-
据《全国土壤污染调查公报 (2014年) 》[1]显示,我国目前受重金属污染的耕地面积约2.0×107 hm2,其中砷 (As) 是我国耕地、林地、草地的主要污染之一,超标率达到2.7%,重度污染点位占比为0.1%[2]。过度暴露于As污染环境中可导致皮炎、膀胱癌、神经毒性高血压等疾病[3-4]。美国有毒物质和疾病登记署 (TSDR) 基于重金属污染频率、毒性及潜在人体暴露可能性,评估得出As、Pb、Hg、Cd为4种最需控制的重金属[5]。固化/稳定化技术主要通过修复材料改变重金属形态,降低重金属可移动性及毒性,具有经济、快速的特点[6],生物炭作为一种稳定化材料对As具有一定的固定作用,因其来源广泛、价格低廉、环境友好等特点,在As修复研究中受到了极大关注[7]。然而,相比于其他重金属 (如Pb、Cd、Cr) ,生物炭对As稳定化效果更易受到环境影响。由于生物炭并未降低土壤中As总量,主要改变了As的形态,因此需要关注生物炭对As修复效果的长期稳定性。
通常认为,生物炭是一种稳定的炭材料,但目前越来越多证据表明生物炭施入土壤后会发生老化作用,其稳定性远低于预期[7-9]。KUZYAKOV等[10]研究表明,生物炭中超过80%的脂类和磷脂在3.5年内被分解,7%的稠合芳烃丢失。生物炭施入土壤2年后,其碳损失量高达11%~27%[9]。老化作用不仅使生物炭材料内不稳定碳发生矿化分解[7],降低碳总量,对碳形态、生物炭基本性质也会产生影响。例如,老化作用可能会导致生物炭中溶解性有机碳 (DOC) 质量分数增加,生物炭比表面积、表面官能团种类及数量、Zeta电位、灰分含量等发生变化。
生物炭材料老化是否会对生物炭钝化重金属效果产生影响?近几年一些学者开展了相关方面的研究。SU等[11]在对生物炭进行氧化老化的研究中发现,氧化老化会降低生物炭中K、Ca、Na等元素及C-O、O-C=O官能团数量,导致生物炭与Cd间共沉淀及π-π作用减弱;而ZHANG等[12]对生物炭进行了180 d高温和冻融老化后,发现老化后生物炭-OH、C=O官能团增强,进一步增强了其与Hg(II)的络合作用;黄晓雅等[13]通过30次干湿循环老化实验,发现老化作用提高了铈锰改性生物炭对红壤中As的稳定化效果,其原因可能是老化作用使生物炭表面酸性基团增强、pH下降、零点电荷增加,进而增强了生物炭对As静电吸附作用。但KIM等[14]发现,经25次干湿循环和冻融循环老化后,生物炭释放的DOC浓度分别是未老化生物炭的3.7、8.9倍,同时As的迁移性显著增强。老化条件下,生物炭与重金属间作用机制对重金属钝化效果的影响可能不同,然而,目前关于老化后生物炭对As稳定化效果和迁移行为影响仍不明确。实验室模拟老化实验可通过模拟自然环境中温度、水分等因素变化对生物炭的碳总量、形态[15]和基本理化性质[16]产生的影响,探究老化作用对生物炭与重金属间的吸附、钝化行为的影响。
本研究以As为主要研究对象,13C标记的生物炭为原料,通过吸附实验,制备As吸附饱和的13C标记生物炭,将其进行2种实验室模拟老化实验,拟通过分析老化前后生物炭的基本性质、碳总量、碳形态与生物炭钝化As的稳定性、As形态变化,探究老化作用对生物炭钝化As效果的影响,以期为评估生物炭钝化As的长期修复提供参考。
基于模拟老化和同位素技术的生物炭砷钝化效率评估
Assessment of biochar immobilization on arsenic based on simulated aging and isotope technology
-
摘要: 为探究生物炭钝化砷长期效果,运用实验室模拟老化和稳定同位素技术,对饱和吸附砷 (As) 的13C标记生物炭分别进行60 d冻融老化和自然老化实验,通过老化前后生物炭材料、碳总量、碳形态、TCLP提取态As (TCLP-As) 、As形态变化,评估生物炭材料老化对钝化砷稳定性的影响。结果表明,老化作用未明显改变As的价态 (As3+,As5+) ,但降低了生物炭对As的钝化效果,TCLP-As由老化前的46%分别增加至60% (冻融老化) 和63.6% (自然老化) 。这主要归因于老化作用促进生物炭中部分不稳定碳转化为溶解性有机碳 (DOC) ,而DOC具有较强迁移性,其丰富的含氧官能团可以与As络合,形成DOC-As团聚体而发生共迁移;此外,老化后生物炭Zeta负电位、PO43−数量的增加,灰分质量分数、pH的降低,导致生物炭与As间静电斥力增强,离子交换、沉淀作用减弱,促进了As的解吸释放,故生物炭对As的钝化效果降低。对比2种老化,自然老化后,生物炭与As之间静电斥力、As与PO43−竞争生物炭表面吸附点位更强,沉淀作用减弱更为明显;而冻融老化后生物炭比表面积相对较大,可提供更多吸附点位,故自然老化后生物炭钝化As稳定性低于冻融老化。本研究结果可为生物炭钝化砷的应用提供参考。Abstract: Simulated aging and stable isotope technology was conducted in laboratory to investigate the long-term immobilization of biochar on arsenic (As). 13C-labeled biochar with As-saturated adsorption was obtained through adsorption experiment, and then the freeze-thaw aging and spontaneous aging experiments were carried out for 60 days. The carbon stability of biochar was evaluated by the change of biochar material, total carbon content and morphology of biochar, immobilization of As by TCLP extraction and Tessier sequential extraction before and after the aging. The results showed that the As valence state (As3+, As5+) was not significantly affected by aging effect. However, the TCLP-As was increased from 46% (unaged) to 60% (freeze-thaw aging) and 63.6% (spontaneous aging) respectively. This was mainly due to the transformation of unstable carbon in biochar into dissolved organic carbon (DOC) after aging, which had strong mobility and rich oxygen-containing functional groups. The DOC was easy complex with As and co-migration as DOC-As complex. In addition, the increased Zeta negative potential and the concentration of PO43− and the decreased ash mass fraction and pH of biochar enhanced electrostatic repulsion between biochar and As, and then reduced the ion exchange and precipitation between biochar and As. Compared with freeze-thaw aging and spontaneous aging, the freeze-thaw aging was more conducive to pore adsorption, while for spontaneous aging, the electrostatic repulsion and competitive adsorption between biochar and As were stronger, and obviously weakening of precipitation of As and PO43−. Therefore, the stability of biochar immobilization of As after spontaneous aging was lower than that of freeze-thaw aging. This study could provide a good reference for the application of biochar passivation of arsenic.
-
Key words:
- freeze-thaw aging /
- spontaneous aging /
- As morphology /
- 13C stable isotope /
- dissolved organic carbon
-
表 1 老化前后生物炭比表面积与孔体积分析
Table 1. Analysis of specific surface area and pore volume of original and aged biochar
生物炭
类型比表面积/
(m2·g−1)比表面积增幅/
%孔体积/
(cm3·g−1)孔体积增幅/
%BC 1.786 — 0.012 — BCFTC 5.462 205.8 0.045 275.0 BCSPON 4.241 137.5 0.042 250.0 表 2 生物炭老化前后δ13C、元素组成、灰分质量分数和元素摩尔比
Table 2. The δ13C, elemental composition, ash Mass fraction and molar ratio of elements of original and aged biochar
生物炭类型 δ13C/‰ 元素质量分数/% ω (灰分) /% 原子比 N C H S O H/C O/C (O+N)/C BC 27.81 1.81 54.76 1.74 0.17 21.48 20.04 0.29 0.38 0.32 BCFTC 27.73 1.85 55.60 1.82 0.15 22.36 18.22 0.30 0.39 0.33 BCSPON 27.13 1.78 54.11 1.72 0.13 25.29 17.17 0.35 0.38 0.38 表 3 不同老化过程中As浸出量与生物炭Zeta电位、DOC质量分数、pH相关性分析
Table 3. Correlation analysis between As leaching ratios with biochar Zeta potential, DOC mass fraction, pH during different aging processes
老化方式 TCLP-As与Zeta
电位相关性TCLP-As与DOC
质量分数相关性TCLP-As与pH
相关性冻融老化 −0.452 0.956* −0.177 自然老化 −0.932 0.963* −0.805 注:*表示在0.05水平 (双侧) 上显著相关。 -
[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2014-04-17]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf. [2] ZENG S, MA J, YANG Y, et al. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 2019, 687: 642-653. doi: 10.1016/j.scitotenv.2019.05.291 [3] 罗海艳. 铁锰改性生物炭对土壤镉砷形态及水稻积累镉砷的影响[D]. 湖南农业大学, 2019. [4] PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510 [5] GONG H, ZHAO L, RUI X, et al. A review of pristine and modified biochar immobilizing typical heavy metals in soil: Applications and challenges[J]. Journal of Hazardous Materials, 2022: 128668. [6] AHMED W, MEHMOOD S, NÚÑEZ-DELGADO A, et al. Adsorption of arsenic(III) from aqueous solution by a novel phosphorus-modified biochar obtained from Taraxacum mongolicum Hand-Mazz: Adsorption behavior and mechanistic analysis[J]. Journal of Environmental Management, 2021, 292: 112764. doi: 10.1016/j.jenvman.2021.112764 [7] HAN L, SUN K, YANG Y, et al. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma, 2020, 364: 114184. doi: 10.1016/j.geoderma.2020.114184 [8] KNICKER H, HILSCHER A, De la ROSA J M, et al. Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils[J]. Geoderma, 2013, 197: 43-50. [9] ROMBOLA A G, FABBRI D, MEREDITH W, et al. Molecular characterization of the thermally labile fraction of biochar by hydropyrolysis and pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 230-239. doi: 10.1016/j.jaap.2016.08.003 [10] KUZYAKOV Y, BOGOMOLOVA I, GLASER B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis[J]. Soil Biology and Biochemistry, 2014, 70: 229-236. doi: 10.1016/j.soilbio.2013.12.021 [11] SU Y, WEN Y, YANG W, et al. The mechanism transformation of ramie biochar’s cadmium adsorption by aging[J]. Bioresource Technology, 2021, 330: 124947. doi: 10.1016/j.biortech.2021.124947 [12] ZHANG S, YANG X, JU M, et al. Mercury adsorption to aged biochar and its management in China[J]. Environmental Science and Pollution Research, 2019, 26: 4867-4877. doi: 10.1007/s11356-018-3945-3 [13] 黄晓雅, 李莲芳, 朱昌雄, 等. 干湿交替对铈锰改性生物炭固定红壤As的影响[J]. 环境科学, 2021, 42(21): 5997-6005. doi: 10.13227/j.hjkx.202105007 [14] KIM H, KIM J, KIM T, et al. Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature[J]. Chemical Engineering Journal, 2021, 411: 128441. doi: 10.1016/j.cej.2021.128441 [15] JIANG S, DAI G, LIU Z, et al. Field-scale fluorescence fingerprints of biochar-derived dissolved organic matter (DOM) provide an effective way to trace biochar migration and the downward co-migration of Pb, Cu and As in soil[J]. Chemosphere, 2022, 301: 134738. doi: 10.1016/j.chemosphere.2022.134738 [16] WANG L, O CONNOR D, RINKLEBE J, et al. Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science & Technology, 2020, 54(23): 14797-14814. [17] LIANG Y, LI X, YANG F, et al. Tracing the synergistic migration of biochar and heavy metals based on 13C isotope signature technique: Effect of ionic strength and flow rate[J]. Science of the Total Environment, 2023, 859: 160229. doi: 10.1016/j.scitotenv.2022.160229 [18] SIDDIQ O M, TAWABINI B S, SOUPIOS P, et al. Removal of arsenic from contaminated groundwater using biochar: a technical review[J]. International Journal of Environmental Science and Technology, 2022: 1-14. [19] LENG L, HUANG H. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 2018, 270: 627-642. doi: 10.1016/j.biortech.2018.09.030 [20] MCBEATH A V, WURSTER C M, BIRD M I. Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis[J]. Biomass and Bioenergy, 2015, 73: 155-173. doi: 10.1016/j.biombioe.2014.12.022 [21] CHANG R, SOHI S P, JING F, et al. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation[J]. Environmental Pollution, 2019, 254: 113123. doi: 10.1016/j.envpol.2019.113123 [22] United States Environmental Protection Agency: Washington DC. Method 1311: Toxicity characteristic leaching procedure[S]. 1992: 1-35. [23] 陈昱, 梁媛, 郑章琪, 等. 老化作用对水稻秸秆生物炭吸附Cd(Ⅱ)能力的影响[J]. 环境化学, 2016, 35(11): 2337-2343. doi: 10.7524/j.issn.0254-6108.2016.11.2016031601 [24] HUFF M D, LEE J W. Biochar-surface oxygenation with hydrogen peroxide[J]. Journal of Environmental Management, 2016, 165: 17-21. [25] HALE S, HANLEY K, LEHMANN J, et al. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J]. Environmental Science & Technology, 2011, 45(24): 10445-10453. [26] KE Y, ZHANG F, ZHANG Z, et al. Effect of combined aging treatment on biochar adsorption and speciation distribution for Cd(II)[J]. Science of the Total Environment, 2023: 161593. [27] 环境保护部. 水质汞、砷、硒、铋和锑的测定 原子荧光法: HJ 694-2014[S]. 北京: 中国环境科学出版社, 2014. [28] 刘丹丹, 刘菲, 缪德仁. 土壤重金属连续提取方法的优化[J]. 现代地质, 2015, 29(2): 390-396. doi: 10.3969/j.issn.1000-8527.2015.02.024 [29] CHEN J, WANG P, DING L, et al. The comparison study of multiple biochar stability assessment methods[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105070. doi: 10.1016/j.jaap.2021.105070 [30] XU Z, XU X, TSANG D C, et al. Contrasting impacts of pre-and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution, 2018, 242: 1362-1370. doi: 10.1016/j.envpol.2018.08.012 [31] XU X, KAN Y, ZHAO L, et al. Chemical transformation of CO2 during its capture by waste biomass derived biochars[J]. Environmental Pollution, 2016, 213: 533-540. doi: 10.1016/j.envpol.2016.03.013 [32] TAN Z, YUAN S, HONG M, et al. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd[J]. Journal of Hazardous Materials, 2020, 384: 121370. doi: 10.1016/j.jhazmat.2019.121370 [33] NIER A O. Determination of isotopic masses and abundances by mass spectrometry[J]. Science, 1955, 121(3152): 737-744. doi: 10.1126/science.121.3152.737 [34] TANG W, JING F, LAURENT Z B L G, et al. High-temperature and freeze-thaw aged biochar impacts on sulfonamide sorption and mobility in soil[J]. Chemosphere, 2021, 276: 130106. doi: 10.1016/j.chemosphere.2021.130106 [35] SORRENTI G, MASIELLO C A, DUGAN B, et al. Biochar physico-chemical properties as affected by environmental exposure[J]. Science of the Total Environment, 2016, 563: 237-246. [36] 刘文慧, 王昱璇, 陈丹丹, 等. 老化作用对生物炭理化特性的影响[J]. 工程热物理学报, 2021, 42(6): 1575-1582. [37] XU D, ZHAO Y, SUN K, et al. Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties[J]. Chemosphere, 2014, 111: 320-326. doi: 10.1016/j.chemosphere.2014.04.043 [38] ZHANG L, ZHU D, WANG H, et al. Humic acid‐mediated transport of tetracycline and pyrene in saturated porous media[J]. Environmental Toxicology and Chemistry, 2012, 31(3): 534-541. doi: 10.1002/etc.1726 [39] XU Z, WAN Z, SUN Y, et al. Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation[J]. Journal of Hazardous Materials, 2022, 430: 128479. doi: 10.1016/j.jhazmat.2022.128479 [40] LIAN F, XING B. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. [41] BENIS K Z, DAMUCHALI A M, SOLTAN J, et al. Treatment of aqueous arsenic–A review of biochar modification methods[J]. Science of the Total Environment, 2020, 739: 139750. doi: 10.1016/j.scitotenv.2020.139750 [42] CUI X, FANG S, YAO Y, et al. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar[J]. Science of the Total Environment, 2016, 562: 517-525. doi: 10.1016/j.scitotenv.2016.03.248 [43] KIM H, KIM S, JEON E, et al. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil[J]. Science of the Total Environment, 2018, 636: 1241-1248. doi: 10.1016/j.scitotenv.2018.04.406 [44] 张林. 微生物介导下砷和锑迁移规律及机制的研究[D]. 西安建筑科技大学, 2018.