-
自然界中的铬主要以Cr(III)和Cr(VI)的形式存在[1-2],Cr(VI)化合物不能自然降解,其毒性是Cr(III)的100多倍[3]。水体中的Cr(VI)会导致水生生物死亡,有较高的致癌性和致畸性[4]。铬被广泛用于多种行业中,包括电镀、制革、金属加工、冶金、玻璃制造、木材防腐剂和陶瓷等,在生产过程都会产生大量含铬废水。我国《污水综合排放标准》(GB/T 8979-1996)中将Cr(VI)列为第一类污染物,其最高允许排放质量浓度为0.5 mg·L−1[5]。
目前,针对废水中Cr(VI)常见处理方法有化学沉淀法、离子交换法、生物法和吸附法等[6-7]。与其他几种处理方法相比,吸附法设备简单、方便操作、环境友好,成本较低[8]。对于吸附法来说,吸附剂的选择尤为重要。常用Cr(VI)的吸附剂主要有活性炭、分子筛、生物炭和粉煤灰等[9]。在这些吸附剂中,生物炭是一种高度芳香化难降解的固态物质,其表面含有羧基、酚羟基、羰基等官能团,具有较大的比表面积和孔隙度,且其种类丰富,成本低廉,还可以实现固体废物再利用,因此近年来被广泛应用。一般来说,生物炭吸附Cr(VI)的机理主要包括物理吸附、静电作用、离子交换作用以及与生物炭上的矿物质或官能团(羧基、羟基、酚醇等)作用生成沉淀或络合物等[10]。然而,天然生物质材料碳化后对Cr(VI)的吸附能力较差,为了提高其应用价值及适用范围,需对生物炭进行改性。常见的改性方法包括热解前原料改性,热解后生物炭成品改性;从改性原理可分为化学改性和物理改性等[11]。
化学改性是一种有效调控生物炭理化性质的方法,可以通过活化剂刻蚀炭颗粒的内部结构,发生一系列的交联缩聚反应形成丰富的孔结构,是提高生物炭性能的有效途径。常用的活化剂有氯化锌、磷酸和氢氧化钾等[12]。其中,磷酸是三元中强酸,具有脱水和氧化性,进入原料内部后可以与原料中的无机物生成磷酸盐,经酸洗后能够去除磷酸盐从而达到扩孔的目的,从而增加材料的孔结构和比表面积。此外,磷酸活化温度一般在550 ℃以下,能耗低,实验操作危险性较KOH更低。
慈竹在我国西南地区广泛生长,生长速度快,产量大。选择干枯衰老的慈竹作为生物质原料可以充分实现废弃物的再利用。磷酸活化法与其他的材料改性方法相比,过程简单,成本低,且不会引入有毒有害元素,在提高除铬能力的同时,也保证了水环境安全,可以避免对水体造成二次污染。因此,本研究选用慈竹作为生物质原料,经磷酸活化后热解得到生物炭,考察了其对废水中的Cr(VI)的吸附性能及吸附机理。与已经被报道的铬吸附剂相比,本研究制备的吸附剂无论从去除效果、经济成本、安全性、稳定性还是再生性等方面考虑,均具有较强的竞争力和较好的应用前景。
慈竹生物炭对水溶液中Cr(VI)的吸附性能
Adsorption performance of sinocalamus affinis biochar towards Cr(VI) in aqueous solution
-
摘要: 以慈竹(sinocalamus affinis, SA)为原料,用磷酸对其进行活化,后经热解得到活化生物炭(activated sinocalamus affinis biochar, ASAB),用来吸附水溶液中的Cr(VI)。当溶液的初始pH为3时,Cr(VI)的初始质量浓度为20 mg·L−1,吸附剂投加量为1g·L−1时,Cr(VI)去除率高达99.8%,剩余溶液中Cr(VI)的质量浓度低于废水排放标准(0.5 mg·L−1)。保持其他条件不变,改变Cr(VI)初始浓度,吸附剂的最大吸附容量可达236.2 mg·g−1。以上结果均说明ASAB对废水中的Cr(VI)具有良好的吸附效果。采用SEM、BET、FTIR、XPS等表征方法对活化前、后的慈竹生物炭的化学结构和物理组成进行了表征。ASAB的比表面积是844.45 m2·g−1,约为SAB(sinocalamus affinis biochar)的2.6倍,较高的比表面积可以提供更多的活性位点。本研究中,ASAB的除铬的机制包括静电作用和氧化还原作用。经过5个吸附-脱附循环后,ASAB对Cr(VI)的吸附效率依然可以达到80.9%。以上结果表明,作为1种高效的Cr(VI)吸附剂,ASAB可以用于处理废水中的Cr(VI)。Abstract: In this study, sinocalamus affinis (SA) was used as raw material to prepare biochar (ASAB) through activation with phosphoric acid and pyrolysis. The ASAB was used to adsorb Cr(VI) from aqueous solution. At the initial solution pH of 3, the initial Cr(VI) mass concentration of 20 mg·L−1 and the adsorbent dosage of 1 g·L−1, the removal rate of Cr(VI) was as high as 99.8%, and the remaining mass concentration of Cr(VI) in the solution was lower than the wastewater discharge standard (0.5 mg·L−1). When only the initial concentration of Cr(VI) changed and other conditions maintained stable, the maximum adsorption capacity of the ASAB could reach 236.2 mg·g−1. All of these results indicated that the ASAB had a good adsorption effect of Cr(VI) in wastewater. The chemical structure and physical composition of the adsorbent were characterized by SEM, BET, FTIR, and XPS. The specific surface area of the ASAB was 844.45 m2·g−1, which was about 1.6 times higher than that of the SAB(sinocalamus affinis biochar), and the higher specific surface area could provide more active sites. The mechanism of chromium removal by the ASAB included electrostatic and redox actions. After five adsorption-desorption cycles, the adsorption efficiency of the ASAB towards Cr(VI) could still maintain 80.9%. In conclusion, the ASAB is an efficient adsorbent and can be used to treat Cr(VI) in wastewater.
-
Key words:
- sinocalamus affinis biochar /
- Cr(VI) /
- adsorption performance /
- adsorption mechanism /
- kinetic study
-
表 1 SAB和ASAB的孔结构参数
Table 1. Pore structure parameters of SAB and ASAB
吸附剂 全孔面积/(m2·g−1) 微孔面积/(m2·g−1) 介孔面积/(m2·g−1) 孔容/(cm3·g−1) 孔径/nm SAB 330.43 263.38 67.05 0.03 2.89 ASAB 844.45 116.22 728.23 1.68 10.36 表 2 Langmuir和Freundlich模型参数
Table 2. Langmuir and Freundlich model parameters
温度
/ ℃实际吸附量
/(mg·g−1)Langmuir模型 Freundlich模型 KL/(L·mg−1) 理论吸附量
/(mg·g−1)R2 KF
/(mg(1-n)·Ln·g−1)n R2 15 205.5 0.054 236.4 0.996 13.9 1.564 0.838 25 224.7 0.061 250.0 0.991 26.1 2.221 0.865 35 228.8 0.078 246.3 0.999 49.9 3.257 0.776 表 3 准一级和准二级动力学模型参数
Table 3. Pseudo first and pseudo second order kinetic model parameters
温度
/ ℃实际吸附量
/(mg·g−1)Langmuir模型 Freundlich模型 KL/(L·mg−1) 理论吸附量
/(mg·g−1)R2 KF
/(mg(1-n)·Ln·g−1)n R2 15 205.5 0.054 236.4 0.996 13.9 1.564 0.838 25 224.7 0.061 250.0 0.991 26.1 2.221 0.865 35 228.8 0.078 246.3 0.999 49.9 3.257 0.776 -
[1] 翟付杰, 张超, 宋刚福, 等. 木棉生物炭对水体中Cr(Ⅵ)的吸附特性和机制研究[J]. 环境科学学报, 2021, 41(5): 1891-1900. [2] 狄军贞, 杨瑞琪, 董艳荣, 等. 改性褐煤对酸性矿山废水中Cr(Ⅵ)的吸附性能研究[J]. 工业水处理, 2022, 42(5): 103-109. [3] NIU J R, JIA X X, ZHAO Y Q, el al. Adsorbing low concentrations of Cr(VI) onto CeO2, @ ZSM-5 and the study of adsorption kinetics, isotherms and thermodynamics[J]. Water Science & Technology, 2018, 77(9): 2327-2340. [4] 袁孝康, 周江敏, 陶月良, 等. 蒙脱石/氧化石墨烯对Cr(Ⅵ)的吸附[J]. 水处理技术, 2022, 48(2): 108-128. [5] JIA X X, ZHANG Y Q, HE Z, et al. Mesopore-rich badam-shell biochar for efficient adsorption of Cr(VI) from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105634. doi: 10.1016/j.jece.2021.105634 [6] LIANG S, SHI S Q, ZHANG H H, et al. One-pot solvothermal synthesis of magnetic biochar from waste biomass: Formation mechanism and efficient adsorption of Cr(VI) in an aqueous solution[J]. Science of the Total Environment, 2019, 695: 133886. doi: 10.1016/j.scitotenv.2019.133886 [7] JIA K, JI Y, HE X H, et al. One-step fabrication of dual functional Tb3+ coordinated polymeric micro/nano-structures for Cr(VI) adsorption and detection[J]. Journal of Hazardous Materials, 2022, 423: 127166. doi: 10.1016/j.jhazmat.2021.127166 [8] 史航, 李兵, 郭建忠. 功能化枝状复合吸附材料的制备及吸附Cr(Ⅵ)的性能[J]. 浙江农林大学学报, 2022, 39(2): 396-404. [9] 张航, 马蓉, 弓亮, 等. 硅藻基Cr(Ⅵ)表面离子印迹吸附材料的制备及其对Cr(Ⅵ)的吸附性能[J]. 材料导报, 2022, 36(8): 1-6. [10] 陈燕勤, 王雪莉, 宋世方. 核桃壳生物炭对水体中Cr(Ⅵ)的吸附性能研究[J]. 新疆农业大学学报. 2022, 45(4): 317-322. [11] 徐冰冰, 江琳琳, 张建华, 等. 改性夏威夷壳炭对废水中Cr(Ⅵ)的吸附行为研究[J]. 金属矿山, 2021(9): 192-198. [12] 崔艳红, 孙鹏, 汪颖军, 等. 乙醇辅助氨基改性NCR-MCM-48分子筛的制备及其对Cr(Ⅵ)的吸附性能[J]. 硅酸盐通报, 2021, 40(6): 2118-2128. doi: 10.16552/j.cnki.issn1001-1625.20210513.002 [13] ZHAO N, ZHAO C F, LV Y Z, et al. Adsorption and coadsorption mechanisms of Cr(VI) and organic contaminants on H3PO4 treated biochar[J]. Chemosphere, 2017, 186: 422-429. doi: 10.1016/j.chemosphere.2017.08.016 [14] DING P J, NIU J R, CHANG F Q, et al. NiCo2O4 hollow microsphere–mediated ultrafast peroxymonosulfate activation for dye degradation[J]. Chinese Chemical Letters, 2021, 32: 2495-2498. doi: 10.1016/j.cclet.2020.12.063 [15] MIAO S Y, GUO J R, DENG Z M, et al. Adsorption and reduction of Cr(VI) in water by iron-based metal-organic frameworks (Fe-MOFs) composite electrospun nanofibrous membranes[J]. Journal of Cleaner Production, 2022, 370: 133566. doi: 10.1016/j.jclepro.2022.133566 [16] LI Y L, CHEN X, LIU L, et al. Characteristics and adsorption of Cr(VI) of biochar pyrolyzed from landfill leachate sludge[J]. Journal of Analytical and Applied Pyrolysis, 2022, 162: 105449. doi: 10.1016/j.jaap.2022.105449 [17] XU H J, LIU Y X, LIANG H X, et al. Adsorption of Cr(VI) from aqueous solutions using novel activated carbon spheres derived from glucose and sodium dodecylbenzene sulfonate[J]. Science of the Total Environment, 2020, 759(67): 143457. [18] ZENG H Y, ZENG H H, ZHANG H, et al. Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar[J]. Journal of Cleaner Production, 2020, 286: 124964. [19] BAUTISTA-TOLEDO M I, RIVERA-UTRILLA J, R OCAMPO-PEREZ, et al. Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste[J]. Carbon, 2014, 73: 338-350. doi: 10.1016/j.carbon.2014.02.073 [20] LIU N, ZHANG Y T, XU C, et al. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: A spectroscopic study[J]. Journal of Hazardous Materials, 2019, 384: 121371. [21] JIANG B, GONG Y F, GAO J N, et al. The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: State-of-the-art and perspectives[J]. Journal of Hazardous Materials, 2019, 365: 205-226. doi: 10.1016/j.jhazmat.2018.10.070