-
膜生物反应器(membrane bioreactor, MBR)是污水处理与资源化技术[1]。我国是MBR工艺应用大国,占全国城镇污水处理规模 (1.78×109 t·a−1) 的5%以上[2]。曝气冲刷是浸没式MBR工艺不同于常规活性污泥法工艺的关键特征,也是MBR膜污染控制的关键节点,提高曝气冲刷效能是MBR工艺提效降耗的关键途径之一。《膜生物反应器通用技术规范(GB/T 33898-2017)》、《膜生物反应器城镇污水处理工艺设计规程(T/CECS 152-2017)》均对浸没式MBR的曝气系统提出了相应的技术要求。然而,现行的膜吹扫系统设计与运行比较粗放,主要根据厂家的推荐值或参照类似工程案例或按照比曝气量 (SADm,单位时间内单位膜面积所需曝气量;或SADp,单位产水量所需曝气量) 进行估算等。目前,模拟优化研究主要通过优化膜间距[3-4]、曝气器间距[5]、曝气量[6-9]、曝气管布置方式[10-12]等改善曝气均匀性,反应器规模较小,模拟中缺乏MBR中气泡直径形成机制,对实际工程应用的指导不足。气泡形貌和流态主要由曝气量、方式、频率,曝气器类型及其几何特征,气泡与膜的间距,气泡产生频率等多种因素共同决定,其中曝气器尤为关键。气泡的尺寸、形貌、流态对其形成的膜面剪切力如何高效去除膜面颗粒污染物,污泥混合液、曝气器布置方式等对气泡特性的影响及其机制,气泡曝气的膜污染控制机制等方面的内容尚需进行深入研究。而为了解曝气冲刷的复杂流体力学行为,对其设计放大和优化操作至关重要。因此,亟需对曝气冲刷的气泡直径分布特征、形成机制及其膜污染控制机理开展深入研究,据此优化曝气冲刷的构型设计与运行,提升曝气冲刷的科学性和精准性。
曝气在运行时会形成不同直径的气泡群,在环流环境中卷吸MBR内的混合液形成气泡羽流。气泡在运动过程中会发生尺寸变化、聚并及破碎现象,故流态变化对气泡羽流运动、膜污染控制和氧传质过程影响较大,聚并后的大气泡能形成更大的膜面剪切力,有利于膜表面冲刷和膜污染控制[13]。模拟气泡破碎与聚并过程发现,气泡索特平均直径(sauter mean diameter, SMD)增大会增强气泡对膜面颗粒物的迁移能力;但膜面剪切力随着气泡直径增大先增大再随着气泡破裂而减小[14]或者呈现先增大后稳定的趋势[15],这表明气泡尺寸存在一个适宜范围。然而,现有模拟过程中存在气泡的简化假设,如将气泡尺寸定义为常数 (如名义直径) ,不考虑其并聚和破碎过程,导致模拟结果与实际情况差异较大[16-17]。群体平衡模型 (population balance model, PBM) 能模拟气泡并聚和破碎过程,从而更准确低描述气泡直径变化。因此,CFD耦合PBM模型有望揭示气泡尺寸、分布与形貌对MBR水力学特征、膜冲刷效果和氧传质效率的影响。然而,现有CFD-PBM 耦合模型研究主要应用在鼓泡塔和搅拌釜等化工设备,而在浸没式MBR的曝气冲刷或膜吹扫应用研究则鲜有报道,并存在多方面难点。首先,MBR复杂的结构、不透明的混合液等,限制了对实际规模MBR曝气过程的实验观测,实验数据不足,既限制了气泡尺寸及其膜面剪切力的优化研究,也难以验证PBM模型模拟结果的准确程度;其次,污泥特性的影响,包括污泥絮体、污泥浓度及相应的粘度和流变性等,如污泥絮体和微小气泡之间的相互作用机制,污泥流变性在气泡并聚和破碎过程中的影响机制研究欠缺;再次,气泡尺寸受曝气器构型、曝气策略、水力搅拌等影响因素多,在统一的模型结构上尚未形成经验可靠的统一建模框架和模型结构;另外,MBR适用的水质范围广,运行条件变化范围和差异大,尚不清楚破碎核 (kernel) 和聚并核等的选择要求、适用性和参数率定情况,限制了MBR中气泡尺寸分布过程及其膜污染控制机制的研究。
本研究采用CFD-PBM模型模拟方法,以工程规模500 m3·d−1的MBR为对象,考察不同穿孔管安装角度、不同CMC混合液浓度对速度、膜面剪切力等的影响,并对比不同气泡尺寸对速度分布的影响,在工程规模MBR中对CMC溶液浓度进行流动特征的实验观测和验证,为MBR的气泡尺寸优化和膜污染控制提供参考。
曝气策略对膜面剪切力的影响机制及其优化
Effect mechanism and optimization of aeration strategy on membrane surface shear stress
-
摘要: 曝气冲刷是浸没式MBR工艺不同于常规活性污泥法工艺的关键特征,然而现行规范的曝气系统设计与运行比较粗放,缺乏气泡尺寸模拟优化方法。以可直接观测的工程规模 (500 m3·d−1) 膜生物反应器为研究对象,对穿孔管角度进行了优化研究,并用群体平衡模型(Population Balance Model,PBM)模型模拟污泥混合液不同粘度下的内部气泡分布情况。结果表明:穿孔管角度垂直向下、60°、45°、30°、垂直向上在膜面产生的平均剪切力分别为1.74、1.46、1.19、1.38、1.67 Pa,这表明曝气角度最优为垂直向下。0.3%、0.5%和0.8%浓度的羧甲基纤维素钠(Carboxymethyl cellulose, CMC)下产生的平均剪切力分别是1.51、1.92、2.24 Pa,气泡直径逐渐增大。且气泡尺寸越大、流速越大,分布越均匀。基于0.3%、0.5% CMC的速度实验结果与 PBM模拟结果基本吻合。该研究结果可为MBR技术的工艺优化和系统控制方法提升提供参考。Abstract: Aeration flushing is a key feature of the submerged membrane bioreactor (MBR) process that is different from the conventional activated sludge process. However, the current aeration system design and operation guidance are relatively extensive, and there is a lack of bubble size simulation optimization methods. Based on a scale of 500 m3·d−1 MBR that can be directly observed as the research object, the angle of the perforated tube was optimized and the Population Balance Model ( PBM ) was used to simulate the internal bubble distribution of the solution at different viscosities. Results showed that the average shear forces generated by the perforated tube with angles vertically down at 90 °, 60 °, 45 °, 30 °, and 0 ° on the membrane surface were 1.74,1.46,1.19,1.38,1.67 Pa, respectively, which indicated that the optimal aeration angle was vertically downwards. The average shear forces generated at 0.3%, 0.5% and 0.8% concentrations of carboxymethyl cellulose sodium (CMC) were 1.51, 1.92 and 2.24 Pa, respectively, and the bubble diameter gradually increased. The larger the bubble size was, the faster the flow velocity was, and the more uniform the distribution was. The results of velocity experiments conducted on 0.3% and 0.5% of CMC were consistent with those simulated by the PBM.The research results can provide reference for MBR process optimization and system control method improvement.
-
表 1 500 m3·d−1工程规模MBR基本尺寸及操作条件
Table 1. Basic dimensions and operating conditions of 500 m3·d−1 project scale MB
尺寸类型 设计数据/单位 膜支架 1.76×1.28×2.65/m 膜组件 0.48×0.03×2.40/m 膜组件间距 65/mm 曝气管尺寸 0.02×0.48/m 曝气管中心距池底高度 125/mm 曝气管中心距膜组件下部高度 125/mm 膜组件顶部距液面高度 0.40/m 单个曝气管进气速度 0.180 8/(m·s−1) 表 2 CMC 溶液的流变性质
Table 2. The rheological property of the CMC solution
溶液 质量分数 对应污泥浓度
MLSS/(mg·L−1)稠度系数
K/Pa·sn)流动系数
n密度
ρL/(kg·m−3)表面张力
σ/(mN·m−1)温度
T/ ℃大气压/
kPa纯水 0 0 0.001 1.000 998.21 72.75 26 101.325 CMC溶液 0.30% 7 200 0.021 0.896 1 002.79 52.17 26 101.325 0.50% 12 000 0.168 0.732 1 005.43 66.04 26 101.325 0.80% 19 200 0.813 0.590 1 010.21 68.04 26 101.325 -
[1] 黄霞,曹斌,文湘华,等. 膜-生物反应器在我国的研究与应用新进展[J]. 环境科学学报, 2008, 28(3): 416-432. [2] XIAO K,LIANG S,WANG X,et al. Current state and challenges of full-scale membrane bioreactor applications:A critical review[J]. Bioresource Technology, 2019, 271: 473-481. doi: 10.1016/j.biortech.2018.09.061 [3] 王栋,冯超,陈亚中,等. 平板膜生物反应器膜间距与曝气气泡形态对膜污染形成的影响[J]. 膜科学与技术, 2014, 34(6): 100-105. [4] 曹迎晨,ALEXANDER S,WILHELM U. MBR平板膜中气泡运动的水力特征的数值分析[J]. 环境工程学报, 2020, 14(2): 414-422. [5] WANG B, ZHANG Y, FANG Y, et al. Aeration pipe design for free bubbling hydrodynamic optimization of flat sheet MBRs [J]. Journal of Membrane Science, 2022, 646. [6] 欧阳科,谢珊,刘辉. 曝气量对膜生物反应器污泥特性和膜污染的影响[J]. 中国给水排水, 2011, 27(13): 19-22. [7] 汪婧,张翔,黄乐,等. 曝气冲刷对膜生物反应器膜污染的控制机理研究进展[J]. 环境污染与防治, 2020, 42(5): 619-623. [8] 魏进,毛小柳,李冰,等. 曝气对膜生物反应器中膜污染的影响[J]. 环境科技, 2017, 30(2): 75-78. [9] 张传义,袁丽梅,张雁秋. 曝气强度对膜污染的影响[J]. 环境污染与防治, 2005, 27(8): 580-582. [10] LIU M,YANG M,CHEN M,et al. Numerical optimization of membrane module design and operation for a full-scale submerged MBR by computational fluid dynamics[J]. Bioresource Technology, 2018, 269: 300-308. doi: 10.1016/j.biortech.2018.08.089 [11] 柳蒙蒙,陈梅雪,杨敏,等. 基于CFD的大型膜生物反应器的设计及运行优化[J]. 环境工程学报, 2018, 12(2): 552-558. doi: 10.12030/j.cjee.201708022 [12] 张晴,樊耀波,魏源送,等. 气升循环分体式MBR的CFD模拟及优化[J]. 膜科学与技术, 2013, 33(4): 107-119. [13] CUI Z F,CHANG S,FANE A G. The use of gas bubbling to enhance membrane processes[J]. Journal of Membrane Science, 2003, 221(1-2): 1-35. doi: 10.1016/S0376-7388(03)00246-1 [14] POLACHINI T C,MULET A,CáRCEL J A,et al. Rheology of acid suspensions containing cassava bagasse:Effect of biomass loading,acid content and temperature[J]. Powder Technology, 2019, 354: 271-280. doi: 10.1016/j.powtec.2019.05.086 [15] WEI P,ZHANG K,GAO W,et al. CFD modeling of hydrodynamic characteristics of slug bubble flow in a flat sheet membrane bioreactor[J]. Journal of Membrane Science, 2013, 445: 15-24. doi: 10.1016/j.memsci.2013.05.036 [16] AMARAL A,BELLANDI G,REHMAN U,et al. Towards improved accuracy in modeling aeration efficiency through understanding bubble size distribution dynamics[J]. Water Research, 2018, 131: 346-355. doi: 10.1016/j.watres.2017.10.062 [17] WANG J,FANE A G,CHEW J W. Effect of bubble characteristics on critical flux in the microfiltration of particulate foulants[J]. Journal of Membrane Science, 2017, 535: 279-293. doi: 10.1016/j.memsci.2017.04.047 [18] CAO X,ZHAO Z,CHENG L,et al. Evaluation of a transparent analog fluid of digested sludge:Xanthan Gum Aqueous Solution[J]. Procedia Environmental Sciences, 2016, 31: 735-742. doi: 10.1016/j.proenv.2016.02.059 [19] ESHTIAGHI N,YAP S D,MARKIS F,et al. Clear model fluids to emulate the rheological properties of thickened digested sludge[J]. Water Res, 2012, 46(9): 3014-3022. doi: 10.1016/j.watres.2012.03.003 [20] DONG X,LIU Z,LIU F,et al. Effect of liquid phase rheology and gas–liquid interface property on mass transfer characteristics in bubble columns[J]. Chemical Engineering Research and Design, 2019, 142: 25-33. doi: 10.1016/j.cherd.2018.11.035 [21] RATKOVICH N,CHAN C C,BERUBE P R,et al. Investigation of the effect of viscosity on slug flow in airlift tubular membranes in search of a sludge surrogate[J]. Water Science and Technology, 2010, 61(7): 1801-1809. doi: 10.2166/wst.2010.118 [22] BöHM L,KRAUME M. Fluid dynamics of bubble swarms rising in Newtonian and non-Newtonian liquids in flat sheet membrane systems[J]. Journal of Membrane Science, 2015, 475: 533-544. doi: 10.1016/j.memsci.2014.11.003 [23] ERIC DUMONT,FRANCINE FAYOLLE,VáCLAV SOBOLı́K,et al. Wall shear rate in the Taylor-Couette-Poiseuille flow at low axial Reynolds number[J]. International Journal of Heat and Mass Transfer, 2002, 45(3): 679-689. doi: 10.1016/S0017-9310(01)00183-1 [24] DENG Z,WANG T,ZHANG N,et al. Gas holdup,bubble behavior and mass transfer in a 5m high internal-loop airlift reactor with non-Newtonian fluid[J]. Chemical Engineering Journal, 2010, 160(2): 729-737. doi: 10.1016/j.cej.2010.03.078 [25] 周俊波. Fluent 6.3 流场分析从入门到精通[M]. 北京: 机械工业出版社, 2012. [26] HEAN LUO H F S. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. doi: 10.1002/aic.690420505 [27] F. LEHR M M,D. MEWES. Bubble-Size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443. doi: 10.1002/aic.690481103 [28] WANG B,ZHANG K,FIELD R W. Optimization of aeration variables in a commercial large-scale flat-sheet MBR operated with slug bubbling[J]. Journal of Membrane Science, 2018, 567: 181-190. doi: 10.1016/j.memsci.2018.09.039 [29] 邢楚填. 鼓泡床反应器实验研究及CFD-PBM耦合模型数值模拟[D]. 北京: 清华大学, 2014.2-19. [30] 杨敏,徐荣乐,袁星,等. 膜生物反应器ASM-CFD耦合仿真研究进展[J]. 膜科学与技术, 2015, 35(6): 126-133. [31] 郁达伟,魏源送,郑祥,等. 多相流和湍流模型对平板膜生物反应器模拟的影响[J]. 化工学报, 2014, 65(S1): 377-385. [32] WANG B, ZHANG Y, ZHANG G, et al. Innovation and optimization of aeration in free bubbling flat sheet MBRs [J]. Journal of Membrane Science, 2021, 635. [33] 沙作良,伍倩,王学魁. 不同黏度下气液体系流体力学行为的PBM模拟[J]. 化工进展, 2009, 28(Z1): 382-387. [34] 张华海,王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495. [35] 张文龙,宁尚雷,靳海波,等. 鼓泡塔内空气-醋酸体系流体力学参数的CFD-PBM耦合模型数值模拟[J]. 化工学报, 2022, 73(6): 2589-2602. [36] YAN P,JIN H,HE G,et al. Numerical simulation of bubble characteristics in bubble columns with different liquid viscosities and surface tensions using a CFD-PBM coupled model[J]. Chemical Engineering Research and Design, 2020, 154: 47-59. doi: 10.1016/j.cherd.2019.11.030 [37] WANG B,ZHANG K,FIELD R W. Slug bubbling in flat sheet MBRs:Hydrodynamic optimization of membrane design variables through computational and experimental studies[J]. Journal of Membrane Science, 2018, 548: 165-175. doi: 10.1016/j.memsci.2017.11.024 [38] RADAEI E,LIU X,TNG K H,et al. Insights on pulsed bubble control of membrane fouling:Effect of bubble size and frequency[J]. Journal of Membrane Science, 2018, 554: 59-70. doi: 10.1016/j.memsci.2018.02.058