 242(1): 125062-125068. [25] WANG D S, ZHAO Y M, YAN M Q, et al. Removal of DBP precursors in micro-polluted source waters: A comparative study on the enhanced coagulation behavior[J]. Separation and Purification Technology. 2013, 118(30): 271-278. [26] HE H, XU H, LI L F, et al. Molecular transformation of dissolved organic matter and the formation of disinfection byproducts in full-scale surface water treatment processes[J]. Science of the Total Environment. 2022, 838(P4): 156547-156547. [27] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry. 2009, 40(6): 706-719. doi: 10.1016/j.orggeochem.2009.03.002 [28] MAIE N, PARISH K J, WATANABE A, et al. Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem[J]. Geochimica et Cosmochimica Acta. 2006, 70(17): 4491-4506. doi: 10.1016/j.gca.2006.06.1554 [29] VITHARUCH Y, CHATYAPHA T, PHANWATT P. Changes in optical properties and molecular composition of dissolved organic matter and formation of disinfection by-products during conventional water treatment processes[J]. Environmental Science: Water Research & Technology. 2022, 9(1): 161-175. [30] MURPHY K R, STEDMON C A, WENIG P, et al. OpenFluor– an online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Methods. 2014, 6(3): 658-661. doi: 10.1039/C3AY41935E [31] MURPHY K R, HAMBLY A, SINGH S, et al. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model[J]. Environmental Science & Technology. 2011, 45(7): 2909-2916. [32] YANG L, CHENG Q, ZHUANG W E, et al. Seasonal changes in the chemical composition and reactivity of dissolved organic matter at the land-ocean interface of a subtropical river[J]. Environmental Science and Pollution Research. 2019, 26(24): 24595-24608. doi: 10.1007/s11356-019-05700-2 [33] BRüNJES J, SEIDEL M, DITTMAR T, et al. Natural asphalt seeps are potential sources for recalcitrant oceanic dissolved organic sulfur and dissolved black carbon[J]. Environmental Science & Technology. 2022, 56(12): 9092-9102. [34] PODGORSKI D C, ZITO P, MCGUIRE J T, et al. Examining natural attenuation and acute toxicity of petroleum-derived dissolved organic matter with optical spectroscopy[J]. Environmental Science & Technology. 2018, 52(11): 6157-6166. [35] CHEN M, KIM S-H, JUNG H-J, et al. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications[J]. Water Research. 2017, 121(1): 150-161. [36] PAINTER S C, LAPWORTH D J, WOODWARD E M S, et al. Terrestrial dissolved organic matter distribution in the North Sea[J]. Science of the Total Environment. 2018, 630(15): 630-647. [37] AMARAL V, ROMERA-CASTILLO C, FORJA J. Submarine mud volcanoes as a source of chromophoric dissolved organic matter to the deep waters of the Gulf of Cádiz[J]. Scientific Reports. 2021, 11(1): 3200-3211. doi: 10.1038/s41598-021-82632-3 [38] SHENG Y, YAN C, NIE M, et al. The partitioning behavior of PAHs between settled dust and its extracted water phase: Coefficients and effects of the fluorescent organic matter[J]. Ecotoxicology and Environmental Safety. 2021, 223(15): 112573-112580. [39] LEE D, KWON M, AHN Y, et al. Characteristics of intracellular algogenic organic matter and its reactivity with hydroxyl radicals[J]. Water Research, 2018 (1) , 144: 13-25. [40] WILLIAMS C J, CONRAD D, KOTHAWALA D N, et al. Selective removal of dissolved organic matter affects the production and speciation of disinfection byproducts[J]. Science of the Total Environment. 2019, 652(20): 75-84. [41] SHI J, ZHAO Y, WEI D, et al. Insight into transformation of dissolved organic matter in the Heilongjiang River[J]. Environmental Science and Pollution Research. 2018, 26(4): 3340-3349. [42] AGUILAR M I, SAEZ J, LLORENS M, et al. Nutrient removal and sludge production in the coagulation-flocculation process[J]. Water Research. 2002, 36(11): 2910-2919. doi: 10.1016/S0043-1354(01)00508-5 [43] SZLACHTA M, ADAMSKI W. Effect of powdered activated carbon on the settleability and adsorptive properties of coagulation sludge[J]. Ochrona Srodowiska. 2009, 31(1): 37-40. [44] 李璐瑶. 次氯酸钠深度处理城市污水厂二级出水的试验研究[D]. 青岛: 青岛理工大学, 2012.