-
水资源是人类赖以生存的自然资源,是生态系统中必不可少的重要因素,良好的水环境对于维护人体健康和生态安全至关重要。近年来随着经济的飞速发展,采矿、电镀、冶金等工业产生的重金属(类金属)废水不断流入水体,造成了严重的环境污染,其中砷污染尤为突出[1-3]。砷(As)是自然界中广泛存在的一种类金属,也是对植物与人体健康危害最大的一种类金属元素[4-5]。进入水体的砷,不易降解,具有较大的隐蔽性和持久性,可经由食物链通过生物积累或生物放大进入生物体,对人体健康和生态环境造成严重的危害[6-7]。鉴于砷的高危害性,砷被美国环境保护署(EPA)和世界卫生组织 (WHO)列为强致癌物质[8]。当前,废水中砷的处理技术主要有化学沉淀法、氧化法、离子交换法、吸附法等,其中吸附法因其成本低廉、效果稳定、操作简单等优点被广泛应用[9-11]。因此,开发具有良好吸附性能的新型绿色材料对于水体中砷的去除具有重要意义[12]。
废水中的砷元素以As(III)和As(Ⅴ) 2种价态为主,而As(III)的毒性是As(Ⅴ)的60多倍,且更难去除[13]。纳米铁(nZVI)因其环境友好,比表面积大等优点已被广泛用于重金属砷的去除。其中,对含砷废水中As(III)的同步氧化吸附受到越来越多研究者的关注[14-15]。然而,表面能高且自带磁性的特性也使得纳米铁容易产生团聚,导致其吸附及还原能力的降低,限制了其在含砷废水中的应用[16]。因此,需要在纳米铁的制备中添加载体以减少其团聚。生物碳是一种多孔、富含表面官能团的黑色碳质材料,对水体中重金属离子有较好的吸附性[17]。有研究表明,纳米铁负载在生物炭上后,能有效减少其团聚效应,且生物炭自身的良好的导电能力,增强了改性后纳米铁的电子迁移能力,提高了其反应活性[18]。
传统纳米铁的制备多采用硼氢化钠作化学还原剂,但硼氢化钠属于易制爆的危险化学品,有毒且成本较高[19]。近年来,具有成本低廉、环境友好等特点的生物炭负载纳米铁绿色制备方法备受关注[20-21]。该方法利用茶叶、葡萄籽等植物提取液代替传统的硼氢化钠来还原制备纳米铁。据文献报道,葡萄籽提取液中富含原花青素等多酚类物质,其作为一种生物活性还原剂,能将亚铁还原成纳米铁[22-25]。本研究选取了风车草(Cyperus alternifolius)为原料制备了生物炭载体,以葡萄籽提取液为还原剂,通过液相还原法制备了风车草生物炭负载纳米铁(CBC-nZVI),探究了CBC-nZVI对废水中As(III)的去除效应。以期为绿色纳米铁制备技术应用于重金属砷的废水处理提供可行性参考。
葡萄籽提取液还原制备生物炭负载纳米铁对水中As(Ⅲ)的去除性能及机理
Removal performance and mechanism of As(Ⅲ) from water by reduction preparation of biochar supported nano-iron from grape seed extract
-
摘要: 利用植物提取液绿色合成的纳米铁,具有绿色环保、成本低廉等优点。本文采用葡萄籽提取液作为还原剂和稳定剂,风车草生物炭为载体,制备了生物炭负载纳米铁(CBC-nZVI),用于去除废水中的As(Ⅲ)。结果表明,纳米铁(nZVI)成功负载于生物炭表面,具有较大的比表面积和孔体积;随着反应时间的延长,溶液温度的升高,CBC-nZVI投加量的增加和溶液初始pH的增大,CBC-nZVI对As(Ⅲ)的吸附量不断增大;Langmuir等温吸附模型能更准确地描述CBC-nZVI对As(Ⅲ)吸附行为,CBC-nZVI对As(Ⅲ)去除过程符合准二级动力学模型,表明CBC-nZVI对As(Ⅲ)的吸附是单层吸附,以化学吸附为主。ESR表征结果表明CBC-nZVI在有氧反应体系中生成了·OH,反应过程中,As(Ⅲ)大部分被氧化为毒性较低的As(Ⅴ),通过吸附、氧化还原和共沉淀实现As(Ⅲ)的最终去除。Abstract: The green synthesis of iron nanoparticles using plant extracts has the advantages of green environment protection and low cost. In this study, biochar-loaded nano-iron (CBC-nZVI) was prepared for As(Ⅲ) removal from wastewater using grape seed extract as the stabilizer and reducing agent, and Cyperus alternifolius based-biochar as the carrier. The results showed that the nano-iron (nZVI) was successfully loaded on the surface of biochar, and had a large specific surface area and pore volume. The adsorption of As(Ⅲ) by CBC-nZVI increased continuously with the increase of reaction time, solution temperature, dosage and initial pH of the solution. Langmuir isothermal adsorption model could more accurately describe the adsorption behavior of CBC-nZVI on As(Ⅲ) than other ones. The removal of As(Ⅲ) by CBC-nZVI was in accordance with the quasi-secondary kinetic model, indicating that above adsorption process was a monolayer adsorption and was dominated by chemisorption. The characterization of ESR showed that CBC-nZVI produced ·OH in the aerobic reaction system. During the reaction, most of As(Ⅲ) was oxidized to As(V) with lower toxicity, and the final removal of As(Ⅲ) was achieved by adsorption, redox and co-precipitation.
-
Key words:
- biochar /
- nano-iron /
- grape seed extract /
- remove /
- As(Ⅲ)
-
表 1 CBC/nZVI/CBC-nZVI的比表面积和孔体积
Table 1. Specific surface area and pore volume of CBC/nZVI/CBC-nZVI
材料名称 比表面积/(m2·g−1) 孔体积/(cm3·g−1) CBC 4.939 0.012 nZVI 7.816 0.007 CBC-nZVI 14.744 0.066 表 2 CBC和CBC-nZVI吸附As(Ⅲ)吸附等温线模型参数
Table 2. Adsorption isotherms fitting parameters of As(Ⅲ) adsorption onto CBC and CBC-nZVI
材料 Freundlich模型 Langmuir模型 R2 kF n R2 KL qm CBC 0.979 8.305 2.05 0.993 0.012 153.27 CBC-nZVI 0.977 20.035 2.56 0.990 0.026 179.03 表 3 CBC和CBC-nZVI吸附As(Ⅲ)吸附动力学模型参数
Table 3. Fitting parameters of As(Ⅲ) adsorption kinetics onto CBC and CBC-nZVI
材料 准一级动力学模型 准二级动力学模型 R2 K1 qe R2 K2 qe CBC 0.986 −0.034 48.56 0.998 0.018 53.59 CBC-nZVI 0.975 −0.065 86.41 0.996 0.009 103.73 -
[1] JAIN C K, SINGH R D. Technological options for the removal of arsenic with special reference to South East Asia[J]. Journal of Environmental Management, 2012, 107: 1-18. [2] 严群, 桂勇刚, 周娜娜, 等. 混凝沉淀法处理含砷选矿废水[J]. 环境工程学报, 2014, 8(9): 3683-3688. [3] 陆俏利, 瞿广飞, 吴斌, 等. 矿区含砷尾矿及废渣稳定化研究[J]. 环境工程学报, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257 [4] 徐方男. 新型铁锰氧化物对水体中砷镉吸附性能及机理研究[D]. 杭州: 浙江大学, 2020. [5] 郭凌, 卜玉山, 张曼, 等. 煤基腐殖酸对外源砷胁迫下玉米生长及生理性状的影响[J]. 环境工程学报, 2014, 8(2): 758-766. [6] AREDES S, KLEIN, PAWLIK M. The removal of arsenic from water using natural iron oxide minerals[J]. Journal of Cleaner Production, 2013, 60: 71-76. doi: 10.1016/j.jclepro.2012.10.035 [7] 冷迎祥, 刘菲, 王文娟, 等. 小分子有机酸对纳米铁稳定砷的影响[J]. 环境工程学报, 2017, 11(5): 3195-3203. doi: 10.12030/j.cjee.201606010 [8] WANG M, CHEN Z, SONG W, et al. A review on cadmium exposure in the population and intervention strategies against cadmium toxicity[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(1): 65-74. doi: 10.1007/s00128-020-03088-1 [9] WU J, ZHANG H, HE P J, et al. Cr(VI) removal from aqueous solution by dried activated sludge biomass[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 697-703. [10] BASHA C A, SELVI S J, RAMASAMY E, et al. Removal of arsenic and sulphate from the copper smelting industrial effluent[J]. Chemical Engineering Journal, 2008, 141(1/2/3): 89-98. [11] LUONG V T, KURZ E E C, HELLRIEGEL U, et al. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects[J]. Water Research, 2018, 133: 110-122. doi: 10.1016/j.watres.2018.01.007 [12] 乔洪涛, 乔永生, 秦瑞红, 等. 微波酸改性生物炭的制备及其对Cd2+的吸附性能研究[J]. 化工新型材料, 2020, 48(4): 212-216. [13] 蒋国民, 王云燕, 柴立元, 等. 高铁酸钾处理含砷废水[J]. 过程工程学报, 2009, 9(6): 1109-1114. doi: 10.3321/j.issn:1009-606X.2009.06.013 [14] AINIWAER M, ZHANG T, ZHANG N, et al. Synergistic removal of As (III) and Cd (II) by sepiolite-modified nanoscale zero-valent iron and a related mechanistic study[J]. Journal of Environmental Management, 2022, 319: 115658. doi: 10.1016/j.jenvman.2022.115658 [15] SHU H Y, CHANG M C, CHEN C C, et al. Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 499-505. [16] GUAN X, SUN Y, QIN H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034 [17] 黄菲, 闫梦, 常建宁, 等. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能[J]. 环境化学, 2020, 39(4): 1116-1128. doi: 10.7524/j.issn.0254-6108.2019091604 [18] 曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制[J]. 复合材料学报, 2022, 40: 1-13. [19] 刘勇, 黄超, 翁秀兰, 等. 绿色合成纳米铁去除水中铬离子[J]. 环境工程学报, 2016, 10(8): 4118-4124. doi: 10.12030/j.cjee.201601146 [20] 金晓英, 杨露, 林强, 等. 绿色合成纳米铁镍去除水中Cr(Ⅵ)的动力学及机理[J]. 环境科学学报, 2022, 42(10): 284-292. [21] SAIF S, TAHIR A, CHEN Y. Green synthesis of iron nanoparticles and their environmental applications and implications[J]. Nanomaterials, 2016, 6(11): 209. doi: 10.3390/nano6110209 [22] MITTAL A K, CHISTI Y, BANERJEE U C. Synthesis of metallic nanoparticles using plant extracts[J]. Biotechnology Advances, 2013, 31(2): 346-356. doi: 10.1016/j.biotechadv.2013.01.003 [23] HOAG G E, COLLINS J B, HOLCOMB J L, et al. Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols[J]. Journal of Materials Chemistry, 2009, 19(45): 8671-8677. doi: 10.1039/b909148c [24] 曾慎亮, 翁秀兰, 童玉贵, 等. 绿色合成纳米铁同时去除水体中的Pb(Ⅱ)和Cd(Ⅱ)[J]. 环境科学学报, 2015, 35(11): 3538-3544. doi: 10.13671/j.hjkxxb.2015.0008 [25] 李赛. 绿色合成纳米零价铁与膨胀珍珠岩负载纳米零价铁降解混合染料的研究[D]. 太原: 太原理工大学, 2019. [26] MU Y, JIA F, AI Z, et al. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron[J]. Environmental Science:Nano, 2017, 4(1): 27-45. doi: 10.1039/C6EN00398B [27] RAMOS M A V, YAN W, LI X, et al. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core−shell structure[J]. Journal of Physical Chemistry C, 2009, 113(33): 14591-14594. doi: 10.1021/jp9051837 [28] XIAO J, GAO B, YUE Q, et al. Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron: characterization, kinetics and mechanism[J]. Chemical Engineering Journal, 2015, 262: 1226-1236. doi: 10.1016/j.cej.2014.10.080 [29] 盛杰, 傅浩洋, 王伟, 等. 纳米零价铁的表征及改性研究进展[J]. 环境化学, 2020, 39(11): 2959-2978. doi: 10.7524/j.issn.0254-6108.2020070803 [30] ÖZÇIMEN D, ERSOY-MERIÇBOYU A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy, 2010, 35(6): 1319-1324. doi: 10.1016/j.renene.2009.11.042 [31] MANDAL S, PU S, HE L, et al. Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil[J]. Environmental Pollution, 2020, 259: 113851. doi: 10.1016/j.envpol.2019.113851 [32] 李强, 杜玉成, 李杨, 等. 硅藻土基纳米结构AlOOH-MnO2复合氧化物沉积制备及其对As(Ⅴ)吸附性能[J]. 中国粉体技术, 2019, 25(4): 61-69. [33] KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic (III) from groundwater by nanoscale zero-valent iron[J]. Environmental Science & Technology, 2005, 39(5): 1291-1298. [34] 夏雪芬, 滑熠龙, 黄潇月, 等. 纳米零价铁对水中砷和硒去除的比较研究[J]. 化学学报, 2017, 75(6): 594. [35] SU C, PULS R W. Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation[J]. Environmental Science & Technology, 2001, 35(7): 1487-1492. [36] 杜琼. 树脂基纳米零价铁氧化—吸附同步去除水体As(Ⅲ)的特性研究[D]. 南京: 南京大学, 2014. [37] LI T, LIU Y, PENG Q, et al. Removal of lead (II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling[J]. Chemical Engineering Journal, 2013, 214: 189-197. doi: 10.1016/j.cej.2012.10.055 [38] 曹玮. 磁性生物炭去除废水中Pb2+、Cd2+的效果及机制初探[D]. 长沙: 中南林业科技大学, 2016. [39] 苏文龙, 成应向, 陈韬, 等. 芬顿污泥制备磁性吸附剂去除水中Sb(Ⅴ)[J]. 环境工程学报, 2022, 16(7): 2165-2177. doi: 10.12030/j.cjee.202202014 [40] XU H, GAO M, HU X, et al. A novel preparation of S-nZVI and its high efficient removal of Cr(VI) in aqueous solution[J]. Journal of Hazardous Materials, 2021, 416: 125924. doi: 10.1016/j.jhazmat.2021.125924 [41] 郭可心, 田佳一, 孙煜璨, 等. 磁性污泥基生物炭对Pb2+的吸附性能[J]. 环境工程学报, 2022, 16(5): 1416-1428. doi: 10.12030/j.cjee.202201003 [42] AHMED W, MEHMOOD S, NÚÑEZ-DELGADO A, et al. Utilization of Citrullus lanatus L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: Insights and comparison between modified and raw biochar[J]. Science of the Total Environment, 2021, 771: 144955. doi: 10.1016/j.scitotenv.2021.144955 [43] 樊建新, 秦亮, 段婷, 等. Fe3O4改性生物质炭对As的吸附特征研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(10): 111-118. [44] YAN W, RAMOS M A V, KOEL B E, et al. As (III) sequestration by iron nanoparticles: Study of solid-phase redox transformations with X-ray photoelectron spectroscopy[J]. Journal of Physical Chemistry C, 2012, 116(9): 5303-5311. doi: 10.1021/jp208600n [45] WANG P, FU F, LIU T. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: Emergence, preparation, optimization and mechanism[J]. Chemosphere, 2021, 285: 131435. doi: 10.1016/j.chemosphere.2021.131435 [46] O’CARROLL D, SLEEP B, KROL M, et al. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation[J]. Advances in Water Resources, 2013, 51: 104-122. doi: 10.1016/j.advwatres.2012.02.005 [47] MANNING B A, HUNT M L, AMRHEIN C, et al. Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products[J]. Environmental Science & Technology, 2002, 36(24): 5455-5461. [48] LIU K, LI F, CUI J, et al. Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms[J]. Journal of Hazardous Materials, 2020, 395: 122623. doi: 10.1016/j.jhazmat.2020.122623 [49] 李美蓉, 唐晨柳, 张伟贤, 等. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856. [50] LI Z, DENG S, YU G, et al. As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: Behavior and mechanism[J]. Chemical Engineering Journal, 2010, 161(1/2): 106-113. [51] 周世民. 铁基纳米复合材料的制备及对砷吸附性能研究[D]. 天津: 天津大学, 2016.