-
磷(P)是所有动植物生长过程中必需的营养元素,在自然界中主要以结合态和游离态的形式存在[1]。当水生生态系统中存在过量的正磷酸盐时,就会引起水体富营养化而导致水环境质量恶化[2]。迄今为止,几乎所有用于农业生产的磷都来自于磷矿的开采。美国地质调查局(USGS)报告,以目前磷矿的开采速度计算,地球上的磷酸盐储量将在2051至2092年间耗尽[3],磷资源已成为人类发展的限制性因素之一。因而,对散失到水环境中的磷资源进行有效回收,控制磷污染的同时缓解磷资源危机,引起研究者的广泛关注。
目前去除水体中磷的方法主要有化学沉淀、生物处理、吸附技术、膜技术、离子交换、人工湿地和结晶法等[4-5]。这些处理过程中,沉淀法和生物处理(活性污泥法)会产生大量的污泥,从而对环境造成二次污染;此外,膜工艺经济成本较高[6]。近年来,利用结晶法回收水体中的磷引起研究人员的广泛兴趣,如磷酸钙结晶法、鸟粪石结晶法、蓝铁矿结晶法等[7]。其中磷酸钙具有多种存在形态,例如磷酸三钙(TCP)、羟基磷灰石(HAP)、磷酸氢钙(DCPA)等。HAP不仅是一种优质的肥料资源,而且是人体和动物骨骼的主要无机成分[8],可用作生物材料,具有良好的应用前景。DCPD(CaHPO4·2H2O)在一定条件下可以转化成HAP[9]。并且磷酸钙具有磷矿的有效成分,可在产磷工业体系中加工利用。因此,通过磷酸钙结晶回收散失到水体中的磷资源被广泛的研究[10]。然而,一般来说将含磷产物从水体中直接回收较为困难,通常需要通过离心、过滤等方式,一定程度上增加了磷回收的成本。如何实现水体中磷的高效回收已成为一项挑战。磁分离是一种通过借助外部磁场实现物质有效分离的技术,具有操作简单、反应条件温和、成本低廉等优势,被广泛应用于污水处理、酶反应工程以及生物医药等领域[11]。磁性复合材料的应用有助于实现废水中磷资源的结晶回收。
本研究采用微波冷却回流法首先制备多级花球状方解石和纳米四氧化三铁,进一步通过超声法将纳米磁铁矿与多级结构方解石结合,形成Ca-Fe基磁性纳米复合材料。通过调控初始pH、反应时间、磷的初始浓度、固液比、共存离子等单因素系统研究了Ca-Fe纳米复合材料对水体中磷的去除效率及影响因素,阐释Ca-Fe纳米复合材料对水体中磷的去除机制。
Ca-Fe基磁性纳米复合材料对水体中磷的结晶回收
Crystallization recovery of phosphorus from water by Ca-Fe based magnetic nanocomposites
-
摘要: 人类活动导致大量的不可再生的磷资源流失到水环境中造成水体富营养化,磷的结晶回收对废水治理、地表水管理和可持续发展具有重要意义。采用微波-冷却-回流和超声的方法制备Ca-Fe 基磁性纳米复合材料(CaCO3-Fe3O4),通过批量吸附实验法系统探究了体系pH、接触时间、磷的初始浓度、共存离子等因素对复合材料去除水体中磷的影响规律。结果表明,CaCO3-Fe3O4纳米磁性复合材料在pH=3.0~6.0内对磷表现出良好的去除效果,对磷的最大去除容量为189.21 mg·g−1。复合材料对水体中的磷主要通过吸附-结晶耦合机制去除,在高浓度含磷废水中,磷以CaHPO4·2H2O的形式被回收。综合考虑磁分离的简易性、磷的去除容量和环境友好性,所制备的Ca-Fe基磁性复合材料在磷资源回收领域具有潜在的应用价值。Abstract: Human activities induced the loss of non-renewable phosphorus resources into aquatic environment, leading to eutrophication of waterbody. Crystallization recovery of phosphorus is crucial for wastewater treatment, surface water management and sustainable development. In this study, Ca-Fe based magnetic nanocomposites (CaCO3-Fe3O4) were synthesized by microwave-assisted reflux and ultrasound method. The effects of solution pH, contact time, initial phosphorus concentration, coexisting ions on phosphorus removal by magnetic nanocomposite were systematically examined by the batch adsorption method. The results demonstrated that the phosphate could be effectively recovered from water by CaCO3-Fe3O4 nanocomposites in the pH range of 3.0~6.0, and the maximum removal capacity of 189.21 mg·g−1(P). The phosphate was removed via sorption-crystallization coupling mechanism, and in high phosphate concentration effluent, P was harvested in a CaHPO4·2H2O form. Considering the easy magnetic separation, high phosphorus removal capacity and environmental friendliness, the prepared Ca-Fe based magnetic composites have potential applications in phosphorus resource recovery.
-
Key words:
- calcite /
- magnetic nanocomposites /
- phosphorus /
- sorption /
- crystallization recovery
-
表 1 不同材料负载率
Table 1. Different loading rates of synthesized materials
样品编号 方解石/g Fe3O4/g 负载率(Fe3O4)/% C-1 0.125 0.12 41.7 C-2 0.250 0.12 22.4 C-3 0.500 0.12 11.9 表 2 不同吸附剂对磷去除性能的比较
Table 2. The phosphorus removal performance of different Mg-based sorbents
材料 初始pH 去除容量/(mg·g−1) 参考文献 天然方解石 6.5 0.10 29 Ca/Fe复合材料 5.4 161.40 30 氧化镁负载硅藻土 7.0 160.94 32 镁改性硅酸钙 7.0 71.05 33 氧化镁改性磁性生物炭 3.0 149.25 34 La-Fe氢氧化物 7.0 123.46 35 CaCO3-Fe3O4 5.0 189.21 本研究 -
[1] MAYER B K, BAKER L A, BOYER T H, et al. Total value of phosphorus recovery[J]. Environmental Science and Technology, 2016, 50(13): 6606-6620. doi: 10.1021/acs.est.6b01239 [2] MITROGIANNIS D, PSYCHOYOU M, BAZIOTIS I, et al. Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite[J]. Chemical Engineering Journal, 2017, 320: 510-522. doi: 10.1016/j.cej.2017.03.063 [3] FORREST A L, FATTAH K P, MAVINIC D S, et al. Optimizing struvite production for phosphate recovery in WWTP[J]. Journal of Environmental Engineering, 2008, 134(5): 395-402. doi: 10.1061/(ASCE)0733-9372(2008)134:5(395) [4] WANG S, WU Y, AN J, et al. Geobacter autogenically secretes fulvic acid to facilitate the dissimilated iron reduction and vivianite recovery[J]. Environmental Science & Technology, 2020, 54(17): 10850-10858. [5] TAO W, FATTAH K P, HUCHZERMEIER M P. Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances[J]. Journal of Environmental Management, 2016, 169: 46-57. [6] FURUYA K, HAFUKA A, KUROIWA M, et al. Development of novel polysulfone membranes with embedded zirconium sulfate-surfactant micelle mesostructure for phosphate recovery from water through membrane filtration[J]. Water Research, 2017, 124: 521-526. doi: 10.1016/j.watres.2017.08.005 [7] HUANG H, ZHANG D D, LI J, et al. Phosphate recovery from swine wastewater using plant ash in chemical crystallization[J]. Journal of Cleaner Production, 2017, 168: 338-345. doi: 10.1016/j.jclepro.2017.09.042 [8] OBADA D O, OSSENI S A, SINA H, et al. Fabrication of novel kaolin-reinforced hydroxyapatite scaffolds with robust compressive strengths for bone regeneration[J]. Applied Clay Science, 2021, 215: 106298. doi: 10.1016/j.clay.2021.106298 [9] SHIH W J, CHEN Y F, WANG M C, et al. Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4·2H2O and CaCO3 by hydrolysis method[J]. Journal of Crystal Growth, 2004, 270(1-2): 211-218. doi: 10.1016/j.jcrysgro.2004.06.023 [10] HERMASSI M, VALDERRAMA C, DOSTA J, et al. Evaluation of hydroxyapatite crystallization in a batch reactor for the valorization of alkaline phosphate concentrates from wastewater treatment plants using calcium chloride[J]. Chemical Engineering Journal, 2015, 267: 142-152. doi: 10.1016/j.cej.2014.12.079 [11] 彭诗珍, 黄启同, 甘滔等. 四氧化三铁基复合材料在生物磁分离中的应用[J]. 赣南医学院学报, 2022, 42(04): 389-395. doi: 10.3969/j.issn.1001-5779.2022.04.012 [12] YU S H, LI H, YAO Q Z, et al. Preparation of mesoporous calcite with hierarchical architectures[J]. Materials Letters, 2015, 160: 167-170. doi: 10.1016/j.matlet.2015.07.116 [13] YIN W, LIU M, ZhAO T L, et al. Removal and recovery of silver nanoparticles by hierarchical mesoporous calcite: Performance, mechanism, and sustainable application[J]. Environmental Research, 2020, 187: 109699. doi: 10.1016/j.envres.2020.109699 [14] YU S H, LI H, YAO Q Z, et al. Microwave-assisted preparation of sepiolite-supported magnetite nanoparticles and their ability to remove low concentrations of Cr(VI)[J]. RSC Advances, 2015, 5: 84471. doi: 10.1039/C5RA14130C [15] 天津大学. 一种负载四氧化三铁的SiC泡沫陶瓷及其制备方法和应用: CN201810852660.0[P]. 2021-11-19. [16] ZHOU G T, GUAN Y B, YAO Q Z, et al. Biomimetic mineralization of prismatic calcite mesocrystals: Relevance to biomineralization[J]. Chemical Geology, 2010, 279(3/4): 63-72. doi: 10.1016/j.chemgeo.2010.08.020 [17] DLAPA P, BODI M B, MATAIX-SOLERA J, et al. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition[J]. Catena, 2013, 108(108): 38-46. [18] NAMDURI H, NASRAZADANI S. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry[J]. Corrosion Science, 2008, 50(9): 2493-2497. doi: 10.1016/j.corsci.2008.06.034 [19] MA M G, ZHU Y J, CHANG J. Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite[J]. Journal of Physical Chemistry B, 2006, 110(29): 14226-14230. doi: 10.1021/jp061738r [20] NEAGLE W, ROCHESTER C H. Infrared study of the adsorption of water and ammonia on calcium carbonate[J]. Journal of the Chemical Society Faraday Transactions, 1990, 86: 181-183. doi: 10.1039/ft9908600181 [21] 刘帅朋. 改进型共沉淀法制备四氧化三铁磁粉的工艺优化与表征[D]. 天津: 天津大学, 2018. [22] ZHAO K, XU T, CAO J, et al. Fabrication and adsorption properties of multiwall carbon nanotubes-coated/filled by various Fe3O4 nanoparticles[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(20): 18802-18810. doi: 10.1007/s10854-019-02234-8 [23] ASUHA S, WAN H L, ZHAO S, et al. Water-soluble, mesoporous Fe3O4: Synthesis, characterization, and properties[J]. Ceramics International, 2012, 38(8): 6579-6584. doi: 10.1016/j.ceramint.2012.05.042 [24] LI B, CAO H, SHAO J, et al. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices[J]. Journal of Materials Chemistry, 2011, 21(13): 5069-5075. doi: 10.1039/c0jm03717f [25] CHASTAIN J, KING Jr R C. Handbook of X-ray photoelectron spectroscopy[J]. Perkin-Elmer Corporation, 1992, 40: 221. [26] MORDINA B, KUMAR R, TIWARI R K, et al. Fe3O4 nanoparticles embedded hollow mesoporous carbon nanofibers and polydimethylsiloxane-based nanocomposites as efficient microwave absorber[J]. The Journal of Physical Chemistry C, 2017, 121(14): 7810-7820. doi: 10.1021/acs.jpcc.6b12941 [27] MORDINA B, TIWARI R K, SETUA D K, et al. Impact of graphene oxide on the magnetorheological behaviour of BaFe12O19 nanoparticles filled polyacrylamide hydrogel[J]. Polymer, 2016, 97: 258-272. doi: 10.1016/j.polymer.2016.05.026 [28] 张小梅. 天然菱铁矿和方解石矿物及其改性产物除磷性能研究[D]. 南京: 南京大学, 2022. [29] WU D, TIAN S, LONG J, et al. Remarkable phosphate recovery from wastewater by a novel Ca/Fe composite: Synergistic effects of crystal structure and abundant oxygen-vacancies[J]. Chemosphere, 2021, 266: 129102. doi: 10.1016/j.chemosphere.2020.129102 [30] XIANG C, JI Q, ZHANG G, et al. In situ creation of oxygen vacancies in porous bimetallic La/Zr sorbent for aqueous phosphate: Hierarchical pores control mass transport and vacancy sites determine interaction[J]. Environmental Science & Technology, 2019, 54(1): 437-445. [31] XIA P, WANG X, WANG X, et al. Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO–loaded diatomite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 506: 220-227. doi: 10.1016/j.colsurfa.2016.05.101 [32] SI Q, ZHU Q, XING Z. Simultaneous removal of nitrogen and phosphorus by magnesium-modified calcium silicate core-shell material in water[J]. Ecotoxicology and Environmental Safety, 2018, 163: 656-664. doi: 10.1016/j.ecoenv.2018.07.120 [33] LIU J, JIANG J, AIHEMAITI A, et al. Removal of phosphate from aqueous solution using MgO-modified magnetic biochar derived from anaerobic digestion residue[J]. Journal of Environmental Management, 2019, 250: 109438. doi: 10.1016/j.jenvman.2019.109438 [34] YU J, XIANG C, ZHANG G, et al. Activation of lattice oxygen in LaFe (oxy) hydroxides for efficient phosphorus removal[J]. Environmental Science & Technology, 2019, 53(15): 9073-9080. [35] 方启学. 钙镁对微细矿粒分散稳定性的影响及其机理研究[J]. 国外金属矿选矿, 1998(6): 42-45. [36] 刘忠义. 金属离子对菱锌矿和方解石分散行为的影响研究[D]. 北京: 中国矿业大学, 2019. [37] LI J, CAO X, PAN A, et al. Nanoflake-assembled three-dimensional Na3V2 (PO4)3/C cathode for high performance sodium ion batteries[J]. Chemical Engineering Journal, 2018, 335: 301-308. doi: 10.1016/j.cej.2017.10.164 [38] SHARIF F, TABASSUM S, MUSTAFA W, et al. Bioresorbable antibacterial PCL-PLA-nHA composite membranes for oral and maxillofacial defects[J]. Polymer Composites, 2019, 40(4): 1564-1575. doi: 10.1002/pc.24899 [39] HIRSCH A, AZURI I, ADDADI L, et al. Infrared absorption spectrum of brushite from first principles[J]. Chemistry of Materials, 2014, 26(9): 2934-2942. doi: 10.1021/cm500650t [40] TORTET L, GAVARRI J R, NIHOUL G, et al. Study of protonic mobility in CaHPO4· 2H2O (brushite) and CaHPO4 (monetite) by infrared spectroscopy and neutron scattering[J]. Journal of Solid State Chemistry, 1997, 132(1): 6-16. doi: 10.1006/jssc.1997.7383 [41] PETROV I, ŠOPTRAJANOV B, FUSON N, et al. Infra-red investigation of dicalcium phosphates[J]. Spectrochimica Acta Part A Molecular Spectroscopy, 1967, 23(10): 2637-2646. doi: 10.1016/0584-8539(67)80155-7 [42] JAYASREE R, KUMAR T S S, VENKATESWARI R, et al. Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential[J]. Journal of Materials Science:Materials in Medicine, 2019, 30(10): 1-14. [43] BERRY E E, BADDIEL C B. The infra-red spectrum of dicalcium phosphate dihydrate (brushite)[J]. Spectrochimica Acta Part A Molecular Spectroscopy, 1967, 23(7): 2089-2097. doi: 10.1016/0584-8539(67)80097-7 [44] CASCIANI F, CONDRATE SR R A. The vibrational spectra of brushite, CaHPO4·2H2O[J]. Spectroscopy Letters, 1979, 12(10): 699-713. doi: 10.1080/00387017908069196 [45] HAZZAT M E, HAMIDI A E, HALIM M, et al. Complex evolution of phase during the thermal investigation of Brushite-type calcium phosphate CaHPO4·2H2O[J]. Materialia, 2021, 16(4): 101055. [46] RAJENDRAN K, DALE K C. Growth and characterization of calcium hydrogen phosphate dihydrate crystals from single diffusion gel technique[J]. Crystal Research and Technology, 2010, 45(9): 939-945. doi: 10.1002/crat.200900700 [47] SONG Y W, SHAN D Y, CHEN R S, et al. A novel phosphate conversion film on Mg-8.8Li alloy[J]. Surface & Coatings Technology, 2009, 203(9): 1107-1113. [48] LI S, ZENG W, XU H, et al. Performance investigation of struvite high-efficiency precipitation from wastewater using silicon-doped magnesium oxide[J]. Environmental Science and Pollution Research, 2020, 27(13): 15463-15474. doi: 10.1007/s11356-019-07589-3 [49] WEI L, HONG T, LI X, et al. New insights into the adsorption behavior and mechanism of alginic acid onto struvite crystals[J]. Chemical Engineering Journal, 2019, 358: 1074-1082. doi: 10.1016/j.cej.2018.10.110 [50] LIU X, ZHONG H, YANG Y, et al. Phosphorus removal from wastewater by waste concrete: influence of P concentration and temperature on the product[J]. Environmental Science and Pollution Research, 2020, 27(10): 10766-10777. doi: 10.1007/s11356-019-07577-7 [51] ZHANG Y, SHI J, CHENG C, et al. Hydrothermal growth of Co3(OH)2(HPO4)2 nano-needles on LaTiO2N for enhanced water oxidation under visible-light irradiation[J]. Applied Catalysis B:Environmental, 2018, 232: 268-274. doi: 10.1016/j.apcatb.2018.03.067