-
近年来,生活垃圾产生量逐年上升,预计2030年我国将产生超3×108 t生活垃圾[1]。焚烧在实现生活垃圾减量的同时,其回收的能量可以缓解当今能源紧缺的问题[2],已成为生活垃圾的主要处理方式之一。2016年,欧盟27国焚烧处理生活垃圾占全部处理垃圾的28.6%[3];2018年美国焚烧的城市固体废物约占总量的13%[4];2020年中国生活垃圾焚烧量居世界首位,占垃圾处理总量的50.7%[5-6]。随着垃圾焚烧比例和数量的上升,产生了大量焚烧副产物飞灰,其中重金属 (如Cd、Pb、Cr、Zn、Ni等) 浸出质量浓度较高且环境风险较大,已被列入《国家危险废物名录》[7]。由于生活垃圾焚烧飞灰中Cd、Pb、Cr、Zn和Ni的浸出质量浓度较高[8],FAN等[9]使用粉煤灰和硅酸盐水泥分别固化飞灰,发现飞灰中的Zn、Pb和Cd离子均实现了有效固定。有研究[10]发现,采用电渗析修复预处理飞灰去除重金属,可有效降低Pb、Zn、Cr、Cu和Ni的浸出质量浓度。为消除飞灰对土壤和地下水的污染隐患,现有技术可分为分离、热处理和固化稳定化等。分离技术是采用化学试剂、生物试剂或电渗析法从飞灰中分离重金属,其处理效果较好但成本高且分离后污染物还需要二次处理[11]。热处理可分为烧结、熔融、玻璃化和热化学处理,高耗能与低安全性制约了热处理的推广[12-13]。固化稳定化后填埋是按照一定比例将飞灰与药剂混合,固化后形成高强度块体。通过物理包埋、吸附和化学沉淀等方法固定重金属,是当前飞灰主要处理处置技术。其中,飞灰固化剂主要有化学药剂和水泥2大类,化学药剂生产成本过高、缺乏原料资源、长期稳定性差等问题导致其应用范围局限[14]。水泥作为广泛应用的建筑材料具有价格低廉、耐用性好、环境适应性好、固化产物渗透率低、耐化学应力高等优势[15],使用水泥固化飞灰后填埋符合当前市场要求。
目前,飞灰拌合普通硅酸盐水泥形成硬度高、耐酸性强的固化块后送入垃圾填埋场的方法已有广泛应用[16]。水泥水化产生的C-S-H结构可包裹细度极低的飞灰[17],同时,水泥水化产物氢氧化钙与重金属形成氢氧化物沉淀[18] (如Zn(OH)2) ,硅酸根结合重金属离子形成硅酸盐沉淀 (如PbSiO3) ,可较好地固化飞灰中的重金属。固化块长期稳定性研究表明,普通硅酸盐水泥中的熟料相硅酸三钙、硅酸二钙、铝酸三钙和钙铝铁氧体与飞灰的固化过程中伴随着晶体的生长[19],晶体相较于非晶体的晶格能更强,抵抗填埋场渗滤液长时间腐蚀的效果更好。固化块孔隙结构可影响其抗渗性,飞灰提供的钙离子和氯离子促进了固化块累计空隙分布的均匀性,有利于水泥水化完全进行,增加水泥水化产物,使得固化结构之间的胶粘增强,形成更密实的网状。市面上现有325到625R型号的普通硅酸盐水泥共7种,随着其标号的上升,强度增加。因此,探究不同标号不同添加量的普通硅酸盐水泥固化飞灰中不同重金属的特性,分析固化块重金属浸出质量浓度、晶体结构和孔隙大小,有利于填埋场比选飞灰固化材料,实现经济效益最大化。
固化块强度受到水泥标号影响,选用325、425、525的普通硅酸盐水泥,28 d标准养护抗压强度依次可达到32.5、42.5、52.5 MPa,每吨价格分别为400、500、600 元。筛选水泥标号及添加量较普遍的水泥,以期在填埋场的长期运行中应对渗滤液和酸雨的侵蚀风险并兼顾经济价值[20]。分别对飞灰和固化块进行重金属浸出实验、重金属形态提取实验、X射线衍射表征、扫描电子显微镜下成像和全孔分析,对比原始飞灰与固化块差异。本研究以飞灰中的重金属为目标污染物,探讨不同标号不同用量的水泥在固化飞灰前后重金属的浸出质量浓度和形态变化,以期揭示其固化机理,为节约水泥资源、提升现代危险废物经济化填埋、降低填埋场污染风险提供应用参考。
水泥标号对飞灰中重金属固化机理影响
Effect of cement grade on the mechanism of heavy metal solidification in fly ash
-
摘要: 一般可通过水泥固化生活垃圾焚烧飞灰中重金属,但不同标号水泥的固化效果与经济效益不同。研究了3种标号 (325、425、525) 的普通硅酸盐水泥在不同用量 (30%、40%) 下对飞灰中重金属的固化作用。结果表明,飞灰中5种特征重金属Cr 、Zn 、Cd 、Pb 、Ni中仅有Pb 和Ni的浸出质量浓度超过《生活垃圾填埋场污染控制标准》,水泥添加量为30%时,3种标号325、425、525的固化块中Pb的浸出质量浓度分别为46.266、61.122、67.423 μg·L−1,相较于40%添加量为80.315、31.791、25.392 μg·L−1,其浸出结果差异较小,Ni的浸出结果与Pb类似。分析重金属化学形态发现,随着水泥标号的上升,Pb和Ni的残渣态百分比呈上升趋势。对比固化块的XRD结果、电镜图像、孔隙结构和累计孔隙度发现,随着水泥标号上升固化块结构更密实,飞灰中的重金属固化效果更好,但3种标号的水泥对飞灰的固化效果差异较小。因此,掺加30%的325水泥即可较好地固化垃圾焚烧飞灰。本研究结果可为控制填埋场中飞灰固化块的浸出浓度提供参考。Abstract: Heavy metals in fly ash from municipal solid wastes incineration can generally be cured by cement, but the curing effects and economic benefits vary among different grades of cement. The curing effects of three grades (325, 425, 525) of ordinary silicate cement at different dosages (30%, 40%) on heavy metals in fly ash were studied. The results showed that among the five heavy metals Cr, Zn, Cd, Pb, and Ni, only Pb and Ni exceeded the original fly ash leaching mass concentration of the "Pollution Control Standard for Municipal Solid Landfill", and the leaching mass concentrations of Pb in the cured blocks of the three grades 325, 425, and 525 at 30% cement addition were 46.266, 61.122, and 67.423 μg·L−1, respectively, which were less different compared to the 40% additions of 80.315, 31.791, and 25.392 μg·L−1, and the leaching results of Ni were similar to those of Pb. Analysis of the chemical forms of heavy metals revealed that the percentage of residue states of Pb and Ni tended to increase with the increase of cement grade. Comparison of XRD results, electron microscope images, pore structure and cumulative porosity of the cured blocks revealed that the structure of the cured blocks was denser and the heavy metals in the fly ash were cured better as the cement grade rose, but the difference in the curing effect of the three grades of cement on the fly ash was small. Therefore, the addition of 30% of 325 cement can cure waste incineration fly ash better. The results of this study can provide a reference for controlling the leaching concentration of fly ash curing blocks in landfills and reducing the operating cost of landfills.
-
表 1 固化块制作基本参数汇总
Table 1. Summary of basic parameters for curing block production
样品编号 水泥质量/g 飞灰质量/g 纯水质量/g 水泥标号 F1 — 600 — — F2 180 600 468 325 F3 180 600 468 425 F4 180 600 468 525 F5 240 600 504 325 F6 240 600 504 425 F7 240 600 504 525 表 2 飞灰及固化块样品的重金属浸出质量浓度实验结果
Table 2. Experimental results of heavy metal leaching concentration of fly ash and curing block
样品编号 重金属离子质量浓度/ (μg·L−1) Cr Zn Cd Pb Ni F1 35.146 67.480 0.342 587.670 614.079 F2 95.198 5.283 0.673 46.266 261.101 F3 76.390 8.369 0.562 61.122 335.213 F4 42.737 8.497 0.446 67.423 379.813 F5 78.101 8.331 0.544 80.315 257.020 F6 65.454 4.675 0.502 31.791 332.221 F7 44.692 3.611 0.396 25.392 355.599 -
[1] LU J W, ZHANG S, HAI J, et al. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions[J]. Waste Management, 2017, 69: 170-186. doi: 10.1016/j.wasman.2017.04.014 [2] LI J S, XUE Q, WANG P, et al. Leaching characteristics of chlorine from municipal solid waste incineration fly ash by up-flow percolation column tests[J]. Environmental Earth Sciences, 2016, 75(1): 714. [3] CASTILLO-GIMENEZ J, MONTANES A, PICAZO-TADEO A J. Performance and convergence in municipal waste treatment in the European Union[J]. Waste Management, 2019, 85: 222-231. doi: 10.1016/j.wasman.2018.12.025 [4] LIU Y, CLAVIER K A, SPREADBURT C, et al. Limitations of the TCLP fluid determination step for hazardous waste characterization of US municipal waste incineration ash[J]. Waste Management, 2019, 87: 590-596. doi: 10.1016/j.wasman.2019.02.045 [5] CHEN D, CHRISTENSEN T H. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China[J]. Waste Management & Research, 2010, 28(6): 508-519. [6] WEI J, LI H, LIU J. Curbing dioxin emissions from municipal solid waste incineration: China's action and global share[J]. Journal of Hazardous Materials, 2022, 5(5): 435. [7] 孙绍锋, 郝永利, 许涓, 等. 解析《国家危险废物名录》[J]. 中国环境管理, 2013, 5(2): 46-48. doi: 10.3969/j.issn.1674-6252.2013.02.011 [8] 董光辉, 左武, 赵润博, 等. 水泥窑协同处置生活垃圾焚烧飞灰过程中 Pb 和 Zn 的迁移转化特性[J]. 环境工程学报, 2023, 17(1): 250-258. doi: 10.12030/j.cjee.202210043 [9] FAN C C, WANG B, AI H M, et al. A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash[J]. Journal of Cleaner Production, 2021, 319: 128-790. [10] ZHAN X, KIRKELUND G M. Electrodialytic remediation of municipal solid waste incineration fly ash as pre-treatment before geopolymerisation with coal fly ash[J]. Journal of Hazardous Materials, 2021, 8(33): 125-220. [11] LI J, ZENG M, JI W. Characteristics of the cement-solidified municipal solid waste incineration fly ash[J]. Environmental Science and Pollution Research, 2018, 25(36): 36736-36744. doi: 10.1007/s11356-018-3600-z [12] VAITKUS A, GRAZULYTE J, SERNAS O, et al. An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers[J]. Construction and Building Materials, 2019, 212(10): 456-466. [13] KANHAR A H, CHEN S, WANG F. Incineration Fly Ash and Its Treatment to Possible Utilization: A Review[J]. Energies, 2020, 13(24): 66-81. [14] OKADA T, TOMIKAWA H. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste[J]. Waste Management, 2013, 33(3): 605-614. doi: 10.1016/j.wasman.2012.08.013 [15] MA W, CHEN D, PAN M, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: A comparative study[J]. Journal of Environmental Management, 2019, 247(11): 169-177. [16] MAEKAWA K, ISHIDA T, KISI T. Multi-scale modeling of concrete performance integrated material and structural mechanics[J]. Journal of Advanced Concrete Technology, 2003, 1(2): 91-126. doi: 10.3151/jact.1.91 [17] TIAN X, RAO F, ESTRELLA R M, et al. Effects of aluminum dosage on gel formation and heavy metals immobilization in alkali-activated MSWI fly ash[J]. Energy & Fuels, 2020, 34(4): 4727-4733. [18] TLC A, YHC B, MYD A, et al. Stabilization-solidification-utilization of MSWI fly ash coupling CO2 mineralization using a high-gravity rotating packed bed[J]. Waste Management, 2021, 121: 412-421. doi: 10.1016/j.wasman.2020.12.031 [19] WELDEGHEBRIE M F, LOWENSTEIN T K, GARCIA-VEIGAS J, et al. Combined LA-ICP-MS and cryo-SEM-EDS: An improved technique for quantitative analysis of major, minor, and trace elements in fluid inclusions in halite[J]. Chemical Geology, 2020, 551: 19762-119762. [20] TSICILIS S, CHANIOTAKIS E, KAKALI G, et al. An analysis of the properties of Portland limestone cements and concrete[J]. Cement and Concrete Composites, 2002, 13(2): 371-378. [21] 国家环境保护总局. 固体废物 浸出毒性浸出方法 醋酸缓冲溶液法: HJ/T 300—2007[S]. 北京: 中国环境科学出版社, 2007. [22] WANG J M, JIANG J G, LI D, et al. Removal of Pb and Zn from contaminated soil by different washing methods: the influence of reagents and ultrasound[J]. Environmental Science & Pollution Research, 2015, 22(24): 20084-20091. [23] ÁLVAREZ M B, GARRIDO M, LISTA A G, et al. Three-way multivariate analysis of metal fractionation results from sediment samples obtained by different sequential extraction procedures and ICP-OES [J]. Analytica Chimica Acta, 2008, 620(1): 34-43. [24] 中国人民共和国环境保护部, 中华人民共和国国家质量监督检验检疫总局. 生活垃圾填埋场污染控制标准: GB 16889-2008[S]. 北京: 中国环境科学出版社, 2008. [25] ZHANG Y, CETIN B, LIKOS W J, et al. Impacts of pH on leaching potential of elements from MSW incineration fly ash[J]. Fuel, 2016, 184: 815-825. doi: 10.1016/j.fuel.2016.07.089 [26] SHEN Y, WANG H, KIM N S. Ammonia separation of Ni from spent fly ash leach liquor[J]. Minerals & Metallurgical Processing, 2020, 27(3): 154-157. [27] 童立志, 韦黎华, 王峰, 等. 焚烧飞灰重金属含量及浸出长期变化规律研究[J]. 中国环境科学, 2020, 40(5): 8. doi: 10.3969/j.issn.1000-6923.2020.05.033 [28] WALI A, COLINET G, KSIBI M. Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in sfax, tunisia[J]. Environmental Research Engineering & Management, 2014, 70(4): 14-26. [29] ZHOU J Z, SIMIAO W, PAN Y, et al. Mercury in municipal solids waste incineration (MSWI) fly ash in China: Chemical speciation and risk assessment[J]. Fuel, 2015, 158: 619-624. doi: 10.1016/j.fuel.2015.05.071 [30] LI H L, FAHEEM M, YAN Y J, et al. Electrokinetic remediation of heavy metals from municipal solid waste incineration fly ash pretreated by nitric acid[J]. Royal Society open science, 2018, 5(8): 2054-5703. [31] WEIBEL G, EGGENBERGER U, Schlumberger S, et al. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration[J]. Waste Management, 2016, 62: 147. [32] WANG X, ZHANG L, ZHU K, et al. Distribution and chemical species transition behavior of chlorides in municipal solid waste incineration fly ash during the pressure-assisted sintering treatment [J]. Chemical Engineering Journal, 2021, 415: 128873. [33] 蒋旭光, 段茵, 吕国钧, 等. 垃圾焚烧飞灰中重金属固化稳定机理及系统评价方法的研究进展[J]. 环境工程学报, 2022, 16(1): 10-19. doi: 10.12030/j.cjee.202105098 [34] XIONG Y, ZHU F, ZHAO L, et al. Heavy metal speciation in various types of fly ash from municipal solid waste incinerator[J]. Journal of Material Cycles & Waste Management, 2014, 16(4): 608-615. [35] FONT O, QUEROL X, HUGGINS F E, et al. Speciation of major and selected trace elements in IGCC fly ash[J]. Fuel, 2005, 84(11): 1364-1371. doi: 10.1016/j.fuel.2004.06.039 [36] DI B, LI J, FANG W, et al. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash[J]. Environmental Pollution, 2019, 250(JUL.): 68-78. [37] QUINA M J, BORDADO J C, QUINTA-FERREIRA R M. Treatment and use of air pollution control residues from MSW incineration: An overview[J]. Waste Management, 2008, 28(11): 2097-2121. doi: 10.1016/j.wasman.2007.08.030 [38] WU S, XU Y, SUN J, et al. Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash[J]. Fuel, 2015, 158: 764-769. doi: 10.1016/j.fuel.2015.06.003 [39] CAO H T, BUCEA L, RAY A, et al. The effect of cement composition and pH of environment on sulfate resistance of Portland cements and blended cements[J]. Cement & Concrete Composites, 1997, 19(2): 161-171. [40] DOMINIC B V, CHAN W P, PHUA Z H, et al. The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials[J]. Journal of Hazardous Materials, 2020, 398: 822-906. [41] SINGH, KANWAR M, KUMAR, et al. Physiochemical and leaching characteristics of fly and bottom ash[J]. Energy sources, 2016, 38(16): 2377-2382. doi: 10.1080/15567036.2015.1057657 [42] 张海军, 于颖, 倪余文. 等. 采用巯基捕收剂稳定化处理垃圾焚烧飞灰中的重金属[J]. 环境科学, 2007(8): 1899-1904. doi: 10.3321/j.issn:0250-3301.2007.08.044 [43] ARNON C, SUPITCHAYA T, PHAKIN C. Thermogravimetric analysis and phase characterizations of Portland fly ash limestone cements[J]. Journal of thermal analysis and calorimetry, 2020, 142(1): 83-90. [44] 牟陈亚, 何亮, 李清毅, 等. 固化飞灰形状及填埋方式对重金属浸出的影响[J]. 中国环境科学, 2020, 40(4): 8. doi: 10.3969/j.issn.1000-6923.2020.04.027 [45] WANG Y, XU H, CHEN C, et al. Enhanced solidification/stabilization of lead in MSWI fly ash treatment and disposal by gelatinized sticky rice[J]. Environmental Technology, 2019, 42(12): 1-41. [46] MASSAZZA F, OBERTI G. Durability of pozzolanic cements and Italian experience in mass concrete[J]. Aci Special Publication, 1991, 15(9): 43-55. [47] RAMOS V, FERNANDES I, SILAVA S, et al. Assessment of the potential reactivity of granitic rocks — Petrography and expansion tests[J]. Cement & Concrete Research, 2016, 86(3): 63-77. [48] SUN Y, XU C, YANG W, et al. Evaluation of a mixed chelator as heavy metal stabilizer for municipal solid-waste incineration fly ash: Behaviors and mechanisms[J]. Journal- Chinese Chemical Society Taipei, 2018, 34(5): 32-56.