[1] |
环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2014-04-17]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf.
|
[2] |
ZENG S, MA J, YANG Y, et al. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 2019, 687: 642-653. doi: 10.1016/j.scitotenv.2019.05.291
|
[3] |
罗海艳. 铁锰改性生物炭对土壤镉砷形态及水稻积累镉砷的影响[D]. 湖南农业大学, 2019.
|
[4] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510
|
[5] |
GONG H, ZHAO L, RUI X, et al. A review of pristine and modified biochar immobilizing typical heavy metals in soil: Applications and challenges[J]. Journal of Hazardous Materials, 2022: 128668.
|
[6] |
AHMED W, MEHMOOD S, NÚÑEZ-DELGADO A, et al. Adsorption of arsenic(III) from aqueous solution by a novel phosphorus-modified biochar obtained from Taraxacum mongolicum Hand-Mazz: Adsorption behavior and mechanistic analysis[J]. Journal of Environmental Management, 2021, 292: 112764. doi: 10.1016/j.jenvman.2021.112764
|
[7] |
HAN L, SUN K, YANG Y, et al. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma, 2020, 364: 114184. doi: 10.1016/j.geoderma.2020.114184
|
[8] |
KNICKER H, HILSCHER A, De la ROSA J M, et al. Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils[J]. Geoderma, 2013, 197: 43-50.
|
[9] |
ROMBOLA A G, FABBRI D, MEREDITH W, et al. Molecular characterization of the thermally labile fraction of biochar by hydropyrolysis and pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 230-239. doi: 10.1016/j.jaap.2016.08.003
|
[10] |
KUZYAKOV Y, BOGOMOLOVA I, GLASER B. Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis[J]. Soil Biology and Biochemistry, 2014, 70: 229-236. doi: 10.1016/j.soilbio.2013.12.021
|
[11] |
SU Y, WEN Y, YANG W, et al. The mechanism transformation of ramie biochar’s cadmium adsorption by aging[J]. Bioresource Technology, 2021, 330: 124947. doi: 10.1016/j.biortech.2021.124947
|
[12] |
ZHANG S, YANG X, JU M, et al. Mercury adsorption to aged biochar and its management in China[J]. Environmental Science and Pollution Research, 2019, 26: 4867-4877. doi: 10.1007/s11356-018-3945-3
|
[13] |
黄晓雅, 李莲芳, 朱昌雄, 等. 干湿交替对铈锰改性生物炭固定红壤As的影响[J]. 环境科学, 2021, 42(21): 5997-6005. doi: 10.13227/j.hjkx.202105007
|
[14] |
KIM H, KIM J, KIM T, et al. Interaction of biochar stability and abiotic aging: Influences of pyrolysis reaction medium and temperature[J]. Chemical Engineering Journal, 2021, 411: 128441. doi: 10.1016/j.cej.2021.128441
|
[15] |
JIANG S, DAI G, LIU Z, et al. Field-scale fluorescence fingerprints of biochar-derived dissolved organic matter (DOM) provide an effective way to trace biochar migration and the downward co-migration of Pb, Cu and As in soil[J]. Chemosphere, 2022, 301: 134738. doi: 10.1016/j.chemosphere.2022.134738
|
[16] |
WANG L, O CONNOR D, RINKLEBE J, et al. Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications[J]. Environmental Science & Technology, 2020, 54(23): 14797-14814.
|
[17] |
LIANG Y, LI X, YANG F, et al. Tracing the synergistic migration of biochar and heavy metals based on 13C isotope signature technique: Effect of ionic strength and flow rate[J]. Science of the Total Environment, 2023, 859: 160229. doi: 10.1016/j.scitotenv.2022.160229
|
[18] |
SIDDIQ O M, TAWABINI B S, SOUPIOS P, et al. Removal of arsenic from contaminated groundwater using biochar: a technical review[J]. International Journal of Environmental Science and Technology, 2022: 1-14.
|
[19] |
LENG L, HUANG H. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 2018, 270: 627-642. doi: 10.1016/j.biortech.2018.09.030
|
[20] |
MCBEATH A V, WURSTER C M, BIRD M I. Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis[J]. Biomass and Bioenergy, 2015, 73: 155-173. doi: 10.1016/j.biombioe.2014.12.022
|
[21] |
CHANG R, SOHI S P, JING F, et al. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation[J]. Environmental Pollution, 2019, 254: 113123. doi: 10.1016/j.envpol.2019.113123
|
[22] |
United States Environmental Protection Agency: Washington DC. Method 1311: Toxicity characteristic leaching procedure[S]. 1992: 1-35.
|
[23] |
陈昱, 梁媛, 郑章琪, 等. 老化作用对水稻秸秆生物炭吸附Cd(Ⅱ)能力的影响[J]. 环境化学, 2016, 35(11): 2337-2343. doi: 10.7524/j.issn.0254-6108.2016.11.2016031601
|
[24] |
HUFF M D, LEE J W. Biochar-surface oxygenation with hydrogen peroxide[J]. Journal of Environmental Management, 2016, 165: 17-21.
|
[25] |
HALE S, HANLEY K, LEHMANN J, et al. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J]. Environmental Science & Technology, 2011, 45(24): 10445-10453.
|
[26] |
KE Y, ZHANG F, ZHANG Z, et al. Effect of combined aging treatment on biochar adsorption and speciation distribution for Cd(II)[J]. Science of the Total Environment, 2023: 161593.
|
[27] |
环境保护部. 水质汞、砷、硒、铋和锑的测定 原子荧光法: HJ 694-2014[S]. 北京: 中国环境科学出版社, 2014.
|
[28] |
刘丹丹, 刘菲, 缪德仁. 土壤重金属连续提取方法的优化[J]. 现代地质, 2015, 29(2): 390-396. doi: 10.3969/j.issn.1000-8527.2015.02.024
|
[29] |
CHEN J, WANG P, DING L, et al. The comparison study of multiple biochar stability assessment methods[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105070. doi: 10.1016/j.jaap.2021.105070
|
[30] |
XU Z, XU X, TSANG D C, et al. Contrasting impacts of pre-and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution, 2018, 242: 1362-1370. doi: 10.1016/j.envpol.2018.08.012
|
[31] |
XU X, KAN Y, ZHAO L, et al. Chemical transformation of CO2 during its capture by waste biomass derived biochars[J]. Environmental Pollution, 2016, 213: 533-540. doi: 10.1016/j.envpol.2016.03.013
|
[32] |
TAN Z, YUAN S, HONG M, et al. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd[J]. Journal of Hazardous Materials, 2020, 384: 121370. doi: 10.1016/j.jhazmat.2019.121370
|
[33] |
NIER A O. Determination of isotopic masses and abundances by mass spectrometry[J]. Science, 1955, 121(3152): 737-744. doi: 10.1126/science.121.3152.737
|
[34] |
TANG W, JING F, LAURENT Z B L G, et al. High-temperature and freeze-thaw aged biochar impacts on sulfonamide sorption and mobility in soil[J]. Chemosphere, 2021, 276: 130106. doi: 10.1016/j.chemosphere.2021.130106
|
[35] |
SORRENTI G, MASIELLO C A, DUGAN B, et al. Biochar physico-chemical properties as affected by environmental exposure[J]. Science of the Total Environment, 2016, 563: 237-246.
|
[36] |
刘文慧, 王昱璇, 陈丹丹, 等. 老化作用对生物炭理化特性的影响[J]. 工程热物理学报, 2021, 42(6): 1575-1582.
|
[37] |
XU D, ZHAO Y, SUN K, et al. Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties[J]. Chemosphere, 2014, 111: 320-326. doi: 10.1016/j.chemosphere.2014.04.043
|
[38] |
ZHANG L, ZHU D, WANG H, et al. Humic acid‐mediated transport of tetracycline and pyrene in saturated porous media[J]. Environmental Toxicology and Chemistry, 2012, 31(3): 534-541. doi: 10.1002/etc.1726
|
[39] |
XU Z, WAN Z, SUN Y, et al. Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: Distinct redox nature with varying iron/carbon speciation[J]. Journal of Hazardous Materials, 2022, 430: 128479. doi: 10.1016/j.jhazmat.2022.128479
|
[40] |
LIAN F, XING B. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23): 13517-13532.
|
[41] |
BENIS K Z, DAMUCHALI A M, SOLTAN J, et al. Treatment of aqueous arsenic–A review of biochar modification methods[J]. Science of the Total Environment, 2020, 739: 139750. doi: 10.1016/j.scitotenv.2020.139750
|
[42] |
CUI X, FANG S, YAO Y, et al. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar[J]. Science of the Total Environment, 2016, 562: 517-525. doi: 10.1016/j.scitotenv.2016.03.248
|
[43] |
KIM H, KIM S, JEON E, et al. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil[J]. Science of the Total Environment, 2018, 636: 1241-1248. doi: 10.1016/j.scitotenv.2018.04.406
|
[44] |
张林. 微生物介导下砷和锑迁移规律及机制的研究[D]. 西安建筑科技大学, 2018.
|