-
粉尘会诱发职业性尘肺病,危害人群健康[1];且粉尘还存在爆炸危险等安全风险[2]。因此,作业场所粉尘的控制具有重要的现实意义。传统的端流式过滤除尘技术 (图1 (a) ) ,具有净化效率高、工艺简单等优点而广泛运用于除尘领域[3]。但端流式过滤过滤阻力上升快、风机能耗大。错流式过滤除尘技术 (图1 (b) ) ,利用切向流的剪切力抑制尘饼生长变厚、阻滞过滤阻力上升[4],对于处理大风量高浓度粉尘具有优势。错流式过滤除尘一般采用内滤方式[5],对错滤面上的持续累积的粉尘可采用脉冲喷吹进行清灰。
目前,除尘滤芯的脉冲喷吹清灰已被广泛研究。林莉君等[6]研究了外滤式滤芯内部的脉冲喷吹清灰,在滤芯长度方向上,上部受到的压力最小、中部次之、底部最大;喷吹压力越大,滤芯内压力越大。LI等[7]提出在外滤式滤芯内部设置锥体,能提高脉喷气流的强度,显著提升了中部和顶部滤芯所受压力,改善滤芯压力分布提高脉喷清灰效果。艾子昂等[8]通过在外滤式滤芯内部增设半密闭式气流隔板,降低气流能量损耗,在[R,r]=[120,60]的情况下滤芯所受压力提升至2.11倍,清灰均匀性提升4.11倍,增强了滤芯内整体脉喷清灰性能。薛峰等[9]通过改进喷嘴,设计上部开口散射器和诱导喷嘴改善喷吹流场,提升外滤式滤芯的脉喷清灰性能,在定阻模式清灰条件下对比普通喷嘴清灰间隔分别延长220 s、95 s。QIU等[10]改进内部设置锥体为褶皱式锥体并考察锥体高度提升脉喷清灰的均匀性,在高度为760 mm时清灰效果最好。CHEN等[11]研究了褶式滤芯不同褶皱形状对滤芯脉喷清灰性能的影响,采用梯形褶式结构降低压力损失来提升外滤式滤芯脉喷清灰性能。CHEN等[12]提出了多脉冲喷吹技术改进喷吹策略提升外滤式滤芯清灰效果,喷吹压力提升6.5 %。然而,目前关于滤芯脉冲喷吹清灰的研究主要对象是外滤式滤芯,针对内滤式滤芯的脉喷清灰的研究不足。
本研究拟通过构建CFD数值模型,考察清灰装置的气流流场及错流内滤式滤芯压力变化,探究喷嘴入口压力的影响,考察错流滤芯所受压力随挡板位置移动的变化规律,并设计挡板往复式喷吹策略与其他喷吹策略进行对比,为内滤式滤芯的脉喷清灰设计提供参考。
错流内滤式滤芯脉喷清灰的数值模拟
Numerical simulation of cross-flow inside-out filter element pulse jet cleaning
-
摘要: 错流式过滤除尘技术利用切向风流抑制尘饼生长变厚,具有过滤阻力上升缓慢的优点,采用脉喷气流撞击设置在滤芯外的横向挡板并产生局部静压可实现内滤式滤芯的清灰。构建CFD数值模拟考察了喷吹气流的分布,分析了喷嘴入口处的喷吹压力和挡板位置对脉冲喷吹性能的影响,设计并考察了挡板往复式喷吹策略。结果表明:滤芯压力随喷嘴入口压力升高而增加,确定了最佳喷嘴入口压力为5 000 Pa;挡板位置的变化显著影响清灰的有效区,对于1 000 mm长的滤芯,挡板位置为500 mm和350 mm分别实现350~500 mm和0~350 mm区域的有效清灰;相比普通喷吹,设计的挡板往复式喷吹 (挡板位置依次为350、500、650、500 mm) 可实现滤芯喷吹压力增大1.57倍、均匀性提升7.17倍。该研究结果可为内滤式滤芯脉喷清灰提供参考。Abstract: Cross-flow filter dust removal technology uses tangential air flow to suppress the growth and thickening of dust cake and has the advantage of slow rise of filtration resistance. The inside-out filter element can be cleaned by using pulse jet flow to impact the transverse baffle set outside the filter element and generate local static pressure. In this paper, CFD numerical simulation was constructed to investigate the distribution of jet flow, analyze the influence of the injection pressure at the nozzle entrance and the position of baffle on the performance of pulse jet, and design and investigate the baffle reciprocating injection strategy. The results showed that the filter element pressure increased with the increase of nozzle inlet pressure, and the optimal nozzle inlet pressure was 5 000 Pa. The effective cleaning area was significantly affected by the change of baffle position. For the 1 000 mm long filter element, the effective cleaning area of 350~500 mm and 0~350 mm could be achieved with the baffle position of 500 mm and 350 mm, respectively. Compared with the ordinary injection, 1.57 times increase in filter element injection pressure and 7.17 times increase in uniformity were achieved by the designed baffle reciprocating injection (baffle position at 350, 500, 650, 500 mm in order) . The results of this study can provide a reference for pulse jet cleaning of inside-out filter element.
-
-
[1] 国家卫生健康委员会规划发展与信息化司. 2021年我国卫生健康事业发展统计公报[J]. 中国病毒病杂志, 2022, 12(5): 321-330. doi: 10.16505/j.2095-0136.2022.0065 [2] 陈刚, 张晓蕾, 徐帅, 等. 我国2005-2020年粉尘爆炸事故统计分析[J]. 中国安全科学学报, 2022, 32(8): 76-83. [3] 杨燕霞, 张明星, 秦文茜, 等. 脉冲喷吹内置锥形滤筒的清灰性能[J]. 中国粉体技术, 2019, 25(1): 76-80. doi: 10.13732/j.issn.1008-5548.2019.01.013 [4] V. SIBANDA, R. W. GREENWOOD, J. P. K. SEVILLE, et al. Predicting particle segregation in cross-flow gas filtration[J]. Powder Technology, 2010, 203(3): 419-427. doi: 10.1016/j.powtec.2010.03.039 [5] 李建龙, 孙泽文, 杜雷恒, 等. 一种错端滤一体式复合滤筒除尘装置[P]. CN114432811A, 2022-05-06. [6] 林莉君, 陈海焱, 周喜, 等. 脉冲喷吹滤筒除尘器清灰性能的实验研究[J]. 暖通空调, 2009, 39(4): 148-151. doi: 10.3969/j.issn.1002-8501.2009.04.036 [7] LI J L, LI S H, ZHOU F B. Effect of cone installation in a pleated filter cartridge during pulse-jet cleaning[J]. Powder Technology, 2015, 284: 245-252. doi: 10.1016/j.powtec.2015.06.071 [8] 艾子昂, 吴泉泉, 孙燕, 等. 气流隔板改善滤筒脉喷清灰性能的数值模拟[J]. 南昌大学学报(工科版), 2021, 43(4): 384-391. doi: 10.13764/j.cnki.ncdg.2021.04.013 [9] 薛峰, 李朋, 黄琬岚, 等. 喷嘴型式对滤筒脉冲定阻清灰效果的影响[J]. 中国粉体技术, 2022, 28(5): 48-56. doi: 10.13732/j.issn.1008-5548.2022.05.007 [10] QIU J, WU D S, CHEN D R, et al. Reverse pulsed-flow cleaning of pleated filter cartridges having an inner pleated filter cone[J]. Process safety and Environmental Protection, 2021, 146: 481-489. doi: 10.1016/j.psep.2020.11.025 [11] CHEN S W, WANG Q, CHEN D R. Effect of pleat shape on reverse pulsed-jet cleaning of filter cartridges[J]. Powder Technology, 2017, 305: 1-11. doi: 10.1016/j.powtec.2016.09.013 [12] CHEN S W, CHEN D R. Numerical study of reverse multi-pulsing jet cleaning for pleated cartridge filters[J]. Aerosol and Air Quality Research, 2016, 16(8): 1991-2002. [13] 陈强, 林子捷, 李建龙, 等. 扩散喷嘴改善金锥滤筒脉喷清灰性能的数值模拟[J]. 环境工程学报, 2021, 15(5): 1634-1644. doi: 10.12030/j.cjee.202011010 [14] 李建龙, 王安琪, 范博, 等. 除尘器脉喷清灰影响阶段的粉尘分级排放特征[J]. 安全与环境学报, 2018, 18(1): 315-319. doi: 10.13637/j.issn.1009-6094.2018.01.059 [15] 袁彩云, 陈海焱, 李波. 脉冲喷吹滤筒除尘器喷吹清灰实验与数值模拟[J]. 暖通空调, 2012, 42(5): 104-107. doi: 10.3969/j.issn.1002-8501.2012.05.019 [16] HUMPHRIES W. , MADDEN J. Fabric filtration for coal-fired boilers: nature of fabric failures in pulse-jet filters[J]. Filtration & Separation, 1983, 20(1): 40-42. [17] SIEVERT J. , LOFFLER F. Dust cake release from non-woven fabrics[J]. Filtration & Separation, 1987,24(6): 424-427. [18] LU HSIN-CHUNG, TSAI CHUEN-JINN. A pilot-scale study of the design and operation parameters of a pulse-jet baghouse[J]. Aerosol Science and Technology, 1998, 29(6): 510-524. doi: 10.1080/02786829808965587 [19] LI J L, WANG P, WU D S, et al. Numerical study of opposing pulsed-jet cleaning for pleated filter cartridges[J]. Separation and Purification Technology, 2020, 234: 116086. doi: 10.1016/j.seppur.2019.116086 [20] 颜翠平, 张明星, 吕娟, 等. 脉冲喷吹大风量滤筒除尘器的清灰变化过程研究[J]. 环境工程学报, 2016, 10(2): 829-834. doi: 10.12030/j.cjee.20160250 [21] 李建龙, 陈源正, 林子捷, 等. 除尘滤筒脉喷清灰技术研究进展与展望[J]. 金属矿山, 2022, 557(11): 23-35. doi: 10.19614/j.cnki.jsks.202211003 [22] WU Q Q, LI J L, WU D S, et al. Effects of overall length and od on opposing pulse-jet cleaning for pleated filter cartridges[J]. Aerosol and Air Quality Research, 2020, 20: 432-443. [23] 李建龙, 赵艺, 孙泽文, 等. 环形缝隙喷嘴改进导流内锥式除尘滤筒脉冲喷吹性能的数值模拟[J]. 南昌大学学报(工科版), 2023, 45(1): 1-4. doi: 10.13764/j.cnki.ncdg.2023.01.001