-
当前,我国生态文明建设同时面临实现生态环境根本好转及碳达峰碳中和两大战略任务。生态环境要求的进一步强化使得协同推进减污降碳已成为我国经济社会发展全面绿色转型的必然选择,生态环保产业也将迎来新的发展窗口期。污水处理行业碳排放量占全社会总排放量的1%~2%[1],故污水处理系统低碳运行管理对遏制全球气候变化具有重要意义。2022年,我国城市污水处理量已经超过6.11×1010m3·a−1,处理率达97%以上[2]。我国现行出水排放标准普遍提高,特别在敏感水域地区,排放标准要求接近地表水标准。为达到排放标准、保障高质量的出水水质,不得不增加药品投入,能耗量亦随之增大,因此,推进污水处理厂减污降碳协同增效的需求更加迫切。
推进污水处理厂减污降碳协同增效的措施和建议
Measures and suggestions for promoting synergistic efficiency in reducing pollution and carbon emissions in wastewater treatment plants
-
摘要: 污水处理厂对保护水环境、维护生态平衡、促进国民经济和城乡建设的发展、推进生态文明进步作出了巨大贡献。随着工业生产的发展以及水处理要求的变化,污水处理工艺技术发生了深刻变革,污水处理厂的运行管理目标已发生根本变化,已从减少污染物转向水的再利用、资源回收和低碳运行管理。污水处理过程涉及处理工艺、设备选型、运行管理控制等多方面,应多措并举协调推进污水厂高效稳定运行,并将污水处理融入到现代城市水循环体系中,释放以污水厂为核心的水系统新动能,引领多层面、多领域开展减污降碳协同增效工作,助力污水处理可持续发展。Abstract: Wastewater treatment plants (WWTPs) have made great contributions to protecting the water environment, maintaining ecological balance, promoting the development of the national economy and urban & rural construction, and promoting the progress of ecological civilization. With the development of industrial production and changes in water treatment requirements, profound changes have taken place in wastewater treatment process technology, as well as fundamental changes in the operation and management objectives of wastewater treatment plants, which has been shifted from reducing pollutants to water reuse, resource recovery and low-carbon operation management. The wastewater treatment process involves many aspects, such as treatment technology, equipment selection, operation management control, etc. Many measures should be taken to promote the efficient and stable operation of the WWTPs, and integrate the wastewater treatment into the modern urban water circulation system, to release new pathways from the water systems with WWTPs as the core, and to lead efforts to reduce pollution and carbon synchronously at the multi-levels and in various fields, and promote sustainable development of wastewater treatment.
-
-
[1] 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 57(3): 1-5. doi: 10.13789/j.cnki.wwe1964.2021.03.001 [2] 中华人民共和国住房和城乡建设部. 2021年城乡建设统计年鉴[EB/OL]. 2022. https://www.mohurd.gov.cn/file/2022/20221012/5683cd2a-1b26-4cd7-854f-22d40ce98636.zip?n=2021%E5%B9%B4%E5%9F%8E%E4%B9%A1%E5%BB%BA%E8%AE%BE%E7%BB%9F%E8%AE%A1%E5%B9%B4%E9%89%B4. [3] 王洪臣. 百年活性污泥法的革新方向[J]. 给水排水, 2014, 50(10): 1-3. doi: 10.3969/j.issn.1002-8471.2014.10.001 [4] 王凯军, 宫徽. 生态文明理念引领城市污水处理技术的创新发展[J]. 给水排水, 2016, 42(5): 1-3. doi: 10.3969/j.issn.1002-8471.2016.05.001 [5] 王启镔, 苑泉, 宫徽, 等. SBR系统在低浓度污水条件下培养好氧颗粒污泥的特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052. doi: 10.12030/j.cjee.201805080 [6] 薛意, 陈荣, 邢保山, 等. 厌氧氨氧化: 理论和工艺发展概述(代序言)[J]. 环境工程学报, 2022, 16(2): 375-380. doi: 10.12030/j.cjee.202201175 [7] 王凯军. 可持续发展的新型、高效城市污水处理技术探讨[J]. 给水排水, 2005, 31(2): 32-35. doi: 10.3969/j.issn.1002-8471.2005.02.009 [8] 王凯军, 宫徽, 金正宇. 未来污水处理技术发展方向的思考与探索[J]. 建设科技, 2013(2): 36-38. doi: 10.3969/j.issn.1671-3915.2013.02.012 [9] 魏源送, 常国梁, 吴敬东, 等. 基于“源-流-汇”的非常规水源补给河流水质改善与水生态修复专刊序言[J]. 环境科学学报. 2021, 41(1): 1-6. [10] 宫徽. 基于“碳源浓缩-氮源回收”的新型污水资源化工艺研究[D]. 北京: 清华大学, 2017. [11] 金正宇. 强化膜混凝反应器(E-MCR)生活污水资源化处理工艺研究[D]. 北京: 清华大学, 2015. [12] 何秋航. 强化磁分离污水碳源浓缩资源化技术研究[D]. 北京: 清华大学, 2018. [13] 王凯军, 何文妍, 房阔. 典型离子交换水处理技术在低浓度氨氮回收中的应用分析[J]. 环境工程学报. 2019, 13(10): 2285-2301. [14] QU J H, WANG H C, WANG K J, et al. Municipal wastewater treatment in China: Development history and future perspectives[J]. Frontiers of Environmental Science & Engineering, 2019, 13(6): 88. [15] LUDWIG T, KERN P, BONGARDS M, et al. Simulation and optimization of an experimental membrane wastewater treatment plant using computational intelligence methods[J]. Water Science and Technology, 2011, 63(10): 2255-2260. doi: 10.2166/wst.2011.135 [16] KIM D, BOWEN J D, OZELKAN E C. Optimization of wastewater treatment plant operation for greenhouse gas mitigation[J]. Journal of Environmental Management, 2015, 163: 39-48. [17] 王启镔, 龚春辰, 魏彬, 等. 季节性气候变化下污水处理厂性能及污泥特性分析[J]. 给水排水, 2021, 47(3): 49-54. doi: 10.13789/j.cnki.wwe1964.2021.03.008 [18] 孙永利, 李鹏峰, 隋克俭, 等. 内回流混合液DO对缺氧池脱氮的影响及控制方法[J]. 中国给水排水, 2015, 31(21): 81-84. [19] 吕利平, 李航, 张欣, 等. 多点进水对前置预缺氧A2/O工艺脱氮除磷的影响[J]. 中国给水排水, 2021, 37(15): 8-13. [20] 南彦斌, 彭永臻, 曾立云, 等. 分段进水对改良A2/O-BAF双污泥系统反硝化除磷脱氮的影响[J]. 环境科学, 2018, 39(4): 1704-1712. [21] 王启镔, 李浩, 董旭, 等. 改良型 A2/O 污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665. doi: 10.12030/j.cjee.202101059 [22] 王凯军, 王晓惠, 柯建明, 等, 厌氧处理技术发展现状与未来发展领域[J]. 中国沼气, 1999, 17(4): 14-17. [23] HE W Y, WANG Q B, ZHUY, et al. Innovative technology of municipal wastewater treatment for rapid sludge sedimentation and enhancing pollutants removal with nano-material[J]. Bioresource Technology, 2020:124675. [24] 王启镔, 何文妍, 宫徽, 等. 基于复合絮凝剂的SBR工艺中试研究[J]. 中国给水排水, 2019, 35(9): 91-95. doi: 10.19853/j.zgjsps.1000-4602.2019.09.016