-
水力压裂技术的成功应用为页岩气增产开采提供重要保障[1-2]。然而,近年来,该技术所造成的负面环境影响受到愈发广泛的关注[3-4],其中以水资源消耗和水环境污染问题最为突出[4-5]。页岩气单井压裂液注入量超过1万m3,10%~70%的注入液会在井的整个生命周期返回地表,形成页岩气压裂返排液[2,6]。返排液通常含有高浓度的总溶解固体(total dissolved solids,TDS)、复杂有害的有机化合物及天然放射性物质等[7-8]。对返排液管理不当或意外泄露可能造成严重的环境污染。因此,妥善管理返排液对于保障页岩气行业可持续发展、降低环境风险具有重要意义。
目前,返排液管理办法主要包括深井灌注、内部回用以及外部回用等[2, 9]。深井灌注伴随污染地下水、诱发地震等风险,且由于我国灌注井数量有限,页岩气开采主要集中于西南地区,地形复杂,运输成本高,故深井灌注并不是我国返排液主要的处置方法。内部回用是指将返排液经过简单处理后再次用于配置压裂液,由于其兼具环保和经济的优势,已成为现阶段最主要的管理方式。然而随着未来页岩气行业的逐渐成熟以及开采速率的下降,返排液深度处理以实现外部回用(如外排、农田灌溉等)将成为返排液的最终管理办法。
在返排液回用过程中,混凝[10]、吸附[11]、氧化[12-14]、生物降解[15-16]、膜分离(包括超滤、反渗透、正渗透、膜蒸馏等)[6, 17-21]等处理技术均有一定报道。然而,这些报道主要集中于实验室规模的小试研究,缺乏中试或实际工程实验进一步探究处理技术或组合工艺应用的可行性。
因此,本研究选择了一套运行稳定、处理效率高且占地小的“磁分离-精细过滤-超滤(uItrafiltration,UF)-碟管式反渗透(disk tube reverse osmosis,DTRO)”返排液处理回用组合工艺并构建了中试装置,开展现场实验研究。在优化运行条件下,对各工艺阶段出水水质进行全面检测,分析污染物去除机理并探究该工艺装置高效回用返排液的潜力,为实现压裂返排液妥善管理、保障页岩气行业长足发展提供技术支撑。
磁分离-精细过滤-超滤-碟管式反渗透耦合工艺高效回用页岩气压裂返排液
Magnetic separation-fine filter-ultrafiltration -disk tube-reverse osmosis coupling process to realize the efficient reuse of shale gas fracturing flowback fluid
-
摘要: 页岩气压裂返排液高效处理回用是页岩气开发中亟待解决的关键问题之一。本研究在某页岩气开采平台上,构建了“磁分离-精细过滤-超滤(UF)-碟管式反渗透(DTRO)”返排液处理工艺装备,进行现场实验研究并分析污染物去除效能和机理。在优化运行条件下,磁分离-精细过滤对浊度去除率达95.5%,精细过滤出水可内部回用于复配水力压裂液;DTRO工艺对TDS、DOC、总荧光强度去除率分别达99.9%、98.7%和96.3%,出水满足《污水综合排放标准》(GB 8978-1996)和《农田灌溉水质标准》(GB 5084-2021),有望通过外排和灌溉等方式进行外部回用。此外,装备运行直接处理成本约34.90元·m−3。相较其他技术,本工艺兼具高效性与经济性。因此,该工艺装备具有实现返排液高效回用的巨大应用潜力。
-
关键词:
- 压裂返排液 /
- 回用 /
- 磁分离 /
- 超滤 /
- 碟管式反渗透(DTRO)
Abstract: Efficient treatment and reuse of shale gas fracturing flowback fluid is one of the key problems to be solved in shale gas development. In this study, a flowback liquid treatment device with the magnetic separation-fine filter-ultrafiltration (UF) -disk tube-reverse osmosis (DTRO) coupling process was constructed on a shale gas mining platform, and field tests were conducted to study and analyze the pollutant removal efficiency and mechanism. Under the optimized operating conditions, the turbidity removal rate by magnetic separation-fine filtration process reached 95.5%, and the effluent from fine filtration could be reused internally for reconfiguring hydraulic fracturing fluid. The removal rates of TDS, DOC and total fluorescence intensity by DTRO could reach 99.9%, 98.7% and 96.3%, respectively, and the DTRO effluent could meet the limits stipulated in the Integrated Wastewater Discharge Standard (GB 8978-1996) and the Standard for Irrigation Water Quality (GB 5084-2021), which is expected to be reused externally through approaches including discharge and irrigation. In addition, the direct operating cost of the device was about 34.90 yuan·m−3. Compared with other technologies, this process presented higher efficiency and economy. Therefore, the process device had a great application potential for highly efficient reuse of flowback fluid.-
Key words:
- fracturing flowback fluid /
- reuse /
- magnetic separation /
- ultrafiltration /
- DTRO
-
表 1 不同工艺阶段样品常规水质指标
Table 1. Conventional water quality indexes of samples at different process stages
样品 浊度/NTU pH TDS/(mg·L−1) EC/(mS·cm−1) UV254/cm−1 COD/(mg·L−1) DOC/(mg·L−1) TN/(mg·L−1) 原水 161 7.07 20 580 33.46 0.095 625.43 33.26 30.23 磁分离 14.33 6.98 19 450 31.84 0.092 613.96 30.97 28.75 过滤 7.25 7.19 19 635 32.12 0.092 609.47 30.65 28.24 超滤 0.28 7.43 19 610 32.07 0.102 605.86 29.48 28.63 反渗透 0.19 6.41 14.39 0.03 0.004 1.14 0.38 1.06 表 2 不同工艺阶段样品离子浓度
Table 2. Ions concentrations of samples at different process stages
mg·L−1 样品 Na+ K+ Mg2+ Ca2+ Sr2+ F− Cl− Br− SO42- 原水 8 617.8 134.4 75.91 414.6 51.25 1.58 11 469.5 79.54 7.45 磁分离 8 201.2 126.5 72.81 400.5 7.46 1.67 11 501.8 76.94 7.98 过滤 7 794.1 117.9 69.89 398.7 5.48 1.15 11 369.4 73.04 6.66 超滤 7 799.2 108.4 67.56 378.3 1.18 1.12 11 505.8 70.81 5.9 反渗透 5.79 0.33 BDLa BDL BDL BDL 3.62 0.034 0.39 注:a BDL:低于检测限 (0.01 mg·L−1)。 表 3 运行成本分析
Table 3. Analysis of operating cost
工艺段 项目 消耗量 单价 金额/(元·m−3) 磁分离 PAC 0.03 kg·m−3 2.4 元·kg−1 0.07 精制铁粉 0.01 kg·m−3 2 元·kg−1 0.02 PAM 0.001 kg·m−3 12 元·kg−1 0.01 污泥处置药剂 0.005 kg·m−3 12 元·kg−1 0.06 电耗 0.73 kWh·m−3 0.65 元·kWh−1 0.47 精细过滤 电耗 0.51 kWh·m−3 0.65 元·kWh−1 0.33 超滤 电耗 5.57 kWh·m−3 0.65 元·kWh−1 3.62 化学药剂 — — 0.70 超滤膜元件 — — 0.91 DTRO 电耗 11.21 kWh·m−3 0.65 元·kWh−1 7.29 化学药剂 — — 2.39 DTRO膜元件 — — 3.04 -
[1] SUN Y, WANG D, TSANG D C W, et al. A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction[J]. Environment International, 2019, 125: 452-469. doi: 10.1016/j.envint.2019.02.019 [2] ZHONG C, ZOLFAGHARI A, HOU D, et al. Comparison of the hydraulic fracturing water cycle in China and North America: A critical review[J]. Environmental Science & Technology, 2021, 55(11): 7167-7185. [3] HOU D Y, LUO J, AL-TABBAA A. COMMENTARY: Shale gas can be a double-edged sword for climate change[J]. Nature Climate Change, 2012, 2(6): 385-387. doi: 10.1038/nclimate1500 [4] VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134). [5] YU M, WEINTHAL E, PATINO-ECHEVERRI D, et al. Water availability for shale gas development in Sichuan Basin, China[J]. Environmental Science & Technology, 2016, 50(6): 2837-2845. [6] CHANG H, LI T, LIU B, et al. Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review[J]. Desalination, 2019, 455: 34-57. doi: 10.1016/j.desal.2019.01.001 [7] JI X, TIRAFERRI A, ZHANG X, et al. Dissolved organic matter in complex shale gas wastewater analyzed with ESI FT-ICR MS: Typical characteristics and potential of biological treatment[J]. Journal of Hazardous materials, 2023, 447: 130823. doi: 10.1016/j.jhazmat.2023.130823 [8] XIE W, TIAN L, TANG P, et al. Shale gas wastewater characterization: Comprehensive detection, evaluation of valuable metals, and environmental risks of heavy metals and radionuclides[J]. Water Research, 2022, 220: 118703. doi: 10.1016/j.watres.2022.118703 [9] ESTRADA J M, BHAMIDIMARRI R. A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing[J]. Fuel, 2016, 182: 292-303. doi: 10.1016/j.fuel.2016.05.051 [10] SHANG W, TIRAFERRI A, HE Q, et al. Reuse of shale gas flowback and produced water: Effects of coagulation and adsorption on ultrafiltration, reverse osmosis combined process[J]. Science of the Total Environment, 2019, 689: 47-56. doi: 10.1016/j.scitotenv.2019.06.365 [11] LIU Y, TANG P, ZHU Y, et al. Green aerogel adsorbent for removal of organic compounds in shale gas wastewater: High-performance tuning and adsorption mechanism[J]. Chemical Engineering Journal, 2021, 416: 129100. doi: 10.1016/j.cej.2021.129100 [12] VINGE S L, ROSENBLUM J S, LINDEN Y S, et al. Assessment of UV disinfection and advanced oxidation processes for treatment and reuse of hydraulic fracturing produced water[J]. ACS ES& T Engineering, 2021, 1(3): 490-500. [13] TANG P, LIU B, ZHANG Y, et al. Sustainable reuse of shale gas wastewater by pre-ozonation with ultrafiltration-reverse osmosis[J]. Chemical Engineering Journal, 2020, 392: 123743. doi: 10.1016/j.cej.2019.123743 [14] 林雯杰, 王菁, 孟宣宇, 等. 电-Fenton法处理页岩气压裂返排液[J]. 环境工程学报, 2017, 11(2): 857-861. doi: 10.12030/j.cjee.201510035 [15] TANG P, XIE W, TIRAFERRI A, et al. Organics removal from shale gas wastewater by pre-oxidation combined with biologically active filtration[J]. Water Research, 2021, 196: 117041. doi: 10.1016/j.watres.2021.117041 [16] TANG P, XIE W, TIAN L, et al. Oxidation-biotreatment-membrane combined process for external reuse of shale gas wastewater[J]. Separation and Purification Technology, 2022, 291: 120920. doi: 10.1016/j.seppur.2022.120920 [17] TONG T Z, CARLSON K H, ROBBINS C A, et al. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Frontiers of Environmental Science & Engineering, 2019, 13(4). [18] GUO C, CHANG H, LIU B, et al. A combined ultrafiltration-reverse osmosis process for external reuse of Weiyuan shale gas flowback and produced water[J]. Environmental Science-Water Research & Technology, 2018, 4(7): 942-955. [19] HE C, VIDIC R D. Application of microfiltration for the treatment of Marcellus Shale flowback water: Influence of floc breakage on membrane fouling[J]. Journal of Membrane Science, 2016, 510: 348-354. doi: 10.1016/j.memsci.2016.03.023 [20] HE C, WANG X, LIU W, et al. Microfiltration in recycling of Marcellus Shale flowback water: Solids removal and potential fouling of polymeric microfiltration membranes[J]. Journal of Membrane Science, 2014, 462: 88-95. doi: 10.1016/j.memsci.2014.03.035 [21] 刘宇程, 吴东海, 袁建梅, 等. 膜蒸馏处理页岩气井压裂返排液[J]. 环境工程学报, 2017, 11(1): 48-54. doi: 10.12030/j.cjee.201509096 [22] GETZINGER G J, O’CONNOR M P, HOELZER K, et al. Natural gas residual fluids: Sources, endpoints, and organic chemical composition after centralized waste treatment in Pennsylvania[J]. Environmental Science & Technology, 2015, 49(14): 8347-8355. [23] 骆欣. 含锶放射性废水的处理方法研究进展[J]. 华北科技学院学报, 2014, 11(3): 72-76. [24] NI Y, ZOU C, CUI H, et al. Origin of flowback and produced waters from Sichuan Basin, China[J]. Environmental Science & Technology, 2018, 52(24): 14519-14527. [25] ROSENBLUM J, THURMAN E M, FERRER I, et al. Organic chemical characterization and mass balance of a hydraulically fractured well: From fracturing fluid to produced water over 405 days[J]. Environmental Science & Technology, 2017, 51(23): 14006-14015. [26] BARBOT E, VIDIC N S, GREGORY K B, et al. Spatial and temporal correlation of water quality parameters of produced waters from devonian-age shale following hydraulic fracturing[J]. Environmental Science & Technology, 2013, 47(6): 2562-2569. [27] ZHOU S, LI Z, PENG S, et al. Combining eDNA and morphological approaches to reveal the impacts of long-term discharges of shale gas wastewaters on receiving waters[J]. Water Research, 2022, 222: 118869. doi: 10.1016/j.watres.2022.118869 [28] ZHOU S, LI Z, PENG S, et al. River water influenced by shale gas wastewater discharge for paddy irrigation has limited effects on soil properties and microbial communities[J]. Ecotoxicology and Environmental Safety, 2023, 251: 114552. doi: 10.1016/j.ecoenv.2023.114552 [29] PéREZ-GONZáLEZ A, URTIAGA A M, IBáñEZ R, et al. State of the art and review on the treatment technologies of water reverse osmosis concentrates[J]. Water Research, 2012, 46(2): 267-283. doi: 10.1016/j.watres.2011.10.046 [30] TONG T Z, ELIMELECH M. The global rise of zero liquid discharge for wastewater management: Drivers, technologies and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855. [31] LIU Y, WU Q, CHEN C, et al. An efficient system of aerogel adsorbent combined with membranes for reuse of shale gas wastewater[J]. Desalination, 2022, 526: 115545. doi: 10.1016/j.desal.2021.115545 [32] LICONA K P M, GEAQUINTO L R D O, NICOLINI J V, et al. Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water[J]. Journal of Water Process Engineering, 2018, 25: 195-204. doi: 10.1016/j.jwpe.2018.08.002 [33] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [34] 姚璐璐, 涂响, 于会彬, 等. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416. [35] HE Y, LIU J W, SONG P B, et al. Magnetic hybrid coagulant for rapid and efficient removal of nitrogen compounds from municipal wastewater and its mechanistic investigation[J]. Chemical Engineering Journal, 2021, 417. [36] LIU X, TANG P, LIU Y, et al. Efficient removal of organic compounds from shale gas wastewater by coupled ozonation and moving-bed-biofilm submerged membrane bioreactor[J]. Bioresource Technology, 2022, 344: 126191. doi: 10.1016/j.biortech.2021.126191 [37] TANG P, SHI M, LI X, et al. Can pre-ozonation be combined with gravity-driven membrane filtration to treat shale gas wastewater?[J]. Science of the Total Environment, 2021, 797: 149181. doi: 10.1016/j.scitotenv.2021.149181 [38] CLUFF M A, HARTSOCK A, MACRAE J D, et al. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells[J]. Environmental Science & Technology, 2014, 48(11): 6508-6517. [39] 罗臻, 张晓飞, 张华, 等. 页岩气压裂返排液电化学处理现场试验研究[J]. 工业水处理, 2022, 42(10): 118-124.