基于模拟老化和同位素技术的生物炭砷钝化效率评估

王思雨, 梁媛, 刘胜, 程媛媛, 史广宇. 基于模拟老化和同位素技术的生物炭砷钝化效率评估[J]. 环境工程学报, 2023, 17(7): 2305-2313. doi: 10.12030/j.cjee.202302071
引用本文: 王思雨, 梁媛, 刘胜, 程媛媛, 史广宇. 基于模拟老化和同位素技术的生物炭砷钝化效率评估[J]. 环境工程学报, 2023, 17(7): 2305-2313. doi: 10.12030/j.cjee.202302071
WANG Siyu, LIANG Yuan, LIU Sheng, CHENG Yuanyuan, SHI Guangyu. Assessment of biochar immobilization on arsenic based on simulated aging and isotope technology[J]. Chinese Journal of Environmental Engineering, 2023, 17(7): 2305-2313. doi: 10.12030/j.cjee.202302071
Citation: WANG Siyu, LIANG Yuan, LIU Sheng, CHENG Yuanyuan, SHI Guangyu. Assessment of biochar immobilization on arsenic based on simulated aging and isotope technology[J]. Chinese Journal of Environmental Engineering, 2023, 17(7): 2305-2313. doi: 10.12030/j.cjee.202302071

基于模拟老化和同位素技术的生物炭砷钝化效率评估

    作者简介: 王思雨 (1997—) ,女,硕士研究生,3498340882@qq.com
    通讯作者: 梁媛(1977—),女,博士,副教授,liangyuan@usts.edu.cn
  • 基金项目:
    江苏省研究生实践创新计划资助项目 (SJCX21_1408) ;苏州科技发展支撑计划资助项目 (SS2019027)
  • 中图分类号: X53

Assessment of biochar immobilization on arsenic based on simulated aging and isotope technology

    Corresponding author: LIANG Yuan, liangyuan@usts.edu.cn
  • 摘要: 为探究生物炭钝化砷长期效果,运用实验室模拟老化和稳定同位素技术,对饱和吸附砷 (As) 的13C标记生物炭分别进行60 d冻融老化和自然老化实验,通过老化前后生物炭材料、碳总量、碳形态、TCLP提取态As (TCLP-As) 、As形态变化,评估生物炭材料老化对钝化砷稳定性的影响。结果表明,老化作用未明显改变As的价态 (As3+,As5+) ,但降低了生物炭对As的钝化效果,TCLP-As由老化前的46%分别增加至60% (冻融老化) 和63.6% (自然老化) 。这主要归因于老化作用促进生物炭中部分不稳定碳转化为溶解性有机碳 (DOC) ,而DOC具有较强迁移性,其丰富的含氧官能团可以与As络合,形成DOC-As团聚体而发生共迁移;此外,老化后生物炭Zeta负电位、PO43−数量的增加,灰分质量分数、pH的降低,导致生物炭与As间静电斥力增强,离子交换、沉淀作用减弱,促进了As的解吸释放,故生物炭对As的钝化效果降低。对比2种老化,自然老化后,生物炭与As之间静电斥力、As与PO43−竞争生物炭表面吸附点位更强,沉淀作用减弱更为明显;而冻融老化后生物炭比表面积相对较大,可提供更多吸附点位,故自然老化后生物炭钝化As稳定性低于冻融老化。本研究结果可为生物炭钝化砷的应用提供参考。
  • 近年来,我国农村生活污水治理作为农村人居环境整治的重要内容,越发受到人们的重视,《农村人居环境整治提升五年行动方案(2021—2025年)》明确指出了对提高农村生活污水治理率、推进农村厕所革命的要求。其中,探讨污水排放特征是农村生活污水治理的重要一环,农村生活污水排放特征是指农村居民生活产生的污水排入环境中时水温、水量和水质等特点,其揭示了农村地区排放污水的污染物负荷情况和变化规律,帮助农村地区更加科学地选用和设计适宜的污水治理工艺模式和处理设施规模,也为农村生活污水的治理规划提供基础数据[1-3]。目前,关于农村生活污水排污特征的研究,多集中于太湖、巢湖以及三峡等重要流域周围的普通农村地区,且主要以农户为研究对象进行抽查调研,如程方奎等[4]入户调研了太湖流域的3个样本家庭,采用源分类的方法探讨了污水中污染物负荷的特点,何源等[5]以巢湖地区典型农户家庭为调研对象,研究了每户产生黑水和灰水水量以及产污系数,彭绪亚等[6]探讨了三峡库区18户典型农户的污水产生量与污染物负荷情况,并研究了地域、收入水平和季节等因素对其的影响。

    城郊型村镇,是指位于城乡结合部的村镇地区[3],处于城乡要素相互融合的过渡性地带[7]。近年来,随着城镇化的快速发展,越来越多农村地区被纳入城市建设的规划范围,城乡结合部的面积不断扩大,城郊型村镇作为一类典型的农村地区也逐渐引起人们的关注[3,7-8]。不同于普通农村地区,城郊型村镇具有较高密度的人群和相对发达的经济,境内居民生活水平普遍更高且产业类型更为多样[9-10],然而,同时城郊型村镇也面临滞后的基础设施建设无法与日益增加的污染排放相匹配的现状,农户改厕、污水收集管网和处理设施建设等工作进展较为缓慢,使得城郊型村镇的环境污染问题较为突出[11-12]。目前,城郊型村镇的生活污水治理多套用普通农村地区或城市的治理模式,针对该典型农村地区生活污水排放特征的研究也较为薄弱[3,13]。因此,本研究以北方地区黄河流域下的一个典型城郊型村镇——山西省晋城市巴公镇为研究对象,探讨了该镇区内集中收集的农村生活污水排入环境中时的水温、水量和水质特点,了解该城郊型村镇生活污水排放特征和污染负荷情况,补充该类典型农村地区生活污水治理的基础数据,从而帮助更科学的选择城郊型村镇污水治理工艺模式,推进后续农村生活污水治理项目。

    山西省晋城市巴公镇位于山西省东南部,全镇辖38个行政村、2个社区,总面积112 km2,人口6.2×104人;地貌以山地丘陵为主,年平均气温约10 ℃,年降水量618.3 mm,四季分明,雨热同期;境内主要河道有巴公南河、巴公北河等8条[14]。巴公镇作为典型城郊型村镇,境内煤、铁资源丰富,社会经济发展和居民生活水平均较普通农村地区更高,居民住宅楼分布集中,地面硬质化比例较高,基础设施建设较为完善。另外,境内“改水、改厕、改污”工作同步进行中,自来水供应基本实现全覆盖,农户厕所改造和污水管道铺设工作还在持续推进,管道收集方式采用雨污合流制,目前建成区已有污水处理厂2座。

    本研究依据巴公镇生活污水治理工作的推进情况,以巴公一村、二村、三村和四村的部分区域为研究对象,具体覆盖范围由北到南依次为巴原街、科工贸大街和南环街两侧的居民居住区(图1),居民产生的生活污水通过地埋式污水管道集中收集,统一汇入南环街东南侧排污口,经过简单的土壤渗滤处理后排入荒地。值得注意的是,由于研究区内持续进行的农户厕所改造和污水管道铺设工作,笔者探讨研究区排污特征主要分为3个阶段:1) 2021年10月—2022年7月,管道扩建前期,排污口主要收集了科工贸大街两侧的居民生活污水;2) 2022年8月—2022年11月,管道扩建后期,污水管道新接入南环街和巴原街两侧的居民生活污水,排污口污水水量增大;3)2022年12月—2023年3月,集中改厕后期,研究区内改厕率提高,排放污水中污染物浓度提高。

    图 1  巴公镇研究区污水收集示意图
    Figure 1.  Sewage collection diagrammatic map of Bagong study area

    根据实地调研,截至2023年3月,巴公镇研究区总面积约0.88 km2,总人口约5 000人,研究区内除一般居民住宅楼外,还有商场1座、小型餐馆约60个、洗浴中心2个、住宿学校2所、医院1座以及若干其他商铺,根据其污水产生的特点,污水来源主要可分为普通居民生活用水、餐饮行业用水、洗浴中心用水和降水4种类型。其中,1)普通居民生活用水,包括一般居民生活用水、住校学生用水和普通商铺用水,污水收集方式分为2种:已完成厕所改造的农户,居民生活产生的厕所污水先收集至化粪池中沉淀发酵,上清液再与居民洗漱、洗浴和餐厨污水共同汇入污水管道;未完成厕所改造的农户,居民产生的生活污水只有灰水进入污水管道。2)餐饮行业用水,包括研究区内60个餐馆用水和2所学校食堂用水,产生污水首先经过隔油池初步处理,并过滤食物残渣后进入污水管道,排放量约50~80 m3·d−1。3)洗浴中心用水,指研究区内2个洗浴中心的用水,主要分为淋浴用水和浴池用水两方面,产生污水直接排入管道,排放量约5~15 m3·d−1。4)降水,主要集中在每年雨季6月—9月,直接汇入污水管道随居民生活污水共同排出。经过初步测算,巴公镇研究区在非雨季期间,排放生活污水水量约80%~90%来自普通居民生活用水,5%~10%来自餐饮行业用水,1%~5%来自洗浴中心用水。

    采样点设置于研究区内南环街东南侧的排污口处,从2021年10月—2023年3月,持续一年半监测排污口水温、水量和水质的基本情况,监测频率为每月2~3次,具体采样日期避开降水天气,尽量降低非雨季期间降水对研究区污水排污特征的影响。水温检测采用一般的水温计测量,水量检测采用旋浆式流速仪结合管道污水断面面积进行估算,水质检测通过实地采样后带回实验室分析测定。

    水质检测,选用聚丙烯无菌采样瓶采集水样,将水样于4 ℃的条件下低温保存,并于采样后的第2天进行水质检测。综合山西省《农村生活污水处理设施水污染物排放标准》(DB 14/726-2019)和山西省《污水综合排放标准》(DB 14/1928-2019),研究选用TN、NH4+-N、TP、COD作为水质检测指标,TN采用碱性过硫酸钾消解紫外分光光度法测定(HJ 636-2012),NH4+-N采用纳氏试剂分光光度法测定(HJ 535-2009),TP采用钼酸铵分光光度法测定(GB 11893-1989),COD采用重铬酸盐法测定(HJ 828-2017)。

    2021年10月—2023年3月,巴公镇研究区排放的污水月平均水温和月平均气温变化如图2所示。根据巴公镇月平均气温的变化情况,可将当地的四季时段划分为春季3—5月、夏季6—8月、秋季9—11月和冬季12月—翌年2月,其中2022年和2023年的1月份月平均气温(分别为-0.5和-1.0 ℃)最低,2022年8月份月平均气温(24.5 ℃)最高。同时,巴公镇研究区排放的生活污水水温与当地气温呈现相同的变化趋势,污水在冬季12月—翌年2月的平均温度较低,夏季6月—8月的平均温度较高,其中2022年和2023年1月的平均水温(分别为10.1和10.5 ℃)最低,2022年7月平均水温(22.5 ℃)最高。污水水温是研究农村生活污水排放特征的重要内容之一,其作为控制微生物生长代谢的重要参数,很大程度上影响了后续采取农村生活污水处理工艺的运行效果[15]。一般情况下污水处理中微生物反应的适宜水温在15~35 ℃[16],该范围内温度越高、微生物活性越高,处理效果越好,反之温度越低、处理效果越差,而当污水水温降至5 ℃以下,生物脱氮除磷效果基本丧失[17]。本研究中,巴公镇研究区排放的生活污水水温全年基本保持在10 ℃以上,且每年5月—10月期间,污水水温升至15~25 ℃,表明巴公镇研究区排放污水水温全年保持在较高水平[11],保证了农村生活污水处理中微生物的活性以及冬季低温条件下的城郊型村镇生活污水处理工艺的除污效果[18]

    图 2  污水水温和环境气温随时间的变化
    Figure 2.  Variation of sewage and atmospheric temperature with time

    巴公镇研究区排放污水水温的影响因素可以分为自然因素和人为因素两个方面。自然因素主要指环境气温对污水水温的影响,如图2所示,巴公镇区污水月平均水温和月平均气温随时间的变化趋势基本一致,双变量Pearson检验结果表明,研究区气温和产生的污水水温呈显著正相关关系(R=0.955,P<0.01),进一步回归表明,巴公镇研究区排放污水水温的变化速率约为环境温度变化速率的0.4倍,揭示了巴公镇研究区管道收集排放的污水水温与环境气温之间的变化关系。人为因素主要包括居民生活习惯和人为基础设施的影响,根据实地调研,巴公镇作为城郊型村镇,经济发展迅速,居民生活水平较高,供热基础设施建设较为完善,热水器使用普遍,因此冬季用水温度较高,使得产生的污水水温也较高[19];另外,巴公镇研究区生活污水采用的地埋式集中污水管道的收集方法,对污水也有很好的保温效果[20],使得巴公镇研究区排污口的生活污水在冬季也能基本保持在10 ℃以上。

    1)污水水量整体特征分析。2021年10月—2023年3月,巴公镇研究区污水排放量变化为150~600 m3·d−1,波动范围较大。由于受到2022年8月人为管道扩建和2022年12月农户集中改厕的影响,研究区污水水量特征分析分为3个时期进行探讨,分别为2021年10月—2022年7月管道扩建前期、2022年8月—2022年11月管道扩建后期和2022年12月—2023年3月集中改厕后期。图3为巴公镇研究区月均污水排放量和月总降水量的年变化图。2021年10月—2022年7月,污水管道扩建前,排放污水主要来自研究区内科工贸大街两侧的居民生活污水,污水排放量为150~500 m3·d−1,其中2021年10月—2022年2月受冬季居民用水习惯的影响,冬季气温下降、居民用水量减少[21-22],研究区污水水量呈现逐渐降低的趋势,2月份污水平均排放量只有150 m3·d−1左右,后续随气温回暖、污水水量逐渐回升;2022年3月的污水水量,对比2022年2月和4月呈现较为明显的升高趋势(水量提高了30~80 m3·d−1),根据实地调研记录,分析原因为疫情封控影响,研究区内采取停课、停工、停产的措施,所有农户居家隔离、不得外出,导致3月居民生活用水明显增加,污水排放量也呈现明显升高趋势[23];2022年6月开始,巴公镇研究区进入雨季,雨污合流的污水收集模式,使得降水成为雨季污水水量的主要影响因素[24]图3表明2022年6月和7月,研究区污水平均排放量随当月降水量迅速上升,从非雨季的200~300 m3·d−1升高至接近500 m3·d−1。2022年8月—2022年11月,管道扩建后,新进巴原街和南环街两侧的居民生活污水,使得污水排放量进一步提高,排除2022年8月和9月降水的主要影响,污水水量整体从管道扩建前的200~300 m3·d−1升高至管道扩建后的400~500 m3·d−1。2022年12月—2023年3月,集中改厕后,巴公镇研究区内改厕率提升,更多村户产生的黑水收入污水管道,水量进一步升高,非雨季污水水量提升至500 m3·d−1以上。以上研究结果表明,巴公镇研究区污水排放量的影响因素主要包括自然因素和人为因素两个方面,自然因素是指雨季降水使得研究区污水排放量明显升高[3,11];人为因素主要包括居民生活习惯、疫情管控、污水管道扩建和农户改厕的影响,其中污水管道建设和农户改厕作为巴公镇基础设施建设和污水治理工作的重要内容之一,仍在持续推进中,成为非雨季影响研究区污水排放量的主要因素。

    图 3  污水水量与降水量随时间的变化
    Figure 3.  Variation of sewage quantity and precipitation with time

    根据前期调研,2021年10月—2022年7月,污水管道扩建前,巴公镇研究区覆盖约2 200人;2022年8月—2023年3月,污水管道扩建后,研究区覆盖人数提升至约5 000人。根据监测所得巴公镇研究区污水排放量数据,估算当地人均每日生活污水排放量,结果表明:雨季期间,巴公镇研究区内人均每日生活污水排放量约120~227 L·(人·d)−1;非雨季期间,巴公镇研究区内人均每日生活污水排放量约91~136 L·(人·d)−1。按照《城市排水工程规划规范》(GB 50318—2017),城镇生活污水排放系数为0.7~0.9,由于本研究区内地表硬化率高、污水收集设施较为完善,因此,一般取生活污水排放系数为0.8[3],从而计算得出巴公镇研究区非雨季人均每日用水量为113~170 L·(人·d)−1。对比普通农村地区,晋城市巴公镇下的来村非雨季人均每日生活污水排放量只有约41 L·(人·d)−1,隔壁山西省运城市下农村地区居民日用水量为60~100 L·(人·d)−1[25]。以上结果表明巴公镇研究区作为经济条件较好和居民生活水平较高的城郊型村镇,人均每日用水量和污水排放量均较普通农村地区水平更高。

    2)降水对污水水量的影响分析。巴公镇降水量主要集中在每年的夏季6—9月,雨热同期,2022年6月进入雨季,巴公镇研究区排放污水水量随降水的进行呈现明显上升趋势,污水排放量从非雨季的200~300 m3·d−1升高至雨季300~500 m3·d−1,提升近1倍。研究区内雨污合流的污水收集模式,使得污水排放量受到较为明显的气候影响,雨季期间随降雨量增大出现明显提升,旱季期间又恢复正常水平[11]。进一步探讨巴公镇研究区月降水量与管道污水排放量的关系,对管道扩建前2021年10月—2022年7月的污水水量和降水量进行相关性分析,结果表明相关系数为0.972(P<0.01),表明巴公镇研究区污水管道排放量与降水量呈显著正相关关系,且回归分析得出:月均污水水量=205.28+0.847×月总降水量(图4(a))。2022年8月—2023年3月,除降水量外,研究区污水排放量进一步受到污水管道扩建和农户集中改厕的明显影响,在2022年8月和2022年12月出现2个峰值,降水量与管道污水排放量之间的关系发生改变;综合2次基础设施建设的影响,进一步分析巴公镇研究区月降水量与管道污水排放量的关系,结果表明研究区月均污水水量依然与月总降水量的呈显著正相关关系(R=0.930,P<0.01),且回归分析得出:月均污水水量=563.32+1.678×月总降水量(图4(b)),表明随着污水管道扩建和改厕工作的推进、研究区污水水量随降水量的变化幅度增大。本研究结果初步揭示了巴公镇研究区内,合流制管道收集的污水排放量与当地降水量之间的关系,定量地说明降水对合流制污水管道排放量的影响,有助于更科学预测巴公镇研究区内管道排放的污水水量负荷,设置合适的污水处理工艺与处理规模。

    图 4  污水水量与降水量的回归分析
    Figure 4.  Linear regression analysis of sewage quantity and precipitation

    1)污水污染物浓度整体特征分析。巴公镇研究区污水中污染物的浓度如表1所示,经过2021年10月—2023年3月一年半的水质检测分析,巴公镇研究区排放的污水中TN、NH4+-N、TP、耗氧有机污染物(以COD计)4项污染物的平均浓度分别为36.4、34.0、2.5和131.0 mg·L−1,且各项指标的波动幅度较大,变化范围均在5倍以上,COD值的波动范围甚至达到10倍以上。有研究表明,华北地区一般农户产生污水的水质情况为:NH4+-N浓度20.0~90.0 mg·L−1,TP浓度2.0~6.5 mg·L−1,COD值为200.0~450.0 mg·L−1[26],城市生活污水处理厂的进水浓度更是达到了NH4+-N浓度20.0~146.0 mg·L−1,TP浓度2.6~24.2 mg·L−1,COD值100.0~1 570.0 mg·L−1[4],对比本研究结果,巴公镇研究区污水中各项污染物浓度均处于较低水平。分析原因,一般情况下农村生活污水中NH4+-N浓度代表了人畜排泄物的情况,NH4+-N浓度越高、污水中黑水占比越高[27],然而本研究中,截至2023年3月巴公镇研究区的改厕率仅为50%左右,许多村民依然使用旱厕,导致污水管道中黑水收集较少,因此污水中TN和NH4+-N浓度较低;污水中的P主要来源于日常用水中洗涤剂的使用,特别是厨房洗碗水和洗衣用水[28],本研究中TP的浓度为0.7~4.4 mg·L−1,说明巴公镇研究区内居民对于洗涤剂的使用量较低;生活污水中耗氧有机污染物主要来源依次为厕所黑水和厨房用水两方面[29],因此,研究区较低的改厕率也影响了污水中的COD值;另外,巴公镇研究区采用的雨污合流的污水管道收集模式,以及仍在不断推进的改厕工作,使得本研究中TN、NH4+-N、TP、COD 4项污染物浓度波动范围较大。

    表 1  污水中污染物浓度
    Table 1.  The concentration of pollutants in sewage mg·L−1
    统计结果TNNH4+-NTPCOD
    范围10.6~60.110.0~56.50.7~4.439.0~469.0
    均值36.434.02.5131.0
     | Show Table
    DownLoad: CSV

    图5为巴公镇研究区排放污水中TN、NH4+-N、TP、COD 4项污染物浓度随时间的变化情况。2021年10月—2023年3月分为管道扩建前、管道扩建后和集中改厕后3个时期。2021年10月—2022年7月,管道扩建前,研究区污水中4种污染物浓度整体均呈逐渐降低的趋势,其中2021年10月—2022年5月非雨季期间,污染物浓度最高的时期为2021年10月—2021年12月,TN和NH4+-N浓度保持在40.0~50.0 mg·L−1,TP浓度和COD值达到3.6 mg·L−1和171.9 mg·L−1,后续除2022年3月外,4项污染物浓度均呈现逐渐降低的趋势;经过实地调研,2022年3月由于疫情影响,巴公镇研究区实施全员封控、不得外出的措施,导致期间居民生活用水量明显提高,加上排放污水中黑水的比例增加,使得污水中污染物浓度整体有所回升[23];雨季2022年6月—7月,TN、NH4+-N、TP、COD 4项污染物浓度受降水影响,继续呈现逐渐降低的趋势,管道扩建之前,巴公镇研究区非雨季污水的污染物浓度为TN 28.8~47.3 mg·L−1、NH4+-N 24.7~45.2 mg·L−1、TP 1.6~3.6 mg·L−1和COD 93.5~171.9 mg·L−1,整体均高于雨季污水的污染物浓度TN(25.0~29.0 mg·L−1)、NH4+-N(23.6~25.5 mg·L−1)、TP(1.9~2.2 mg·L−1)和COD(67.0~91.0 mg·L−1),这与袁晓燕等[3]和陈雪峰等[30]的研究结果一致,雨热同期导致雨季期间居民生活用水增加,以及大量降雨汇入管道对污水产生的稀释作用,使得雨季污水中污染物浓度普遍低于非雨季[31]

    图 5  4项污染物浓度随时间的变化
    Figure 5.  Variation of pollutant concentration with time

    2022年8月—11月,管道扩建后,新进改厕率较低的生活污水,以及雨季降水的影响,使得TN、NH4+-N、TP、COD 4项污染物浓度进一步降低,直至10—11月,随着雨季结束,污水中污染物浓度开始缓慢回升。2022年12月—2023年3月,集中改厕后,由于收集的居民生活污水中,黑水占比进一步增加,导致巴公镇研究区管道排放的污水中TN、NH4+-N和COD值明显提高,进一步证明居民生活污水中TN、NH4+-N和耗氧有机污染物(以COD计)主要来源于厕所黑水[27,29]。以上研究结果表明,居民生活习惯、疫情管控、自然降水、管道扩建以及农户改厕均在一定程度上影响巴公镇研究区排放的污水污染物浓度,其中人为的农户集中改厕工作是影响研究区污水水质的主要因素,其作为巴公镇污水治理工作的重要内容之一,目前仍在持续推进中。

    2)污水水质和水量的相关性分析。研究进一步将巴公镇研究区管道排放的污水水量和TN、NH4+-N、TP、COD 4项污染物浓度进行相关性分析,结果如表2图6所示。在巴公镇研究区排放的生活污水中,TN、NH4+-N和COD值之间均呈显著正相关关系(P<0.01),其中TN与NH4+-N的相关性最强(R=0.993,P<0.01),说明污水中3种污染物浓度总是具有相同的变化趋势,共同升高或共同降低。这是由于生活污水中TN、NH4+-N和耗氧有机污染物(以COD计)的主要来源均为厕所用水[27,29],使得污染物浓度随着污水中黑水的占比发生相同的变化趋势,这与陈茂霞等[11]的研究结果一致;TP浓度与COD值的相关性并不显著,与TN和NH4+-N浓度之间呈显著正相关关系(P<0.01),浓度变化趋势相似。本研究中,巴公镇研究区排放的污水水量与TN、NH4+-N、TP和COD值之间的相关关系均不显著,这与彭绪亚等[6]的研究结果不同。一般情况下污水水量与污染物浓度之间具有负相关关系,污水产生越多、污染物浓度越低,而巴公镇研究区排放污水水量与污染物浓度的相关性并不显著,分析原因可能为,人为的管道扩建和农户改厕工作作为研究区污水水质和水量的主要影响因素,在研究期间持续的推进,打乱了两者之间的变化关系。以上研究结果表明,巴公镇研究区排放的生活污水中,污染物浓度受污水来源等因素的影响,TN、NH4+-N、TP和COD 4项污染物之间具有较强的相关性,变化趋势相近,而水量与水质浓度之间相关关系并不显著。

    表 2  污水水质和水量Pearson相关系数表
    Table 2.  Pearson correlation test results of pollutant concentration and sewage quantity
    指标TNNH4+-NTPCOD污水水量
    TN1
    NH4+-N0.993**1
    TP0.845**0.865**1
    COD0.755**0.754**0.4511
    污水水量0.0320.007-0.1330.0811
      注:**表示在P<0.01水平上显著相关。
     | Show Table
    DownLoad: CSV
    图 6  污水水质和水量散点图矩阵
    Figure 6.  The matrix scatter diagram of pollutant concentration and sewage quantity

    目前,我国常用农村生活污水处理工艺主要分为生物处理技术、生态处理技术和组合处理技术3种[32],生物处理技术指在好氧或厌氧条件下主要通过微生物对污水中的氮、磷和有机物进行降解吸收,常用工艺包括厌氧-好氧法、生物接触氧化法、间歇式活性污泥法、膜生物反应器等[26],此类工艺通常占地面积较小、出水水质较好,但抗冲击能力一般、建设和运行费用较高;生态处理技术指通过植物、动物、微生物和土壤(填料)等因素协同作用,过滤、分解和吸收污水中的污染物,常用工艺包括化粪池、净化沼气池、稳定塘、生态滤池、人工湿地、土壤渗滤系统等[33],此类工艺对污水的抗冲击能力较高、建设和运行费用较低,但通常占地面积较大、出水水质不太稳定;组合处理技术指将生物和生态处理技术进行工艺组合,以提高处理污水能力,其中生物+生态处理技术模式使用最多[32]。另外,我国对于农村生活污水的回用研究越发重视,2018年发布《关于加快制定地方农村生活污水处理排放标准的通知》中鼓励采用生态处理工艺、加强污水回收利用,生活污水中氮、磷元素可作为肥料用于农田灌溉[34]。因此,探讨农村生活污水的治理,需要综合《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级A标准和《农田灌溉水质标准》(GB 5084-2021),将污水的达标排放和资源化回用进行结合,尽量减少资源浪费。

    本研究中,巴公镇作为典型城郊型村镇,研究区排放的污水水温全年保持在10 ℃以上,非雨季人均每日生活污水排放量约91~136 L·(人·d)−1,较普通农村地区农户用水量更大,研究区生活污水总排放量为150~600 m3·d−1,污染物浓度为TN(10.6~60.1 mg·L−1)、NH4+-N(10.0~56.5 mg·L−1)、TP(0.7~4.4 mg·L−1)和COD(39.0~469.0 mg·L−1),境内采取的合流制污水管道收集模式以及尚未完成的管道扩建和农户改厕工作,使得巴公镇研究区产生的总污水水量较普通农村地区水平更高,而污染物浓度整体较普通农村地区更低,可生化性一般,且整体水量水质变化范围较大。因此,巴公镇研究区的生活污水处理适用于单一生态或生物与生态相结合的处理技术,需要选择对于污水水量和水质波动的抗冲击能力较强、占地面积较小以及建设运营成本较低的污水集中处理工艺;另外,根据研究区附近农田的灌溉需求,可以将农村生活污水的资源化回用纳入污水治理规划中,降低对处理工艺出水水质的要求。综上所述,根据我国常用的生活污水处理技术特点,巴公镇研究区的生活污水治理可以比选采用组合工艺:生物接触氧化法+人工湿地/土壤渗滤系统、厌氧-好氧法+人工湿地/土壤渗滤系统、化粪池+生物滤池/稳定塘+农田回灌等。

    2021年10月—2023年3月,本研究以北方地区黄河流域下的一个典型城郊型村镇——山西省晋城市巴公镇为研究区域,探讨该城郊型村镇内以管道收集农村生活污水排入环境中时水温、水量和水质特点,主要得出以下几项结论。

    1)巴公镇研究区排放的生活污水水温全年基本保持在10 ℃以上,且每年5月—10月期间,污水水温升至15~25 ℃,保证了农村生活污水处理中微生物的活性以及冬季低温条件下的城郊型村镇生活污水处理工艺的除污效果;研究区气温和污水水温呈显著正相关关系(R=0.955,P<0.01),水温的变化速率约为环境气温变化速率的0.4倍。

    2)巴公镇研究区内非雨季人均每日用水量和人均每日生活污水排放量分别为113~170 L·(人·d)−1和91~136 L·(人·d)−1,作为经济条件较好和居民生活水平较高的城郊型村镇,人均每日用水量和污水排放量均较普通农村地区更高;研究区污水总排放量变化范围为150~600 m3·d−1,主要受雨季降水、居民生活习惯、疫情管控、污水管道扩建和农户改厕的影响,其中月均污水水量与月总降水量呈显著正相关关系(P<0.01)。

    3)巴公镇研究区产生的污水中TN、NH4+-N、TP、COD 4项污染物的平均浓度分别为36.4、34.0、2.5和131.0 mg·L−1,整体较普通农村地区水平更低,可生化性一般且波动范围较大;研究期间,人为的农户集中改厕工作是影响巴公镇研究区污水污染物浓度的主要因素;污染物浓度受污水来源等因素的影响,TN、NH4+-N、TP和COD 4项浓度之间具有较强的相关性,变化趋势相近,而水量与水质之间相关关系并不显著。

    4)巴公镇作为典型城郊型村镇,根据其生活污水的排放特征,分析该地区适用于单一生态或生物与生态相结合的处理技术,需要选择对污水水量和水质波动的抗负荷能力较强、占地面积较小以及建设运营成本较低的污水集中处理工艺,如生物接触氧化法+人工湿地/土壤渗滤系统、厌氧-好氧法+人工湿地/土壤渗滤系统、化粪池+生物滤池/稳定塘+农田回灌等。

  • 图 1  老化前后生物炭的FTIR傅里叶红外光谱图

    Figure 1.  FTIR spectra of original and aged biochar

    图 2  不同老化过程中生物炭理化性质变化

    Figure 2.  Changes in physicochemical properties of biochar during different aging processes

    图 3  不同老化过程中生物炭DOC质量分数

    Figure 3.  Change in the DOC mass fraction of biochar during different aging processes

    图 4  不同老化过程中生物炭As浸出率

    Figure 4.  As leaching ratios of biochar during different aging processes

    图 5  老化前后生物炭中As的XPS 3d精细谱图

    Figure 5.  XPS narrow scan of As 3d on original and aged biochar

    图 6  老化前后生物炭中As的化学形态分布

    Figure 6.  The chemical fractions of As of original and aged biochar

    表 1  老化前后生物炭比表面积与孔体积分析

    Table 1.  Analysis of specific surface area and pore volume of original and aged biochar

    生物炭类型比表面积/(m2·g−1) 比表面积增幅/%孔体积/ (cm3·g−1) 孔体积增幅/%
    BC1.7860.012
    BCFTC5.462205.80.045275.0
    BCSPON4.241137.50.042250.0
    生物炭类型比表面积/(m2·g−1) 比表面积增幅/%孔体积/ (cm3·g−1) 孔体积增幅/%
    BC1.7860.012
    BCFTC5.462205.80.045275.0
    BCSPON4.241137.50.042250.0
    下载: 导出CSV

    表 2  生物炭老化前后δ13C、元素组成、灰分质量分数和元素摩尔比

    Table 2.  The δ13C, elemental composition, ash Mass fraction and molar ratio of elements of original and aged biochar

    生物炭类型δ13C/‰元素质量分数/%ω (灰分) /%原子比
    NCHSOH/CO/C(O+N)/C
    BC27.811.8154.761.740.1721.4820.040.290.380.32
    BCFTC27.731.8555.601.820.1522.3618.220.300.390.33
    BCSPON27.131.7854.111.720.1325.2917.170.350.380.38
    生物炭类型δ13C/‰元素质量分数/%ω (灰分) /%原子比
    NCHSOH/CO/C(O+N)/C
    BC27.811.8154.761.740.1721.4820.040.290.380.32
    BCFTC27.731.8555.601.820.1522.3618.220.300.390.33
    BCSPON27.131.7854.111.720.1325.2917.170.350.380.38
    下载: 导出CSV

    表 3  不同老化过程中As浸出量与生物炭Zeta电位、DOC质量分数、pH相关性分析

    Table 3.  Correlation analysis between As leaching ratios with biochar Zeta potential, DOC mass fraction, pH during different aging processes

    老化方式TCLP-As与Zeta电位相关性TCLP-As与DOC质量分数相关性TCLP-As与pH相关性
    冻融老化−0.4520.956*−0.177
    自然老化−0.9320.963*−0.805
      注:*表示在0.05水平 (双侧) 上显著相关。
    老化方式TCLP-As与Zeta电位相关性TCLP-As与DOC质量分数相关性TCLP-As与pH相关性
    冻融老化−0.4520.956*−0.177
    自然老化−0.9320.963*−0.805
      注:*表示在0.05水平 (双侧) 上显著相关。
    下载: 导出CSV
  • [1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2014-04-17]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf.
    [2] ZENG S, MA J, YANG Y, et al. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 2019, 687: 642-653. doi: 10.1016/j.scitotenv.2019.05.291
    [3] 罗海艳. 铁锰改性生物炭对土壤镉砷形态及水稻积累镉砷的影响[D]. 湖南农业大学, 2019.
    [4] PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510
    [5] GONG H, ZHAO L, RUI X, et al. A review of pristine and modified biochar immobilizing typical heavy metals in soil: Applications and challenges[J]. Journal of Hazardous Materials, 2022: 128668.
    [6] AHMED W, MEHMOOD S, NÚÑEZ-DELGADO A, et al. Adsorption of arsenic(III) from aqueous solution by a novel phosphorus-modified biochar obtained from Taraxacum mongolicum Hand-Mazz: Adsorption behavior and mechanistic analysis[J]. Journal of Environmental Management, 2021, 292: 112764. doi: 10.1016/j.jenvman.2021.112764
    [7] HAN L, SUN K, YANG Y, et al. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma, 2020, 364: 114184. doi: 10.1016/j.geoderma.2020.114184
    [8] KNICKER H, HILSCHER A, De la ROSA J M, et al. Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils[J]. Geoderma, 2013, 197: 43-50.
    [9] ROMBOLA A G, FABBRI D, MEREDITH W, et al. Molecular characterization of the thermally labile fraction of biochar by hydropyrolysis and pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 230-239. doi: 10.1016/j.jaap.2016.08.003
    [10] KUZYAKOV Y, BOGOMOLOVA I, GLASER B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis[J]. Soil Biology and Biochemistry, 2014, 70: 229-236. doi: 10.1016/j.soilbio.2013.12.021
    [11] SU Y, WEN Y, YANG W, et al. The mechanism transformation of ramie biochar’s cadmium adsorption by aging[J]. Bioresource Technology, 2021, 330: 124947. doi: 10.1016/j.biortech.2021.124947
    [12] ZHANG S, YANG X, JU M, et al. Mercury adsorption to aged biochar and its management in China[J]. Environmental Science and Pollution Research, 2019, 26: 4867-4877. doi: 10.1007/s11356-018-3945-3
    [13] 黄晓雅, 李莲芳, 朱昌雄, 等. 干湿交替对铈锰改性生物炭固定红壤As的影响[J]. 环境科学, 2021, 42(21): 5997-6005. doi: 10.13227/j.hjkx.202105007
    [14] KIM H, KIM J, KIM T, et al. Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature[J]. Chemical Engineering Journal, 2021, 411: 128441. doi: 10.1016/j.cej.2021.128441
    [15] JIANG S, DAI G, LIU Z, et al. Field-scale fluorescence fingerprints of biochar-derived dissolved organic matter (DOM) provide an effective way to trace biochar migration and the downward co-migration of Pb, Cu and As in soil[J]. Chemosphere, 2022, 301: 134738. doi: 10.1016/j.chemosphere.2022.134738
    [16] WANG L, O CONNOR D, RINKLEBE J, et al. Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science & Technology, 2020, 54(23): 14797-14814.
    [17] LIANG Y, LI X, YANG F, et al. Tracing the synergistic migration of biochar and heavy metals based on 13C isotope signature technique: Effect of ionic strength and flow rate[J]. Science of the Total Environment, 2023, 859: 160229. doi: 10.1016/j.scitotenv.2022.160229
    [18] SIDDIQ O M, TAWABINI B S, SOUPIOS P, et al. Removal of arsenic from contaminated groundwater using biochar: a technical review[J]. International Journal of Environmental Science and Technology, 2022: 1-14.
    [19] LENG L, HUANG H. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 2018, 270: 627-642. doi: 10.1016/j.biortech.2018.09.030
    [20] MCBEATH A V, WURSTER C M, BIRD M I. Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis[J]. Biomass and Bioenergy, 2015, 73: 155-173. doi: 10.1016/j.biombioe.2014.12.022
    [21] CHANG R, SOHI S P, JING F, et al. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation[J]. Environmental Pollution, 2019, 254: 113123. doi: 10.1016/j.envpol.2019.113123
    [22] United States Environmental Protection Agency: Washington DC. Method 1311: Toxicity characteristic leaching procedure[S]. 1992: 1-35.
    [23] 陈昱, 梁媛, 郑章琪, 等. 老化作用对水稻秸秆生物炭吸附Cd(Ⅱ)能力的影响[J]. 环境化学, 2016, 35(11): 2337-2343. doi: 10.7524/j.issn.0254-6108.2016.11.2016031601
    [24] HUFF M D, LEE J W. Biochar-surface oxygenation with hydrogen peroxide[J]. Journal of Environmental Management, 2016, 165: 17-21.
    [25] HALE S, HANLEY K, LEHMANN J, et al. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J]. Environmental Science & Technology, 2011, 45(24): 10445-10453.
    [26] KE Y, ZHANG F, ZHANG Z, et al. Effect of combined aging treatment on biochar adsorption and speciation distribution for Cd(II)[J]. Science of the Total Environment, 2023: 161593.
    [27] 环境保护部. 水质汞、砷、硒、铋和锑的测定 原子荧光法: HJ 694-2014[S]. 北京: 中国环境科学出版社, 2014.
    [28] 刘丹丹, 刘菲, 缪德仁. 土壤重金属连续提取方法的优化[J]. 现代地质, 2015, 29(2): 390-396. doi: 10.3969/j.issn.1000-8527.2015.02.024
    [29] CHEN J, WANG P, DING L, et al. The comparison study of multiple biochar stability assessment methods[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105070. doi: 10.1016/j.jaap.2021.105070
    [30] XU Z, XU X, TSANG D C, et al. Contrasting impacts of pre-and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution, 2018, 242: 1362-1370. doi: 10.1016/j.envpol.2018.08.012
    [31] XU X, KAN Y, ZHAO L, et al. Chemical transformation of CO2 during its capture by waste biomass derived biochars[J]. Environmental Pollution, 2016, 213: 533-540. doi: 10.1016/j.envpol.2016.03.013
    [32] TAN Z, YUAN S, HONG M, et al. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd[J]. Journal of Hazardous Materials, 2020, 384: 121370. doi: 10.1016/j.jhazmat.2019.121370
    [33] NIER A O. Determination of isotopic masses and abundances by mass spectrometry[J]. Science, 1955, 121(3152): 737-744. doi: 10.1126/science.121.3152.737
    [34] TANG W, JING F, LAURENT Z B L G, et al. High-temperature and freeze-thaw aged biochar impacts on sulfonamide sorption and mobility in soil[J]. Chemosphere, 2021, 276: 130106. doi: 10.1016/j.chemosphere.2021.130106
    [35] SORRENTI G, MASIELLO C A, DUGAN B, et al. Biochar physico-chemical properties as affected by environmental exposure[J]. Science of the Total Environment, 2016, 563: 237-246.
    [36] 刘文慧, 王昱璇, 陈丹丹, 等. 老化作用对生物炭理化特性的影响[J]. 工程热物理学报, 2021, 42(6): 1575-1582.
    [37] XU D, ZHAO Y, SUN K, et al. Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties[J]. Chemosphere, 2014, 111: 320-326. doi: 10.1016/j.chemosphere.2014.04.043
    [38] ZHANG L, ZHU D, WANG H, et al. Humic acid‐mediated transport of tetracycline and pyrene in saturated porous media[J]. Environmental Toxicology and Chemistry, 2012, 31(3): 534-541. doi: 10.1002/etc.1726
    [39] XU Z, WAN Z, SUN Y, et al. Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation[J]. Journal of Hazardous Materials, 2022, 430: 128479. doi: 10.1016/j.jhazmat.2022.128479
    [40] LIAN F, XING B. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23): 13517-13532.
    [41] BENIS K Z, DAMUCHALI A M, SOLTAN J, et al. Treatment of aqueous arsenic–A review of biochar modification methods[J]. Science of the Total Environment, 2020, 739: 139750. doi: 10.1016/j.scitotenv.2020.139750
    [42] CUI X, FANG S, YAO Y, et al. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar[J]. Science of the Total Environment, 2016, 562: 517-525. doi: 10.1016/j.scitotenv.2016.03.248
    [43] KIM H, KIM S, JEON E, et al. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil[J]. Science of the Total Environment, 2018, 636: 1241-1248. doi: 10.1016/j.scitotenv.2018.04.406
    [44] 张林. 微生物介导下砷和锑迁移规律及机制的研究[D]. 西安建筑科技大学, 2018.
  • 加载中
图( 6) 表( 3)
计量
  • 文章访问数:  1975
  • HTML全文浏览数:  1975
  • PDF下载数:  86
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-02-15
  • 录用日期:  2023-05-28
  • 刊出日期:  2023-07-26
王思雨, 梁媛, 刘胜, 程媛媛, 史广宇. 基于模拟老化和同位素技术的生物炭砷钝化效率评估[J]. 环境工程学报, 2023, 17(7): 2305-2313. doi: 10.12030/j.cjee.202302071
引用本文: 王思雨, 梁媛, 刘胜, 程媛媛, 史广宇. 基于模拟老化和同位素技术的生物炭砷钝化效率评估[J]. 环境工程学报, 2023, 17(7): 2305-2313. doi: 10.12030/j.cjee.202302071
WANG Siyu, LIANG Yuan, LIU Sheng, CHENG Yuanyuan, SHI Guangyu. Assessment of biochar immobilization on arsenic based on simulated aging and isotope technology[J]. Chinese Journal of Environmental Engineering, 2023, 17(7): 2305-2313. doi: 10.12030/j.cjee.202302071
Citation: WANG Siyu, LIANG Yuan, LIU Sheng, CHENG Yuanyuan, SHI Guangyu. Assessment of biochar immobilization on arsenic based on simulated aging and isotope technology[J]. Chinese Journal of Environmental Engineering, 2023, 17(7): 2305-2313. doi: 10.12030/j.cjee.202302071

基于模拟老化和同位素技术的生物炭砷钝化效率评估

    通讯作者: 梁媛(1977—),女,博士,副教授,liangyuan@usts.edu.cn
    作者简介: 王思雨 (1997—) ,女,硕士研究生,3498340882@qq.com
  • 苏州科技大学环境科学与工程学院,苏州 215009
基金项目:
江苏省研究生实践创新计划资助项目 (SJCX21_1408) ;苏州科技发展支撑计划资助项目 (SS2019027)

摘要: 为探究生物炭钝化砷长期效果,运用实验室模拟老化和稳定同位素技术,对饱和吸附砷 (As) 的13C标记生物炭分别进行60 d冻融老化和自然老化实验,通过老化前后生物炭材料、碳总量、碳形态、TCLP提取态As (TCLP-As) 、As形态变化,评估生物炭材料老化对钝化砷稳定性的影响。结果表明,老化作用未明显改变As的价态 (As3+,As5+) ,但降低了生物炭对As的钝化效果,TCLP-As由老化前的46%分别增加至60% (冻融老化) 和63.6% (自然老化) 。这主要归因于老化作用促进生物炭中部分不稳定碳转化为溶解性有机碳 (DOC) ,而DOC具有较强迁移性,其丰富的含氧官能团可以与As络合,形成DOC-As团聚体而发生共迁移;此外,老化后生物炭Zeta负电位、PO43−数量的增加,灰分质量分数、pH的降低,导致生物炭与As间静电斥力增强,离子交换、沉淀作用减弱,促进了As的解吸释放,故生物炭对As的钝化效果降低。对比2种老化,自然老化后,生物炭与As之间静电斥力、As与PO43−竞争生物炭表面吸附点位更强,沉淀作用减弱更为明显;而冻融老化后生物炭比表面积相对较大,可提供更多吸附点位,故自然老化后生物炭钝化As稳定性低于冻融老化。本研究结果可为生物炭钝化砷的应用提供参考。

English Abstract

  • 据《全国土壤污染调查公报 (2014年) 》[1]显示,我国目前受重金属污染的耕地面积约2.0×107 hm2,其中砷 (As) 是我国耕地、林地、草地的主要污染之一,超标率达到2.7%,重度污染点位占比为0.1%[2]。过度暴露于As污染环境中可导致皮炎、膀胱癌、神经毒性高血压等疾病[3-4]。美国有毒物质和疾病登记署 (TSDR) 基于重金属污染频率、毒性及潜在人体暴露可能性,评估得出As、Pb、Hg、Cd为4种最需控制的重金属[5]。固化/稳定化技术主要通过修复材料改变重金属形态,降低重金属可移动性及毒性,具有经济、快速的特点[6],生物炭作为一种稳定化材料对As具有一定的固定作用,因其来源广泛、价格低廉、环境友好等特点,在As修复研究中受到了极大关注[7]。然而,相比于其他重金属 (如Pb、Cd、Cr) ,生物炭对As稳定化效果更易受到环境影响。由于生物炭并未降低土壤中As总量,主要改变了As的形态,因此需要关注生物炭对As修复效果的长期稳定性。

    通常认为,生物炭是一种稳定的炭材料,但目前越来越多证据表明生物炭施入土壤后会发生老化作用,其稳定性远低于预期[7-9]。KUZYAKOV等[10]研究表明,生物炭中超过80%的脂类和磷脂在3.5年内被分解,7%的稠合芳烃丢失。生物炭施入土壤2年后,其碳损失量高达11%~27%[9]。老化作用不仅使生物炭材料内不稳定碳发生矿化分解[7],降低碳总量,对碳形态、生物炭基本性质也会产生影响。例如,老化作用可能会导致生物炭中溶解性有机碳 (DOC) 质量分数增加,生物炭比表面积、表面官能团种类及数量、Zeta电位、灰分含量等发生变化。

    生物炭材料老化是否会对生物炭钝化重金属效果产生影响?近几年一些学者开展了相关方面的研究。SU等[11]在对生物炭进行氧化老化的研究中发现,氧化老化会降低生物炭中K、Ca、Na等元素及C-O、O-C=O官能团数量,导致生物炭与Cd间共沉淀及π-π作用减弱;而ZHANG等[12]对生物炭进行了180 d高温和冻融老化后,发现老化后生物炭-OH、C=O官能团增强,进一步增强了其与Hg(II)的络合作用;黄晓雅等[13]通过30次干湿循环老化实验,发现老化作用提高了铈锰改性生物炭对红壤中As的稳定化效果,其原因可能是老化作用使生物炭表面酸性基团增强、pH下降、零点电荷增加,进而增强了生物炭对As静电吸附作用。但KIM等[14]发现,经25次干湿循环和冻融循环老化后,生物炭释放的DOC浓度分别是未老化生物炭的3.7、8.9倍,同时As的迁移性显著增强。老化条件下,生物炭与重金属间作用机制对重金属钝化效果的影响可能不同,然而,目前关于老化后生物炭对As稳定化效果和迁移行为影响仍不明确。实验室模拟老化实验可通过模拟自然环境中温度、水分等因素变化对生物炭的碳总量、形态[15]和基本理化性质[16]产生的影响,探究老化作用对生物炭与重金属间的吸附、钝化行为的影响。

    本研究以As为主要研究对象,13C标记的生物炭为原料,通过吸附实验,制备As吸附饱和的13C标记生物炭,将其进行2种实验室模拟老化实验,拟通过分析老化前后生物炭的基本性质、碳总量、碳形态与生物炭钝化As的稳定性、As形态变化,探究老化作用对生物炭钝化As效果的影响,以期为评估生物炭钝化As的长期修复提供参考。

    • 1) 13C标记生物炭的制备。采用脉冲标记法获取具有13C标记功能的玉米秸秆[17],通常随着制备温度提高,生物炭比表面积、孔隙率增大[18],碳稳定增强,产量降低,有利于生物炭对重金属的吸附;但过高的热解温度会导致生物炭孔道结构坍塌,从而降低吸附性能[19],兼顾生物炭稳定性、产量与重金属吸附效果,热解温度通常为500~700 ℃[20]。故本研究将13C标记的玉米秸秆放入马弗炉中在550 ℃下,热解3 h,得到13C标记生物炭,研磨过100目筛后备用。13C丰度 (δ) 测定表明,经过3次脉冲标记,生物炭δ13C由-13.28‰提高至27.81‰,13C已成功负载于生物炭中。

      2) 饱和吸附As生物炭的制备。根据吸附动力学和吸附热力学实验,确定生物炭对As的吸附平衡时间为24 h,最大饱和吸附量为47.37 mg·kg−1,本实验需要获得饱和吸附As的生物炭,作为老化实验材料,因此将As2O3溶于水配置浓度为2 mmol·L−1的亚砷酸溶液,准确称取0.15 g 13C标记生物炭于50 mL聚乙烯离心管中,加入40 mL亚砷酸溶液,以0.01 M的NaNO3溶液作为电解质,调节溶液pH为5 (用0.01 M NaOH或HNO3调节) ,25 ℃、250 r·min−1条件下振荡24 h,离心后,过0.22 μm滤膜,收集滤上物35 ℃下烘干,得到As饱和吸附的生物炭,并根据以上方法批量制备,共得饱和吸附As生物炭20 g,过100目筛后收集备用,记为BC。

    • 1) 生物炭老化实验。对饱和吸附As的生物炭 (BC) 分别进行为期60 d冻融老化 (freeze-thaw aging) 和自然老化 (spontaneous aging) ,分别记为BCFTC、BCSPON:冻融老化:将生物炭置于密封不透光容器中保持最大持水率的40%,每天在-79 ℃下保持19 h,25 ℃下保持5 h进行循环培养,共培养60 d;自然老化:将生物炭置于密封不透光容器中保持最大持水率40%,置于实验室桌面在室温下进行老化,共培养60 d。老化全过程中所有老化样品均在黑暗中培养,并设置3组平行。

      2) 老化作用对生物炭基本性质影响。在老化第0、20、40、60 d进行非破坏性取样,通过pH计 (pHS-3C,中国上海雷磁科学仪器股份有限公司) 测定生物炭pH (生物炭与水比为1∶200) ;通过马尔文电位粒度仪 (Zetasizer Nano ZSP,英国马尔文仪器有限公司) 对生物炭Zeta电位进行测定。本实验通过比表面积分析仪 (BET,V-sorb 2800,北京金埃谱科技有限公司) 测定老化前后生物炭比表面积、孔体积;通过傅里叶变换红外光谱仪 (Nicolet IS 5,美国赛默飞世尔科技有限公司) 定性分析老化前后生物炭表面官能团。

      3) 老化作用对生物炭的碳总量、碳形态的影响。通过老化前后生物炭中13C丰度测定,定量分析生物炭中碳总量变化。采用同位素质谱仪 (Isoprime-100,艾力蒙塔贸易 (上海) 有限公司) 对生物炭的13C/12C进行测定,计算生物炭13C丰度,计算公式见式(1)。

      式中:δ13C为生物炭13C丰度,‰;R为被测样品的13C与12C的稳定同位素丰度比值;RPDB为标准物质的13C与12C的稳定同位素丰度比值,为常数0.011 237 2。

      通过高温煅烧法测定老化前后生物炭灰分质量分数[21];通过元素分析仪 (Elementar Vario EL,德国Elementar公司) 测定老化前后生物炭中C、H、N、S元素质量分数,O元素质量分数通过差减法计算而得,计算公式见式(2)。

      式中:ωO为生物炭中O元素质量分数,%;ωC为生物炭中C元素质量分数,%;ωN为生物炭中N元素质量分数,%;ωH为生物炭中H元素质量分数,%;ωS为生物炭中S元素质量分数,%;ω灰分为生物炭中灰分质量分数,%。

      在老化第0、20、40、60 d取样,采用TOC分析仪 (Muti N/C 3100 TOC,德国耶拿分析仪器股份公司) 测定生物炭DOC质量分数 (生物炭与水比为1∶100) 。

      4) 老化作用对生物炭钝化As稳定性影响。在老化第0、20、40、60 d取样,通过美国环境保护署毒性特征浸出程序 (Method 1311: Toxicity characteristic leaching procedure,TCLP) [22]评估不同老化处理生物炭中As的浸出毒性 (TCLP-As) [23-24]。通过X射线光电子能谱仪 (XPS,EscaL-ab 250Xi,赛默飞世尔科技 (中国) 有限公司) 测定老化前后As价态变化;采用Tessier连续浸提法分析老化前后As (Tessier-As) 形态变化[25],并参照KE等[26]方法,根据提取难度将固定在生物炭中的As的形态划分为“易生物利用态” (可交换态) 、“潜在生物利用态” (碳酸盐结合态) 和“非生物利用态” (铁锰氧化态、有机结合态和残渣态) 对老化前后生物炭形态进行分析。通过原子荧光光度计 (AFS-8220,北京吉天仪器有限公司) 测定As浓度。同时,所有处理均设3组平行,取3次实验的平均值,所有平行样的分析误差均小于6%,加标回收率为96.0%~109.3%,符合《水质汞、砷、硒、铋和锑的测定 原子荧光法》 (HJ 694-2014) 标准[27-28]

    • 1) 老化作用对生物炭表观结构的影响。生物炭老化前后的比表面积和孔体积参数见表1。BC的比表面积和孔体积分别为1.786 m2·g−1和0.012 cm3·g−1,经60 d冻融老化和自然老化后,相较于BC,BCFTC和BCSPON比表面积和孔体积增幅分别为205.8%、137.5%和275.0%、250.0%。这可能是由于老化作用促进了生物炭石墨层膨胀、破裂及重组[16]。此外,温度、水分等因素也可能加速生物炭孔隙中无定形碳的溶解,导致原本被覆盖或堵塞的孔隙暴露[29],因此60 d老化作用增加了生物炭比表面积和孔体积。

      2) 老化作用对生物炭表面官能团影响。为探究老化作用对生物炭表面官能团种类及数量影响,对老化前后生物炭进行傅里叶红外光谱 (FTIR) 表征分析见图1。由图1可知,60 d冻融老化和自然老化后,生物炭表面的脂肪族官能团-OH (3336 cm−1) 、C=C/C=O (1564 cm−1) [21]、C-O (1030 cm−1) [14]、-CHX (872 cm−1和785 cm−1) [21]的吸收峰振幅小幅增强。这与XU等[30]和ZHANG等[12]报道一致,其主要原因可能是老化过程中生物炭发生脱氢脱氧反应或生物炭表面发生羟基化,增加了含氧官能团数量,可为生物炭吸附As提供更多吸附位点。此外,BCSPON在548 cm−1处出现了-PO43−的新峰,表明自然老化过程中生物炭表面可能发生破裂,有利于生物炭内部P等物质的溶出[23],因而新增-PO43−特征峰。

      3) 老化作用对生物炭pH和Zeta电位影响。老化过程中BCFTC、BCSPON的pH变化如图2(a)所示。2种老化作用初期生物炭pH均呈现升高趋势,其原因为老化作用促进生物炭内部碱性物质释放增加了pH;在老化第40 d时,2种老化生物炭的pH均较20 d时降低,可能由于氧化作用增加了生物炭表面酸性官能团数量[24-25],或老化过程中生物炭吸收CO2生成碳酸盐[31]。但相较BC,老化60 d后,BCFTC、BCSPON的pH变化并不明显。

      图2(b)为2种老化生物炭Zeta电位的随老化时间的变化。老化过程中生物炭Zeta负电位随老化时间增加而增强,可能由2方面原因造成:首先,老化作用增加了生物炭-OH数量,因而生物炭中可去质子化基团数量增加,表面负电荷相应增加;其次,在生物炭的碳骨架中,当O、N原子与C、H原子结合时,电子会向电负性更强的O、N原子转移,增加生物炭表面负电荷量,由表2可知,老化作用增加了生物炭(O+N)/C比值,故生物炭表面负电荷增加[32],Zeta负电位增强。由于生物炭与As表面均呈现电负性,老化过程中生物炭电负性的增强可能导致生物炭与As间静电斥力增强,增加As释放的风险。

    • 1) 老化作用对生物炭碳总量的影响。稳定同位素示踪技术具有高度的专一性和灵敏度,可以通过测量同位素丰度比值来精确定量生物炭中碳总量[33],60 d老化前后生物炭δ13C测定结果如表2所示,结果表明,60 d老化作用后,δ13C由28.81‰ (BC) 分别降低至27.73‰ (BCFTC) 、27.13‰ (BCSPON) ,这可能归因于老化作用促进生物炭中部分不稳定碳以CO2形式释放。由于老化作用后仍有97.7%~99.71%的碳赋存于生物炭中,表明老化作用对生物炭碳总量影响较小。

      生物炭老化前后元素组成、灰分质量分数、原子比值测定分析如表2所示。60 d老化后,BCFTC和BCSPON中O元素质量分数由21.48% (BC) 分别增加至22.36%和25.29%,主要归因于氧化作用提高了生物炭表面含氧官能团数量,与FTIR分析结果一致。老化后,BCFTC和BCSPON的灰分质量分数分别降低了1.82%和2.87%,这可能是由于在氧化和浸出过程中去除了部分可溶性固体和碱性盐[26]。生物炭H/C、O/C和(N+O)/C值常被用于评估生物炭的亲水性、芳香性和极性[34],2种老化作用均提高了生物炭的H/C、O/C和(N+O)/C值,这与SORRENTI等[35]和刘文慧等[36]研究结果一致,表明老化作用降低了生物炭的亲水性和芳香性程度,增强了生物炭极性,其中极性的增强可能对重金属的钝化产生影响[37]

      2) 老化作用对生物炭碳形态的影响。老化过程中生物炭DOC质量分数测定如图3所示,冻融老化20 d后DOC质量分数达到最大值,由1.27 mg·g−1增加至4.14 mg·g−1,自然老化40 d后DOC质量分数达到最大值,由1.27 mg·g−1增加至4.75 mg·g−1;老化60 d后,BCFTC和BCSPON中DOC质量分数分别为3.82、4.4 mg·g−1,分别是老化前的3.01、3.46倍。老化作用促进生物炭中无定形碳以DOC形式释放,由于DOC表面含大量含氧官能团且迁移性较强,可通过络合作用固定As,并作为载体促进DOC-As共迁移[38],因而DOC质量分数的增加可能增加As释放风险。老化作用下,生物炭中DOC质量分数的增加可能与本研究中制备生物炭所使用的生物质有关。本研究以玉米秸秆为生物质制备生物炭,玉米秸秆中纤维素质量分数较高,因而制备而成的生物炭中无定形碳所占比重较大[39]。老化作用下,受到温度、水分等因素的影响,生物炭石墨层可能发生放热膨胀,孔隙中无定形碳可能以溶解性炭黑、苯环、DOC等形式释放[40],故生物炭中DOC质量分数增加。

    • 1) 老化过程中生物炭钝化As的稳定性分析。由于生物炭通过孔道扩散、静电作用、络合作用、共沉淀等机制固定As[16],故老化作用下生物炭基本性质、碳总量、碳形态的变化可能会对其钝化重金属稳定性产生影响。老化作用对生物炭中TCLP-As影响如图4所示。老化前TCLP-As为46%,BCFTC在老化20 d后TCLP-As达到最大值为68%,老化60 d后TCLP-As降低至59%,老化60 d较老化前增幅为28.3%;BCSPON在老化40 d后TCLP-As达到最大值为79%,老化60 d后TCLP-As降低至71%,老化60 d较老化前增幅为54.3%。2种老化作用后,TCLP-As浸出率均明显提高,这可能与生物炭中DOC质量分数、Zeta电位、pH、含氧官能团种类及数量等因素有关。

      不同老化作用下TCLP-As与DOC质量分数、Zeta电位、pH相关性分析如表3所示。冻融老化、自然老化生物炭的TCLP-As均与DOC质量分数呈显著正相关,与Zeta电位、pH间负相关性并不显著,这表明老化作用导致的生物炭中DOC质量分数的增加是促进As活化的主要驱动因子。在生物炭固定As应用中,灰分可在生物炭表面提供带正电的活性位点,通过静电作用与共沉淀作用固定As[41],灰分中K+、Ca2+、Mg2+等离子可通过离子交换作用增强生物炭对As的钝化[42],本研究中,2种老化作用下,生物炭中灰分质量分数均有所降低,共沉淀作用可能降低,这对TCLP-As浸出率提高也具有重要影响。

      对比2种老化方式,自然老化作用下TCLP-As浸出率高于冻融老化,这可能由于与冻融老化相比,自然老化下生物炭中DOC质量分数和Zeta负电位均较高,生物炭与As的静电斥力增强,灰分质量分数较低,As与灰分中重金属共沉淀减弱,均不利于As的固定,此外,自然老化提高了PO43−的溶出,PO43−与As会竞争生物炭表面的吸附点位,从而促进As从生物炭表面解吸,导致生物炭已吸附As的活化[43];另一方面,老化作用增加了生物炭比表面积、孔体积,为As提高更多吸附位点,也增强了As在生物炭中孔道扩散作用[13],可部分抵消DOC、PO43−、Zeta电位对As的活化作用。其中,冻融老化对生物炭比表面积、孔体积的增加更为明显,故老化后TCLP-As浸出率表现为:自然老化>冻融老化。

      2) 老化作用对As形态的影响。通过XPS As 3d精细图谱表征,分析老化前后As的价态的变化,表征结果如图5所示。60 d的冻融老化和自然老化并未对生物炭表面吸附的As的价态产生明显影响,可能归因于As价态转化主要依赖于微生物作用[44]。然而,本实验中使用的灭菌后的生物炭,且实验环境并不适合微生物生长,故老化作用对生物炭吸附As的价态基本不产生影响。

      As的毒性与其赋存形态密切相关。基于Tessier形态提取法的As形态分析结果如图6所示。2种老化前后As各形态所占比例均表现为:潜在生物利用态>易生物利用态>非生物利用态。相较于BC,BCFTC中As易生物利用态所占比例降低8.8%、潜在生物利用态所占比例升高7.9%、非生物利用态所占比例升高0.9%,表明冻融老化促进As由易生物利用态向潜在生物利用态转化,这可能归因于冻融老化提高了生物炭对As的物理吸附;BCSPON中As易生物利用态所占比例增加1%、潜在生物利用态所占比例降低5.1%、非生物利用态所占比例升高4.1%,表明自然老化促进As由潜在生物利用态向非生物利用态和易生物利用态转化,这可能由于老化过程中pH的降低导致As由碳酸盐结合态向铁锰氧化态发生转化,易生物利用态的提高可能是DOC质量分数和PO43−数量的提升,导致As与DOC络合或被P竞争生物炭表面的吸附点位而活化。

      从As形态分布可以看出 (图6) ,BC、BCFTC、BCSPON中As的易生物利用态分别占35.3%、26.5%和35.3%,潜在生物利用部分分别占61.1%、69%、61.1%,明显高于非生物利用部分,表明老化与未老化生物炭上吸附的As均存在较大环境风险,老化作用对生物炭中As形态影响并不明显。

    • 1) 60 d的冻融老化和自然老化明显提高了生物炭中TCLP-As浸出率,生物炭中DOC质量分数的增加是降低生物炭钝化As效率的主要因素;此外,Zeta负电位增强、灰分质量分数降低、PO43−数量增加等对降低生物炭钝化As效率也具有一定的影响作用。

      2) 在生物炭钝化As应用中,可通过优化生物炭制备条件、生物炭改性等方法,减少DOC-As复合物对As活化和协同迁移的影响[16]、降低生物炭与As间静电斥力,增强生物炭对As钝化的稳定性。

      3) 本研究主要探究了温度变化引起的老化作用对生物炭钝化As的影响,但自然条件下,土壤理化性质、气候条件、其他污染物竞争吸附等,也可能影响生物炭在真实环境中对As钝化稳定性,未来可进一步研究在田间条件下长期老化对生物炭钝化As稳定性的影响。

    参考文献 (44)

返回顶部

目录

/

返回文章
返回