-
高温袋式除尘器的金属滤袋由耐高温、耐腐蚀性的纤维通过梯度搭配制备而成,耐受温度可达600 ℃[1],能有效避免因高温引起的滤袋寿命缩短的问题,已在氧化铝焙烧、水泥制造、垃圾焚烧等行业中应用[2]。随除尘器工作时间的增加,滤料中的孔隙逐渐被颗粒阻塞,滤料的捕集效率降低,除尘器运行阻力增加[3],故需对滤袋进行清灰操作。同时,金属滤袋除尘器通常处理的是高温烟气,使用脉冲喷吹清灰时喷入冷的压缩空气,冷热交替若达到露点温度滤袋表面就会产生结露,黏附大量颗粒后发生糊袋现象。滤料纤维的结构、排布方式与粗细均会影响颗粒的穿透程度和捕集效率,从而影响滤料的残余阻力与滤袋清灰效果。彭涛[4]等对金属滤网进行颗粒反吹过程的微观数值模拟时,发现滤料纤维呈梯度排布,过滤时颗粒对滤料的穿透一般主要集中在初层纤维,近滤料表面颗粒清灰效果最明显,超过94%颗粒脱落,中后段清灰效果欠佳,仅脱落35%的残留颗粒。刘美玲等[5]对金属纤维滤料与传统有机纤维滤料进行性能检测,发现金属纤维滤料的残余阻力较传统有机纤维滤料偏高。
滤袋壁面峰值压力、压力上升速率和最大反向加速度等指标是评价有机纤维滤料清灰性能的重要指标。QIAN等[6]、LI等[7]在工业覆粉实验中发现有机纤维滤袋侧壁峰值压力越大,残余颗粒越少。党小庆等[8]、李珊红等[9]、吕娟等[10]、LUPION等[11]通过物理实验结合数值模拟,对比研究了不同喷吹参数设置对有机纤维滤袋清灰效果的影响,发现增加袋长,会使滤袋底部峰值压力逐渐降低,而增加喷吹压力可显著提高滤袋内外压差,且喷吹距离和喷吹时间存在最佳范围。金属滤料材质、密度与弹性模量等均区别于传统的纤维滤料,但应用过程中较多延续传统纤维滤袋清灰参数进行清灰[12]。秦文茜等[13]和李朋等[14]在对2 m与6 m长金属滤袋脉冲清灰物理模型实验中发现,侧壁压力峰值呈袋底>袋口>袋中。侯力强等[1]则发现沿着滤袋长度方向,金属滤袋的侧壁峰值压力峰值逐步减小,到达底部后再次增大。
以上研究仅针对不同喷吹参数下金属滤袋的压力变化趋势进行分析,未涉及金属滤袋与传统有机滤袋在不同清灰影响因素下物理模型和数值模拟实验的对比分析,以及工业窑炉烟气中脉冲喷吹压缩气流温度偏低对金属滤袋袋口区域的结露影响。以316L不锈钢金属纤维滤袋为研究对象,从微观角度模拟对比分析金属滤料与有机纤维滤料在过滤时颗粒对滤料的穿透程度;以壁面峰值压力、压力上升速率和最大反向加速度为参数,通过物理模型实验测试其沿滤袋长度方向上的变化规律,并在此基础上简化模型建立数值模拟实验;在验证其可靠性和准确性的前提下,设计正交实验对影响清灰性能的工艺参数进行系统优化,并与传统有机滤袋的研究结果进行对比;对滤袋高温状况下时脉冲清灰常温压缩空气对滤袋袋口区域结露的影响进行分析,以期为高温袋式除尘器金属滤袋的喷吹参数设置和结构优化,保证滤袋清灰效果、延长滤袋使用寿命和提高除尘器系统运行稳定性提供参考。
-
对316L不锈钢金属纤维和PPS普通针刺毡有机纤维滤料进行电镜扫描和纤维排布,建立二维模型,结果如图1所示。金属滤料透气度120 L·(min·dm−1) −1,厚度0.5 mm,迎尘面纤维2 μm,净气面纤维20 μm;有机纤维滤料透气度45 L·(min·dm−1) −1,厚度2 mm,迎尘面纤维1 μm,中层纤维10 μm净气面纤维20 μm [15]。图2为微观滤料模拟的几何模型图,纤维结构为随机排布,初层纤维孔隙率均为80%,计算区域0.2mm。流体从左侧流入计算域,从右侧流出。
利用Gambit软件建模及网格划分,使用Fluent软件对微观流场进行后处理。一般过滤速度为1 m·min−1,雷诺数小于2 000,为层流稳态流动。假定流体等温不可压缩,控制方程包括连续性方程、动量方程如式 (1)~(2) 。
式中:v为流体的速度,m·s−1;μ为流体的动力黏度,Pa·s;p为计算单元的压力,N。
采用二阶迎风格式SIMPLE算法对离散化动量方程进行压力速度耦合求解,各项收敛残差均设定在10−6。左侧入口边界条件设置为速度入口,右侧出口为压力出口。过滤风速为1m·min−1。纤维直径远大于空气分子的自由程,故纤维表面采用无滑移壁面条件。
在单相流数值模拟基础上,加入DPM模型。颗粒在拉格朗日坐标下的运动方程[16-17]如式 (3) 。
式中:u代表连续相的速度;up表示离散相的运动速度;ρ、ρp分别表示连续相和离散相的密度;FD (u−up) 代表颗粒单位质量的曳力;Fx表示其他相间单位质量作用力。
以温度为298.15 K,密度为1.225 kg·m−3、黏性系数为1.789 4×10−5 kg· (m·s) −1的空气作为连续相,以密度2 550 kg·m−3和质量浓度为100 mg·m−³的球形颗粒作为离散相,粒径取值0.1、1、2、5、10 μm。颗粒采用面注入的方式进入流场,假定颗粒初速度等于气相场流速。纤维表面离散模型边界条件为trap,颗粒在运动过程中撞到壁面即被捕集。
-
1 μm粒子对不同滤料的穿透程度如图3所示。颗粒对滤料的穿透主要集中在滤料初层纤维,有机纤维滤料的穿透距离小于金属纤维滤料。不同粒径颗粒穿透距离如图4所示,在颗粒粒径为1 μm时金属纤维滤料最远穿透距离约为0.13 mm,有机纤维滤料最远穿透距离约为0.11 mm。不同粒径颗粒对滤料的穿透量如图5所示,颗粒粒径≤2 μm时,两种滤料穿透量均接近100%。当颗粒粒径在5 μm以上时,穿透量明显减小,且金属滤料穿透量更大。随着颗粒直径的增大,金属纤维滤料与有机纤维滤料的穿透量均减小,捕集效率增加;有机纤维滤料穿透量减小程度明显高于金属纤维滤料。
综上所述,相比于有机纤维滤料,金属滤料存在颗粒易穿透,滤料残余阻力偏高的问题。在相同的纤维排布方式与孔隙率条件下,细纤维滤料过滤精度更高。提高过滤精度可降低金属滤料颗粒穿透,但金属纤维由于特殊的材质,减小纤维直径存在技术成本问题。因此,针对金属纤维滤料结构,通过物理模型与数值模拟实验对滤袋的清灰影响规律与影响程度进行分析,合理选择清灰参数,对降低滤料残余阻力、提高金属滤袋清灰有效性和延长滤袋使用寿命具有重要意义。
-
在1∶1物理模型实验台 (图6) 上进行金属滤袋壁面峰值压力测试,使用TP-5610DH型电荷放大器、QSY8135型压力传感器和TP1020型加速度传感器进行数据采集。基于316 L不锈钢材质的金属滤袋,分别选取距袋口0.3、0.5、1、2、3、4、5、5.9 m的测点,测量不同位置的壁面峰值压力与最大反向加速度。实验滤袋长度分别为5、6、6.5、7 m;脉冲喷吹压力0.1~0.4 MPa;脉冲喷吹距离150~300 mm;脉冲喷吹时间100 ms。
-
不同喷吹压力条件对滤袋清灰效果的影响如图7所示。随着喷吹压力的增加,进入到滤袋内的喷吹气量增加,滤袋壁面峰值压力等评价指标均有显著提高,且均在滤袋袋口0.5 m[18]处达到最大值。滤袋壁面峰值压力和压力上升速率整体呈现先上升后下降,并在袋底回升的规律,滤袋壁面峰值压力值为上部>底部>中部,最大反向加速度为上部>中部>底部。袋口的峰值压力较低的原因是袋口压缩空气没有充分膨胀,沿滤袋长度方向气流逐渐向外扩散,再加上气流运动时摩擦消耗能量,压力逐渐减小,抵达袋底时由于滤袋的反弹产生二次气流[19],导致壁面峰值压力回升。而加速度传感器与压力传感器不同,仅能传输一次气流的信号,故最大反向加速度在滤袋底部未回升。1.5 m处壁面峰值压力值小于2 m处,主要由于滤袋开孔位置靠近滤袋内部配套框架造成测试值偏小。滤袋清灰评价指标变化趋势与侯力强等[1]和郑晓盼等[20]的研究结果一致,金属滤袋中下位置属于清灰薄弱区。
不同喷吹距离对滤袋清灰效果的影响如图8所示。随着喷吹距离的增加,滤袋壁面峰值压力无明显变化。当喷吹距离过小时,喷吹气流不能充分扩散,诱导能力弱,进入袋内的总气流量减少,滤袋壁面不同位置的峰值压力偏低。但当喷吹距离大于最佳值时,部分喷吹气流会因为会扩散到袋口外侧而损失,进入袋内的总气流流量减少导致壁面峰值压力降低。压力上升速率峰值与最大反向加速度峰值在滤袋袋口处随着喷吹距离的减小而增大。这是由于喷吹距离减小喷吹气流到达滤袋的时间缩短。壁面峰值压力和压力上升速率为滤袋上部>底部>中部,最大反向加速度为上部>中部>底部。
不同喷吹孔径对滤袋清灰效果的影响如图9所示。在喷吹压力一定的情况下,直径小的喷嘴易造成喷吹气流受阻,降低其诱导二次气流的能力,使进入滤袋的混合气流量减少,进而使滤袋壁面峰值压力减小。当喷嘴直径增大时,使喷吹气流量增加,其诱导二次气流能力增强,使更多的气流进入袋内,造成壁面峰值压力增大。喷吹孔径对压力上升速率与最大反向加速度影响较小,滤袋壁面峰值压力值为上部>底部>中部,最大反向加速度为上部>中部>底部。
不同滤袋长度对滤袋清灰效果的影响如图10所示。不同长度的滤袋壁面峰值压力与压力上升速率均无较大变化。这是由于随滤袋长度的增加,并没有改变喷吹气流的气量,气流进入到滤袋各位置的气量并没有明显减少,故其对滤袋壁面峰值压力与压力上升速率的影响不大。滤袋壁面峰值压力值与压力上升速率值为上部>底部>中部。滤袋长度对最大反向加速度影响较为显著,且呈现先上升后下降的趋势,加速度数值呈现上部>中部>底部的趋势。
-
脉冲喷吹时气包中的压缩气体瞬间被释放,同时诱导周围空气进入滤袋形成清灰气流,完成清灰过程。喷吹气流沿滤袋长度方向的轴线是对称的,且金属滤袋为对称结构,可采用二维模型进行模拟,其中X为喷吹距离,L为滤袋长度,d为喷嘴直径,D为计算区域宽度。利用Gambit软件进行结构化网格划分,喷嘴出口区域进行了适当加密,具体设置如图11所示。脉冲喷吹是一个非稳态的过程,控制方程包括连续性方程、动量方程和能量方程,湍流方程采用标准k-ε双方程模型[9-10,17]。喷嘴采用速度进口边界条件,滤袋采用多孔跳跃边界条件,将喷吹管壁、花板、滤袋底部设为固体壁面,中箱体设为恒压边界条件。计算采用SIMPLE算法,求解步长为0.001 s。物理模型实验使用的是清洁滤袋,故数值模拟实验采用与物理模型实验相同的条件。滤袋渗透率a=9.52×10−12 m2,厚度为0.5 mm。
-
数值模拟实验参数设置与物理模型实验相同,喷吹压力P=0.3 MPa,喷吹距离X=200 mm,喷嘴直径d=16 mm,滤袋长度L=6 000 mm。结果如图12所示,随着喷吹时间的增加,喷吹气流由袋口传递至袋底,袋内部的静压逐渐达到最大值。数值模拟与物理实验结果对比如图13所示,除袋口0.3 m处与1.5 m处外,其他点模拟值与实验值均基本一致,且偏差均在10%以内;袋口0.3 m处的偏差可能由于滤袋袋口受振动影响较大;滤袋1.5 m处的偏差可能由于在物理模型实验时滤袋配套的框架会对测试结果有影响,滤袋框架的阻碍作用会加剧滤袋壁面峰值压力的减小。
-
为了明确喷吹压力、滤袋长度、喷吹距离、喷吹孔径和喷吹时间对金属滤袋清灰性能的影响程度,分别设定喷吹压力0.1~0.4 MPa,喷吹距离150~300 mm,喷吹孔径12~18 mm,滤袋长度5 000~7 000 mm,喷吹时间60~120 mm的条件,以壁面峰值压力、压力上升速率与最大反向加速度为评价指标,设计L16(45) 的正交实验进行模拟分析。
正交实验各评价指标变化曲线如图14所示。壁面峰值压力随各因素的变化为,随喷吹压力的增加呈直线上升趋势;随着滤袋长度的增加不断下降;随喷吹距离逐渐增加,壁面峰值压力总体呈增大趋势,但喷吹距离由200 mm增大到250 mm时,峰值压力的增加速率显著下降,脉冲喷吹过程中存在200 mm的最佳喷吹距离;喷吹时间对峰值压力的影响较小,在100 ms之前峰值压力随喷吹时间的增加而增大,到达100 ms后开始递减,100 ms为最佳喷吹时间。喷吹压力、喷吹距离和滤袋长度的压力上升速率变化趋势与壁面峰值压力变化相同,且随着喷吹时间的增加而减小。最大反向加速度变化趋势与壁面峰值压力相同,受喷吹压力、喷吹距离和滤袋长度的影响最为显著,而喷吹时间对其影响很小。
-
有机纤维滤袋在喷吹气流作用下会发生变形,滤料孔径增大,透气量增加[20]。数值模拟方法可假设滤袋不发生变形,简化分析对比金属滤袋和有机滤袋的清灰特性。将金属滤袋的实验测试值和数值模拟值与文献[21]报道的有机纤维滤袋的相应值进行对比,结果如图15所示。当喷吹压力P=0.2 MPa,喷吹距离X=200 mm,喷嘴直径d=16 mm,滤袋长度L=6 000 mm时,相同喷吹参数下有机纤维滤袋与金属滤袋壁面峰值压力变化趋势相同,均呈先升高后降低,在袋底略有回升的趋势,在距袋口0.5m处均达到最大值。然而,在相同喷吹参数下,金属滤袋物理测试和数值模拟实验的壁面峰值压力和最大反向加速度整体均低于传统有机纤维滤袋。由金属滤袋正交实验与报道的有机纤维滤袋的数据[18]对比可知,滤袋清灰显著影响因素均为喷吹压力和喷吹孔径,但由于2种滤袋材质规格不同,其最佳清灰参数也不同。
金属滤袋和有机纤维滤袋材质不同,密度不同,单位质量不同;同时,金属滤袋弹性系数 (约200 GPa) 远大于有机纤维滤袋 (约3 500 MPa[20]) 。因此,在受滤料与颗粒层的质量和滤料材质的弹性系数等根本因素的影响下,喷吹时2种滤袋表面所受分离力大小不同,表现出滤袋壁面峰值压力、峰压到达时间和滤料自由运动位移和最大反向加速度均不同。
-
脉冲喷吹清灰喷入冷的压缩空气,冷热交替若达到露点温度滤袋表面就会产生结露,黏附大量颗粒后发生糊袋现象。为探明压缩空气温度对滤袋袋口区域的结露影响,采用二维模型模拟防止工业窑炉烟气金属滤袋的高温状况下脉冲清灰常温压缩空气对滤袋袋口区域结露的影响规律。
-
滤袋尺寸为160 mm×6 000 mm,喷吹压力0.3 MPa,喷吹距离200 mm,喷吹孔径16 mm,喷吹时间100 ms,模型尺寸、网格划分、流体控制方程与数值模拟参数设置同2.1节,气体传热控制方程[22]见式 (4)~(7) 。
式中:ρv为气体密度,kg·m−3;vv为气体径向速度,m·s−1; wv为气体轴向速度,m·s−1;μ为气体动力粘度,Pa·s;Vv为气体速度矢量,m·s−1;kv为气体导热系数,W· (m·K) −1。
以已报道氧化铝焙烧行业为例,气流温度取0 ℃、25 ℃、50 ℃、75 ℃、100 ℃;喷吹压力0.3 MPa;喷吹距离200 mm;喷吹孔径16 mm;喷吹气流含水量为6%[23];烟气温度300 ℃[24];烟气含水量40%[25]时进行数值模拟实验。
-
滤袋脉冲喷吹不同时刻温度云图如图16 (a) 所示。由于滤袋处于300 ℃的烟气氛围中,当低温压缩空气喷吹至滤袋时,低温与高温气体会实现换热,导致滤袋附近气体温度急剧降低。此时,烟气中的水蒸汽会附着在温度相对较低的受热面上,结成水珠甚至积聚,与烟气中SO2等腐蚀性气体共同作用下会对滤袋造成腐蚀[26]。
使用0 ℃压缩空气进行喷吹时,滤袋温度变化如图16 (b) 所示。沿滤袋长度方向,滤袋壁面温度呈现先降低后升高的趋势。滤袋袋口0 m处由于距离喷口最近,温度最低;喷吹气流沿滤袋轴向行进,滤袋前段所受气流影响较大,降温较快,40 ms时滤袋壁面温度出现最低值;滤袋后半段温度无较大变化。
不同喷吹温度条件下滤袋温度云图与变化曲线如图17所示。在喷吹时,进入的压缩空气温度不同,滤袋整体温度变化趋势相同,均呈现先降低后升高的趋势;不同温度的压缩空气喷吹至高温滤袋时均会造成滤袋前段温度变化,喷吹气流温度越低,滤袋前段温度越低,降温区域逐渐增加的情况。烟气酸露点通常为80~100 ℃[27]。当压缩空气为0 ℃时,滤袋0.5~2 m处温度低于100 ℃,袋口处有结露风险;当压缩空气大于50 ℃时,滤袋0.5~2 m处温度增至120 ℃,大于烟气酸露点。因此,对压缩空气进行加热,将喷嘴出口处气流温度提高至50 ℃时,可以有效防止因压缩空气温度过低造成的滤袋袋口结露。
-
1) 在纤维排布方式与初层纤维孔隙率相同,且颗粒粒径为1 μm时,清洁的金属滤料纤维拦截效应低于有机纤维滤料,颗粒穿透量和穿透距离更大。当颗粒粒径≤2 μm时,两种滤料穿透量均接近100%;随着颗粒直径的增大,两种滤袋的穿透量均减小,且有机纤维滤料穿透量减小更显著。通过减小纤维直径可降低金属滤料颗粒穿透,达到与纤维直径相同的有机纤维滤料的过滤精度。2) 物理模型实验中,金属滤袋壁面峰值压力值与压力上升速率呈现上部>底部>中部的趋势;最大反向加速度呈现上部>中部>底部的趋势,均在滤袋袋口0.5 m处达到最大值。在相同喷吹参数下,金属滤袋与传统有机滤袋壁面峰值压力变化趋势相同,但壁面峰值压力和最大反向加速度整体低于传统有机滤袋;通过数值模拟正交实验得出喷吹压力和喷吹孔径均为影响金属滤袋与传统有机滤袋喷吹效果的显著影响因素;最佳喷吹距离为200 mm,最佳喷吹时间为100 ms。3) 当脉冲喷吹气流温度为0 ℃时,滤袋0.5~2 m处温度低于100 ℃,滤袋袋口处有结露风险;将脉冲喷嘴出口处空气温度提高至50 ℃可以有效防止工业窑炉烟气中滤袋袋口结露现象的产生。
高温袋式除尘器金属滤袋脉冲喷吹清灰性能分析
Performance analysis of high-temperature metal filter bag by pulse injection
-
摘要: 为解决高温袋式除尘器在应用中因压缩空气温度偏低导致金属滤袋糊袋,以及因清灰参数选取不当导致滤袋残余阻力上升和除尘器运行阻力升高的问题,使用滤料微观模型分析过滤状态下颗粒在清洁金属和有机纤维层的穿透过程;并结合物理模型与数值模拟正交实验研究不同因素对不锈钢金属滤袋脉冲喷吹清灰过程的影响;以传统有机滤袋做对照,通过数值模拟实验研究在高温状况下脉冲喷吹清灰气流对金属滤袋袋口区域结露的影响。结果表明,在相同的颗粒粒径条件下,清洁金属滤料纤维的颗粒穿透量和穿透距离更大,拦截效应低于有机纤维滤料。滤袋清灰效果整体呈现上部>底部>中部的趋势,且金属滤袋清灰评价指标测试值整体低于传统有机滤袋;显著影响滤袋清灰的因素均为喷吹压力和喷吹孔径,金属滤袋最佳喷吹距离为200 mm,喷吹时间为100 ms。当脉冲喷吹气流温度为0 ℃时,滤袋袋口0.5~2 m处有结露风险,升高至50 ℃可有效防止工业窑炉烟气滤袋袋口区域结露现象的产生。该研究结果可为高温袋式除尘器金属滤袋的喷吹参数设计和结构优化提供参考。Abstract: During the application of high-temperature bag filter, there may be bag sticking phenomenon of metal filter bag due to the low temperature of compressed air. In order to solve the problem of residual resistance of filter bag increasing and the operating resistance of bag filter rising due to the improper selection of cleaning parameters, the penetration process of particles in the clean metal and organic fiber layers under filtration status was analyzed through the micro-model of filter material. On this basis, 316L stainless steel metal filter bag was selected, and the impact law of different factors on the pulse jet cleaning process of filter bag was studied by orthogonal experiment combining physical model and numerical simulation. Compared with traditional organic filter bag, the influence of pulse jet cleaning airflow on bag mouth condensation of filter bag under high temperature was finally studied by numerical simulation test. Results showed that under the same particle size conditions, the intercepting effect of clean metal filter material fiber was lower than that of organic fiber filter material, the particle penetration amount and distance were larger. The overall trend of filter bag cleaning ability was upper > lower > middle, and the test value of metal filter bag cleaning evaluation index was lower than that of traditional organic filter bag. In the orthogonal experiment, the significant influencing factors on filter bag cleaning were blowing pressure and blowing orifice size, and the optimal blowing distance and blowing time of metal filter bag were 200 mm and 100ms, respectively. When the pulse jet cleaning airflow temperature was 0℃, there was condensation risk in the range of 0.5 m to 2 m of filter bag. Raising the temperature to 50℃ can effectively prevent the occurrence of bag mouth condensation in industrial kiln flue gas filter bag. This study can provide a reference for the optimization of injection parameters and structure of metal filter bags.
-
据《全国土壤污染状况调查公报》[1],我国土壤污染物总超标率为16.1%,其中,油类有机物是导致土壤污染的重要污染物之一。绝缘油是通过石油蒸馏、精炼得到的一种矿物油,广泛用在变压器、电容器等电力设备中[2-3]。矿物绝缘油主要由烷烃、环烷烃和芳香烃等化合物组成,具有良好的绝缘性、稳定性和冷却性,但难以在自然界中降解[4-5]。其中,绝缘油中含有的多环芳烃(PAHs)具有“三致”效应,可严重危害环境和人群健康[6-7]。当这些电力设备在检修或者发生故障时,通常会发生绝缘油泄露,因而可能会对周围的土壤、地下水等造成污染[8]。
污染土壤修复方法主要分为物理修复、化学修复和生物修复,其中,物理修复中热脱附技术是处理油类有机污染物有效的方式之一[9-12]。微波加热具有整体加热、升温速率快等优点,热脱附处理过程中采用微波辅助加热的方式能够使土壤中的污染物得以快速挥发、分解或固定,从而提高修复效率[13-16]。目前,国内外采用微波加热修复污染土壤的研究主要集中在污染土壤中挥发性和半挥发性有机物(如甲苯、PAHs、PCBs等)[17-19]、重金属[20-21]、有机氯农药类[22]等污染物的治理。ABRAMOVITCH等[23-24]将微波加热应用于PCBs污染土壤的修复,采用活性炭和铅笔芯作为微波吸收介质,在PCBs的初始质量分数为146 mg·kg−1的土壤中加入400 mg活性炭,微波功率750 W加热25 min后,PCBs的去除率达到87.8%;当土壤中加入长2.7 cm、直径2.0 mm的铅笔芯,微波功率1 000 W加热3 min后,PCBs的去除率达到100%。田勐等[25]采用微波修复六氯苯(HCB)污染土壤,以MnO2作为吸收介质,发现在微波功率750 W加热20 min,酸性条件下HCB的去除率可达到100%。孙磊等[26]对五氯酚污染土壤的热修复实验中发现,五氯酚的去除率随着含水率的增加先升高再降低。而另有研究表明,污染物的去除率随着含水率的增加先降低再趋于稳定[22]。可见,对于含水率的研究还存在分歧,因此,有待进一步研究含水率对污染物去除率的影响。周翠红等[27]采用微波热脱附技术对二甲苯污染土壤进行了工艺参数研究,研究结果表明,微波功率、含水率和辐射时间对二甲苯的去除率有显著影响。在石油烃污染土壤修复方面,LIU等[28]研究了微波修复油类污染土壤中PCBs的适用性,在添加微波吸收剂的情况下微波辐射10 min,PCBs的去除效果达到80%以上。PETARCA等[29]采用微波作为热源,考察了温度、含水率和处理时间对石油烃类污染土壤去除效果的影响,结果表明,高介电损耗因子的污染物更容易被去除,此外,土壤中水分的含量对污染物的去除起到关键作用。
绝缘油是石油烃类矿物油,是从石油中提炼出来的中性烃类分子的混合物,具有良好的化学稳定性,较难降解。实际绝缘油污染土壤中的成分复杂,微波修复绝缘油污染土壤修复的工艺参数和机理鲜有报道。本研究采用微波热脱附技术对绝缘油污染土壤进行修复,重点考察了温度、停留时间、含水率、初始浓度和微波功率5个因素对绝缘油去除效果的影响,并对土壤中绝缘油微波热脱附机理进行了分析,以期为微波热脱附技术应用于绝缘油污染土壤修复提供参考。
1. 实验部分
1.1 实验装置和方法
微波热脱附实验装置如图1所示,实验装置包括气体装置、热脱附系统和尾气处理系统组成。采用氮气作为吹扫气体。热脱附系统采用CY-TH1000C-S微波气氛热重炉,频率为2.45 GHz±25 MHz,功率0.2~1.40 kW连续可调,采用热电偶实时测定系统炉膛温度,控温精度±0.05。尾气处理系统包括冷凝管、收集瓶和洗气瓶,微波热脱附过程中产生的不凝气体通过装有乙醇水溶液的洗气瓶吸收,处理后的尾气排入近地面大气中。
实验仪器。SX2-10-12N箱式电阻炉;DHG-9145AD电热恒温鼓风干燥箱;ME203电子天平;JLBG-129U红外分光测油仪;JP-100S超声波清洗机;CY-TH1000C-S微波气氛热重炉;安捷伦7890B-5977B MSD气相色谱-质谱联用仪(GC-MS);QSC-12T氮吹仪。
实验材料。绝缘油取自变电站25号变压器油,密度883 kg·m−3,闪点158 ℃,初馏点>250 ℃。硅胶、氧化铝(Al2O3)、无水硫酸钠(Na2SO4)、四氯乙烯(C2Cl4)、正己烷(C6H14)、二氯甲烷(CH2Cl2)均为分析纯;正辛烷(C8H18,99.4%)、正葵烷(C10H22,99.8%)、正十二烷(C12H26,99.6%)、正十六烷(C16H34,99.5%)、正二十一烷(C21H44,99.6%)、正三十四烷(C34H70,99.4%)、甲苯(C7H8,99.9%)、1,2,3-三甲基苯(C9H12,93.3%)、萘(C10H8,99.6%)、苊(C12H10,99.9%)、芘(C16H10,98.9%)、苯并苝(C22H12,95.7%)。
1.2 实验方法
1)污染土壤制备。由于从污染场地取来的绝缘油污染土壤中绝缘油含量不均匀,不利于比较微波热脱附修复效果,因此,本研究采用自配绝缘油污染土壤。土壤采集自变电站周围棕壤,土壤的孔隙度48.64%、含水率11.53%、pH值5.7、有机质质量分数为9.72 mg·g−1。为了实验样品的均一性,对土壤样品进行了预处理。在实验室将植物根茎、砂石等杂物去除,在通风橱中自然风干过28目筛搅拌均匀,将风干过28目筛的采集土壤在850 ℃下充分预处理6 h,以去除土壤中的有机污染物,待土壤冷却后放入棕色瓶中保存。
准确称取100 g经过预处理的土壤,并加入50 mL绝缘油四氯乙烯(10 g·L−1)溶液在恒温摇床振荡24 h,转速设置为150 r·min−1。在旋转蒸发器中蒸干溶液,放置在通风橱中风干12 h,陈化7 d,即可制得绝缘油质量分数约为5 000 mg·kg−1的土壤样品。通过改变绝缘油加入量制得其他质量分数的土壤样品。
2)实验方法。将绝缘油污染土壤放入微波热脱附反应系统中,以氮气为载气,设置不同微波条件进行实验;处理之后,继续用氮气氛围保护炉膛内温度冷却至室温,将处理后的土壤进行分析。
温度和停留时间:取含油率和含水率均为5%的土壤30 g,在功率1 000 W下,升温速率为30 ℃·min−1,进行微波加热,分别考察300、350、400、450 ℃和不同微波辐照停留时间对土壤中绝缘油去除率的影响。
含水率:取含油率5%,含水率分别为0、5%、10%和15%的土壤30 g,在微波功率1 000 W下进行加热,考察土壤含水率对土壤中绝缘油去除率的影响。
初始浓度:取含油率分别为0.5%、1.5%、3%和5%,含水率为5%的土壤30 g,在1 000 W功率下进行加热,考察绝缘油初始浓度对土壤中绝缘油去除率的影响。
微波功率:取含油率和含水率均为5%的土壤30 g,分别在400、600、800、1 000和1 200 W功率下进行加热,考察微波功率对绝缘油去除率和能耗的影响。
土壤中绝缘油微波热脱附机理:取含油率和含水率均为5%的土壤30 g,在微波功率1 000 W下,分别加热到300、350、400和450 ℃,保持恒温5 min,采用GC-MS对处理前后土壤中绝缘油进行分析。
1.3 分析方法
1)土壤中绝缘油浓度分析。实验前后土壤样品中绝缘油浓度的测定参考《土壤石油类的测定 红外分光光度法》(HJ 1051-2019)[30]分析方法。实验土壤中绝缘油的去除率计算参考式(1)。
ER=M−mM×100% (1) 式中:ER为土壤中绝缘油去除率;
为土壤中初始绝缘油质量分数,mg·kg−1;M 为土壤中残留绝缘油质量分数,mg·kg−1。m 2)土壤中绝缘油成分分析。实验中采用气相色谱-质谱联用(GC-MS)方法对微波处理前后土壤中绝缘油进行分析检测,具体参考《土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法》(HJ 1021-2019)[31]。
2. 结果与讨论
2.1 温度和停留时间对热脱附效果的影响
取含水率和含油率均为5%的土壤30 g,在功率1 000 W下,升温速率为30 ℃·min−1,进行微波加热,分别加热到300、350、400、450 ℃保持恒温,温度的波动范围为±10 ℃,考察温度和不同微波辐照停留时间对土壤中绝缘油去除率的影响,结果如图2所示。在同一热脱附温度下,随着停留时间的增加,土壤中绝缘油的去除率呈现先快速升高后趋于稳定的趋势。此结果表明,土壤中绝缘油的去除率基本在5 min时趋于平衡。当微波处理温度为300、350、400和450 ℃,停留时间5 min时,土壤中绝缘油的去除率分别为37.5%、68.5%、98.6%和99.9%;当停留时间达8 min时,土壤中绝缘油的去除率分别为38.3%、71.8%、99.6%和99.9%。由此可见,停留时间0~5 min是绝缘油的快速脱附阶段,在同一温度下,当微波热脱附平衡后,延长停留时间对土壤中绝缘油的去除影响较小。FALCIGLIA等[32]研究了在280 ℃下停留时间对土壤中柴油去除率的影响,结果与本实验相似。
2.2 土壤含水率对热脱附效果的影响
取含油率5%,含水率分别为0、5%、10%和15%的土壤30 g,在1 000 W功率下进行加热,考察土壤含水率对土壤中绝缘油去除率的影响,结果如图3所示。在微波处理时间0~15 min,含水率从0增加到5%,土壤中绝缘油的去除率逐渐升高。当含水率为5%,微波处理20 min,绝缘油去除率达到99.9%。当含水率从5%增加到15%,微波处理0~15 min,土壤中绝缘油去除率则逐渐降低。当微波处理足够长时间,绝缘油去除效果基本一致。由此可知,含水率过多或过少都不利于土壤中绝缘油的去除。土壤含水率从0到5%时绝缘油去除率升高,这可能是因为:在含水率较低的情况下,含水率增加使强极性水分子占据了更多的土壤吸附位点[33],使得较多的绝缘油可以从土壤中被去除。土壤含水率从5%到15%时绝缘油的去除率反而降低,这可能是因为:在微波热脱附过程中,过多的水分会导致微波加热挥发水分消耗较多能量[34],使得土壤中绝缘油被脱附出来后得到的能量降低,造成绝缘油去除率降低。
2.3 绝缘油初始浓度对热脱附效果的影响
取含油率分别为0.5%、1.5%、3%和5%,含水率为5%的土壤30 g,在1 000 W功率下进行加热,考察绝缘油初始浓度对土壤中绝缘油去除率的影响,结果见图4。在处理15 min内,绝缘油初始浓度越低,去除效率越好。在微波处理5 min时,含油率为0.5%的污染土壤绝缘油去除率为83.4%,而含油率为1.5%、3%和5%的污染土壤绝缘油去除率分别为42.5%、38.1%和33.9%。在同一绝缘油浓度下,绝缘油去除效果随着处理时间的延长而增加,如从微波处理时间5 min增加到15 min,含油率为5%的土壤中绝缘油去除率从33.9%提高到99.8%。微波处理时间大于15 min后,不同绝缘油初始浓度下,土壤中绝缘油的去除率基本保持一致,且均大于99.5%。这可能是因为,当加热到5 min时,反应系统炉膛中的温度在200 ℃左右,从0~5 min这一加热阶段土壤中的水分大量蒸发,并会携带走绝缘油中易挥发的轻质油组分,该阶段绝缘油主要是通过挥发方式进行脱除。随着微波继续加热,系统温度不断升高,当温度达到绝缘油中各组分的沸点时,吸附于土壤颗粒表面和孔隙中的绝缘油,通过挥发和热解将土壤和绝缘油进行分离。对于污染土壤含水率相同但初始含油率不同的情形,在微波处理0~5 min阶段,通过挥发方式蒸发出去的挥发性物质相同,所以,绝缘油初始浓度高的土壤绝缘油去除效果较差[35]。在微波功率1 000 W条件下,微波辅助加热处理15 min后,土壤中绝缘油的含量远低于《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)[36]中第一类用地的石油烃类筛选值(826 mg·kg−1)。
2.4 微波功率和能耗
取含油率和含水率均为5%的土壤30 g,在分别为400、600、800、1 000和1 200 W功率下进行加热,考察微波功率对绝缘油去除率和能耗的影响,结果见图5和表1。从图5可看出,在微波功率低于800 W时,绝缘油去除率较低。当微波功率增加到800 W以上,去除率显著提高。在同一功率下,土壤中绝缘油去除效果随着微波处理时间的延长而增加,达到平衡后,去除率趋于稳定。在1 000和1 200 W功率下,处理15 min,绝缘油去除率分别为99.8%和99.9%,效果相当。在800 W功率下,处理20 min,绝缘油去除率为91.8%。由表1可看出,微波功率1 000 W处理15 min时的能耗为0.250 kJ;微波功率1 200 W处理15 min时的能耗为0.300 kJ;微波功率800 W处理20 min时的能耗为0.267 kJ。由此可知,功率越小,提高绝缘油去除率需要延长加热时间,同样能耗也越高。因此,当功率为1 000 W时,去除效果高且能耗最小。
表 1 不同功率和微波时间下的能耗Table 1. Energy consumption under different power and time微波时间/min 能耗/kJ 400 W 600 W 800 W 1 000 W 1 200 W 5 0.033 0.050 0.067 0.083 0.100 10 0.067 0.100 0.133 0.167 0.200 15 0.100 0.150 0.200 0.250 0.300 20 0.133 0.200 0.267 0.333 0.400 2.5 土壤中绝缘油微波热脱附机理分析
本实验对微波加热到不同温度处理前后的土壤中绝缘油进行了分析。通过与绝缘油原料GC-MS分析对比,其结果与绝缘油原成分基本相同。数次测试结果表明,回收率在85%~103%。微波处理前后土壤中绝缘油质量分数如表2和表3所示。由表2可看出,土壤中绝缘油脂肪烃的组分主要是C12~C34饱和烃类化合物,C12以下的低分子脂肪烃质量分数仅有5.7 mg·kg−1,在绝缘油中含量很少。由表3可看出,土壤中芳香烃组分主要以C15.5~C34.01为主,C11.7~C15.5质量分数仅有1.2 mg·kg−1。非烃类有机物在检测过程中未检出,因此认定其质量分数为0。由土壤中绝缘油成分分析可知,对于绝缘油污染土壤中脂肪烃组分,当微波加热到300 ℃恒温并停留5 min,处理后土壤中脂肪烃C10~C12组分去除率为100%。C10~C12组分沸点较低易挥发,这部分可以认为是通过蒸汽蒸馏去除。当微波加热到350 ℃后,土壤中C12~C16的去除率从72.2%升高到95.1%。350 ℃接近该组分沸点,因此,C12~C16组分可以认为是通过蒸汽蒸馏和蒸发方式脱除。对于脂肪烃C16~C21和C21~C34组分,300 ℃处理后其去除率在50%左右。经过400 ℃处理后,土壤中绝缘油脂肪烃各组分去除率均达到94%以上。这是因为,绝缘油各组分的沸点在260~380 ℃,这一部分可能是通过蒸发方式去除。对于C21~C34组分,在400 ℃处理后去除率为94.8%,450 ℃处理后去除率达到99.7%,约5%可能是通过热解方式脱除。对于高浓度绝缘油污染土壤,绝缘油各组分除了吸附在土壤颗粒表面外,还有一部分存在于土壤孔隙中,这部分污染物需要加热温度达到沸点后通过气化脱离土壤[37]。回收冷凝油通过GC-MS分析,脂肪烃组分的成分主要是C12~C34,没有发现较短碳链的脂肪烃。这表明,土壤中脂肪烃可能是通过热解吸方式脱除。由此可知,土壤中绝缘油脂肪烃中易挥发组分通过蒸汽蒸馏方式脱除,较难挥发的组分主要是通过蒸汽蒸馏和热解吸两种方式脱除。这一实验现象与李大伟[38]对于石油烃微波修复去除机制相似。
表 2 微波处理前后土壤中脂肪烃质量分数Table 2. Aliphatic content in soil before and after microwave treatmentmg·kg−1 脂肪烃类别 含油率 5% 土样 300 ℃ 处理后土样 350 ℃ 处理后土样 400 ℃ 处理后土样 450 ℃ 处理后土样 C8~C10 − − − − − C10~C12 5.7 − − − − C12~C16 5 823.3 1 620.9 284.9 1.1 0.9 C16~C21 41 596.9 20 882.8 9 187.2 251.1 96.8 C21~C34 6 075.1 2 984.9 1 641.6 317.9 18.3 注:−表示未检测出。 表 3 微波处理前后土壤中芳香烃质量分数Table 3. Arene content in soil before and after microwave treatmentmg·kg−1 芳香烃类别 含油率 5% 土样 300 ℃ 处理后土样 350 ℃ 处理后土样 400 ℃ 处理后土样 450 ℃ 处理后土样 C7.6~C10.1 − − − − − C10.1~C11.7 − − − − − C11.7~C15.5 1.2 − − − − C15.5~C20.8 108.2 117.9 133.7 34.4 − C20.8~C34.01 32.9 61.8 68.3 22.3 − 注:−表示未检测出。 3. 结论
1)温度和停留时间显著影响土壤中绝缘油的去除率。随着温度及停留时间的增加,绝缘油去除率逐渐升高;当热脱附达到平衡后,绝缘油去除率趋于稳定。在400 ℃下停留5 min,绝缘油去除率高达98.6%。
2)在本实验条件下,随着土壤含水率的增加,土壤中绝缘油的去除率先增加再降低;土壤含水率为5%时,土壤中绝缘油去除率最佳。在微波处理15 min内,土壤中绝缘油去除率随着绝缘油初始浓度的升高逐渐降低。
3)微波功率为1 000和1 200 W,处理15 min时,绝缘油去除率分别为99.8%和99.9%,去除效果相当,此时能耗分别为0.250和0.300 kJ。微波功率为1 000 W时较佳。
4)土壤中绝缘油微波热脱附的机理为,脂肪烃易挥发组分通过蒸汽蒸馏方式得到去除,较难挥发组分主要通过蒸汽蒸馏和热解吸两种方式从土壤中脱除。
-
-
[1] 侯力强, 张小庆, 康彦, 等. 金属滤袋与PPS针刺滤袋性能及运行效益比较[J]. 上海纺织科技, 2020, 48(11): 60-64. [2] 王磊, 彭海军, 孙鹏, 等. 金属纤维长滤袋清灰性能及清灰机理实验探究[J]. 能源与环境, 2022(3): 76-79. doi: 10.3969/j.issn.1672-9064.2022.03.026 [3] 于先坤, 钱付平, 鲁进利. 微细颗粒在过滤介质中过滤特性的CFD-DEM模拟[J]. 土木建筑与环境工程, 2012, 34(S2): 145-149. [4] 彭涛, 丁昕越, 刘雪东, 等. 基于CFD-DEM的金属滤网反吹过滤特性研究[J]. 中国粉体技术, 2021, 27(4): 84-92. [5] 刘美玲, 沈敏超, 刘含笑, 陈招妹. 高温除尘用金属纤维滤料的性能研究[J]. 发电技术, 2022, 43(2): 362-366. doi: 10.12096/j.2096-4528.pgt.19181 [6] QIAN Y, BI Y, ZHANG M, et al. Effect of filtration operation and surface treatment on pulse-jet cleaning performance of filter bags[J]. Powder Technology, 2015, 277: 82-88. doi: 10.1016/j.powtec.2015.02.036 [7] LI Q Q, ZHANG M X, QIAN Y L, et al. The relationship between peak pressure and residual dust of a pulse-jet cartridge filter[J]. Powder Technology, 2015, 283: 302-307. doi: 10.1016/j.powtec.2015.05.038 [8] 党小庆, 刘美玲, 马广大, 等. 脉冲袋式除尘器喷吹气流的数值模拟[J]. 西安建筑科技大学学报(自然科学版), 2008, 40(3): 403-406. doi: 10.15986/j.1006-7930.2008.03.005 [9] 吕娟, 颜翠平, 袁彩云, 等. 喷吹压力与喷吹距离对长滤袋清灰效果的研究[J]. 安全与环境学报, 2016, 16(3): 285-288. doi: 10.13637/j.issn.1009-6094.2016.03.056 [10] 李珊红, 丁倩倩, 李彩亭. 低压脉冲长袋袋式除尘器清灰模拟[J]. 环境工程, 2018, 36(8): 79-82. doi: 10.13205/j.hjgc.201808016 [11] LUPION M, ALONSO-FARINAS B, RODRIGUEZ-GALAN M. Modelling pressure drop evolution on high temperature filters[J]. Chemical Engineering and Processing, 2013, 66:12-19. [12] 刘彬. 我国袋式除尘技术研究及应用现状[J]. 安全与环境工程, 2011, 18(6): 53-55. doi: 10.3969/j.issn.1671-1556.2011.06.013 [13] 秦文茜, 张明星, 康彦, 等. 脉冲喷吹金属滤袋的压力分布影响因素分析[J]. 环境工程学报, 2020, 14(2): 465-472. doi: 10.12030/j.cjee.201904153 [14] 李朋, 薛峰, 康彦, 等. 脉冲喷吹金属长滤袋的清灰性能[J]. 中国粉体技术, 2021, 27(6): 121-126. doi: 10.13732/j.issn.1008-5548.2021.06.015 [15] 柳静献, 毛宁, 孙熙, 王金波, 常德强, 林秀丽. 我国袋式除尘技术历史、现状与发展趋势综述[J]. 中国环保产业, 2022(1): 47-58. doi: 10.3969/j.issn.1006-5377.2022.01.013 [16] 王勇强, 周月桂. 金属化合物柔性膜高温除尘器数值模拟及性能优化[J]. 锅炉技术, 2020, 51(3): 1-7. doi: 10.3969/j.issn.1672-4763.2020.03.001 [17] 温正, 良臣, 毅如. FLUENT流体计算应用教程[M]. 北京: 清华大学出版社, 2009. [18] 郭星, 党小庆, 劳以诺, 等. 回转定位脉冲喷吹袋式除尘器滤袋长度可延长性分析[J]. 环境工程学报, 2017, 11(3): 1766-1770. doi: 10.12030/j.cjee.201511165 [19] 王赫, 党小庆, 曹利, 等. 基于CFD的滤袋内侧磨损失效过程分析[J]. 环境工程学报, 2022, 16(2): 535-545. doi: 10.12030/j.cjee.202103197 [20] 郑晓盼. 合金滤料与化纤滤料清灰性能对比实验研究[J]. 环境工程, 2018, 36(1): 92-96. doi: 10.13205/j.hjgc.201801019 [21] 钟丽萍. 脉冲袋式除尘器喷吹清灰性能工艺参数优化实验研究[D]. 西安: 西安建筑科技大学, 2015. [22] 毛赏, 周涛, 刘文斌, 等. 高温锂热管三相耦合数值模拟[J]. 核动力工程, 2022, 43(6): 37-42. doi: 10.13832/j.jnpe.2022.06.0037 [23] 环境保护部. 袋式除尘工程通用技术规范: HJ 2020-2012[S]. 北京: 中国环境科学出版社, 2012. [24] 罗存存. 一种新型氧化铝高温煅烧烟气净化工艺流程及工程应用[J]. 世界有色金属, 2019(4): 13-15. doi: 10.3969/j.issn.1002-5065.2019.04.006 [25] 刘瑛瑛, 李来时, 吴玉胜, 等. 氧化铝焙烧炉烟气低温催化脱硝研究[J]. 轻金属, 2022(3): 59-62. doi: 10.13662/j.cnki.qjs.2022.03.012 [26] 吴洪清, 顾志龙. 烟气低温结露在锅炉节能中的研究与应用[J]. 中国特种设备安全, 2009, 25(12): 53-57. [27] 张玉杰. 烟气露点与露点腐蚀防护[J]. 硫酸工业, 2020(10): 7-12. doi: 10.3969/j.issn.1002-1507.2020.10.002 -