[1] |
黄霞,曹斌,文湘华,等. 膜-生物反应器在我国的研究与应用新进展[J]. 环境科学学报, 2008, 28(3): 416-432.
|
[2] |
XIAO K,LIANG S,WANG X,et al. Current state and challenges of full-scale membrane bioreactor applications:A critical review[J]. Bioresource Technology, 2019, 271: 473-481. doi: 10.1016/j.biortech.2018.09.061
|
[3] |
王栋,冯超,陈亚中,等. 平板膜生物反应器膜间距与曝气气泡形态对膜污染形成的影响[J]. 膜科学与技术, 2014, 34(6): 100-105.
|
[4] |
曹迎晨,ALEXANDER S,WILHELM U. MBR平板膜中气泡运动的水力特征的数值分析[J]. 环境工程学报, 2020, 14(2): 414-422.
|
[5] |
WANG B, ZHANG Y, FANG Y, et al. Aeration pipe design for free bubbling hydrodynamic optimization of flat sheet MBRs [J]. Journal of Membrane Science, 2022, 646.
|
[6] |
欧阳科,谢珊,刘辉. 曝气量对膜生物反应器污泥特性和膜污染的影响[J]. 中国给水排水, 2011, 27(13): 19-22.
|
[7] |
汪婧,张翔,黄乐,等. 曝气冲刷对膜生物反应器膜污染的控制机理研究进展[J]. 环境污染与防治, 2020, 42(5): 619-623.
|
[8] |
魏进,毛小柳,李冰,等. 曝气对膜生物反应器中膜污染的影响[J]. 环境科技, 2017, 30(2): 75-78.
|
[9] |
张传义,袁丽梅,张雁秋. 曝气强度对膜污染的影响[J]. 环境污染与防治, 2005, 27(8): 580-582.
|
[10] |
LIU M,YANG M,CHEN M,et al. Numerical optimization of membrane module design and operation for a full-scale submerged MBR by computational fluid dynamics[J]. Bioresource Technology, 2018, 269: 300-308. doi: 10.1016/j.biortech.2018.08.089
|
[11] |
柳蒙蒙,陈梅雪,杨敏,等. 基于CFD的大型膜生物反应器的设计及运行优化[J]. 环境工程学报, 2018, 12(2): 552-558. doi: 10.12030/j.cjee.201708022
|
[12] |
张晴,樊耀波,魏源送,等. 气升循环分体式MBR的CFD模拟及优化[J]. 膜科学与技术, 2013, 33(4): 107-119.
|
[13] |
CUI Z F,CHANG S,FANE A G. The use of gas bubbling to enhance membrane processes[J]. Journal of Membrane Science, 2003, 221(1-2): 1-35. doi: 10.1016/S0376-7388(03)00246-1
|
[14] |
POLACHINI T C,MULET A,CáRCEL J A,et al. Rheology of acid suspensions containing cassava bagasse:Effect of biomass loading,acid content and temperature[J]. Powder Technology, 2019, 354: 271-280. doi: 10.1016/j.powtec.2019.05.086
|
[15] |
WEI P,ZHANG K,GAO W,et al. CFD modeling of hydrodynamic characteristics of slug bubble flow in a flat sheet membrane bioreactor[J]. Journal of Membrane Science, 2013, 445: 15-24. doi: 10.1016/j.memsci.2013.05.036
|
[16] |
AMARAL A,BELLANDI G,REHMAN U,et al. Towards improved accuracy in modeling aeration efficiency through understanding bubble size distribution dynamics[J]. Water Research, 2018, 131: 346-355. doi: 10.1016/j.watres.2017.10.062
|
[17] |
WANG J,FANE A G,CHEW J W. Effect of bubble characteristics on critical flux in the microfiltration of particulate foulants[J]. Journal of Membrane Science, 2017, 535: 279-293. doi: 10.1016/j.memsci.2017.04.047
|
[18] |
CAO X,ZHAO Z,CHENG L,et al. Evaluation of a transparent analog fluid of digested sludge:Xanthan Gum Aqueous Solution[J]. Procedia Environmental Sciences, 2016, 31: 735-742. doi: 10.1016/j.proenv.2016.02.059
|
[19] |
ESHTIAGHI N,YAP S D,MARKIS F,et al. Clear model fluids to emulate the rheological properties of thickened digested sludge[J]. Water Res, 2012, 46(9): 3014-3022. doi: 10.1016/j.watres.2012.03.003
|
[20] |
DONG X,LIU Z,LIU F,et al. Effect of liquid phase rheology and gas–liquid interface property on mass transfer characteristics in bubble columns[J]. Chemical Engineering Research and Design, 2019, 142: 25-33. doi: 10.1016/j.cherd.2018.11.035
|
[21] |
RATKOVICH N,CHAN C C,BERUBE P R,et al. Investigation of the effect of viscosity on slug flow in airlift tubular membranes in search of a sludge surrogate[J]. Water Science and Technology, 2010, 61(7): 1801-1809. doi: 10.2166/wst.2010.118
|
[22] |
BöHM L,KRAUME M. Fluid dynamics of bubble swarms rising in Newtonian and non-Newtonian liquids in flat sheet membrane systems[J]. Journal of Membrane Science, 2015, 475: 533-544. doi: 10.1016/j.memsci.2014.11.003
|
[23] |
ERIC DUMONT,FRANCINE FAYOLLE,VáCLAV SOBOLı́K,et al. Wall shear rate in the Taylor-Couette-Poiseuille flow at low axial Reynolds number[J]. International Journal of Heat and Mass Transfer, 2002, 45(3): 679-689. doi: 10.1016/S0017-9310(01)00183-1
|
[24] |
DENG Z,WANG T,ZHANG N,et al. Gas holdup,bubble behavior and mass transfer in a 5m high internal-loop airlift reactor with non-Newtonian fluid[J]. Chemical Engineering Journal, 2010, 160(2): 729-737. doi: 10.1016/j.cej.2010.03.078
|
[25] |
周俊波. Fluent 6.3 流场分析从入门到精通[M]. 北京: 机械工业出版社, 2012.
|
[26] |
HEAN LUO H F S. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. doi: 10.1002/aic.690420505
|
[27] |
F. LEHR M M,D. MEWES. Bubble-Size distributions and flow fields in bubble columns[J]. AIChE Journal, 2002, 48(11): 2426-2443. doi: 10.1002/aic.690481103
|
[28] |
WANG B,ZHANG K,FIELD R W. Optimization of aeration variables in a commercial large-scale flat-sheet MBR operated with slug bubbling[J]. Journal of Membrane Science, 2018, 567: 181-190. doi: 10.1016/j.memsci.2018.09.039
|
[29] |
邢楚填. 鼓泡床反应器实验研究及CFD-PBM耦合模型数值模拟[D]. 北京: 清华大学, 2014.2-19.
|
[30] |
杨敏,徐荣乐,袁星,等. 膜生物反应器ASM-CFD耦合仿真研究进展[J]. 膜科学与技术, 2015, 35(6): 126-133.
|
[31] |
郁达伟,魏源送,郑祥,等. 多相流和湍流模型对平板膜生物反应器模拟的影响[J]. 化工学报, 2014, 65(S1): 377-385.
|
[32] |
WANG B, ZHANG Y, ZHANG G, et al. Innovation and optimization of aeration in free bubbling flat sheet MBRs [J]. Journal of Membrane Science, 2021, 635.
|
[33] |
沙作良,伍倩,王学魁. 不同黏度下气液体系流体力学行为的PBM模拟[J]. 化工进展, 2009, 28(Z1): 382-387.
|
[34] |
张华海,王铁峰. CFD-PBM耦合模型模拟气液鼓泡床的通用性研究[J]. 化工学报, 2019, 70(2): 487-495.
|
[35] |
张文龙,宁尚雷,靳海波,等. 鼓泡塔内空气-醋酸体系流体力学参数的CFD-PBM耦合模型数值模拟[J]. 化工学报, 2022, 73(6): 2589-2602.
|
[36] |
YAN P,JIN H,HE G,et al. Numerical simulation of bubble characteristics in bubble columns with different liquid viscosities and surface tensions using a CFD-PBM coupled model[J]. Chemical Engineering Research and Design, 2020, 154: 47-59. doi: 10.1016/j.cherd.2019.11.030
|
[37] |
WANG B,ZHANG K,FIELD R W. Slug bubbling in flat sheet MBRs:Hydrodynamic optimization of membrane design variables through computational and experimental studies[J]. Journal of Membrane Science, 2018, 548: 165-175. doi: 10.1016/j.memsci.2017.11.024
|
[38] |
RADAEI E,LIU X,TNG K H,et al. Insights on pulsed bubble control of membrane fouling:Effect of bubble size and frequency[J]. Journal of Membrane Science, 2018, 554: 59-70. doi: 10.1016/j.memsci.2018.02.058
|