Loading [MathJax]/jax/output/HTML-CSS/jax.js

普鲁兰多糖基恶臭气体阻隔喷膜的制备及性能

王涵, 李季, 刘爱荣, 周涛, 刘静, 赵由才. 普鲁兰多糖基恶臭气体阻隔喷膜的制备及性能[J]. 环境工程学报, 2023, 17(2): 617-624. doi: 10.12030/j.cjee.202211037
引用本文: 王涵, 李季, 刘爱荣, 周涛, 刘静, 赵由才. 普鲁兰多糖基恶臭气体阻隔喷膜的制备及性能[J]. 环境工程学报, 2023, 17(2): 617-624. doi: 10.12030/j.cjee.202211037
WANG Han, LI Ji, LIU Airong, ZHOU Tao, LIU Jing, ZHAO Youcai. Preparation and performance of polymer pullulan-based film spraying agent for garbage odor barrier[J]. Chinese Journal of Environmental Engineering, 2023, 17(2): 617-624. doi: 10.12030/j.cjee.202211037
Citation: WANG Han, LI Ji, LIU Airong, ZHOU Tao, LIU Jing, ZHAO Youcai. Preparation and performance of polymer pullulan-based film spraying agent for garbage odor barrier[J]. Chinese Journal of Environmental Engineering, 2023, 17(2): 617-624. doi: 10.12030/j.cjee.202211037

普鲁兰多糖基恶臭气体阻隔喷膜的制备及性能

    作者简介: 王涵 (1999—) ,女,硕士研究生,2132808@tongji.edu.cn
    通讯作者: 刘爱荣(1975—),女,博士,副教授,liuairong@tongji.edu.cn
  • 基金项目:
    国家重点研发计划资助项目(2018YFC1901402)
  • 中图分类号: X705

Preparation and performance of polymer pullulan-based film spraying agent for garbage odor barrier

    Corresponding author: LIU Airong, liuairong@tongji.edu.cn
  • 摘要: 针对存余垃圾在开挖、运输过程中释放的恶臭气体,研发一种具有阻隔功能的环保型喷膜配方。选取水溶性的高分子普鲁兰多糖作为成膜基质材料制备成喷膜溶液后,通过改变成膜基质的质量分数,添加表面活性剂、纳米功能性材料等途径进行成膜配方优化,使其在应用中快速成膜发挥阻隔作用。结果表明,质量分数为1%普鲁兰多糖、0.1%吐温80所制成的喷膜溶液,最短可在5 min内形成致密的薄膜,并且对质量浓度70 mg∙m−3的硫化氢 (H2S) 和氨气 (NH3) 的气体截留率分别达到84.73%和86.43%。在此基础上添加质量浓度0.2 mg∙L−1的纳米零价铁 (nanoscale zero-valent iron, nZVI) ,喷膜溶液对相同质量浓度的H2S气体截留率提高至91.74 %,NH3气体截留率提高至99.08%。以上研究结果可为存余垃圾资源化利用,尤其是中途转运过程中的恶臭气体阻隔提供参考。
  • TESSIER等[1]于1979年提出连续提取法,以用于分析金属在土壤或固废中的结合形态。该法将土壤金属的结合态分为5种,即可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态、残渣态;各结合态的提取难度依次增大,其所对应的生物有效性依次降低。Tessier连续提取法作为一种操作性定义,以特定提取剂和一定的提取条件来区分元素与土壤特定组分的结合态,有其相对合理性,也存在着一定的局限性,但现阶段还未找到更好的替代方法。Tessier连续提取法最初只对8种土壤金属(Cd、Co、Cu、Ni、Pb、Zn、Fe、Mn)进行了分析,但其中并不包含铬。近年来,随着土壤铬污染问题及其修复技术研发的需要,一些研究开始将Tessier连续提取法拓展到土壤铬的结合态分析上来,有些研究仅针对总铬(TCr)[2-4],有些也包括六价铬[Cr(Ⅵ)][5-7],该方法的应用场景越来越广泛[8-9]

    土壤TCr以三价铬[Cr(Ⅲ)]和Cr(Ⅵ) 2种价态存在。其中,Cr(Ⅵ)的可迁移性和毒性远远高于Cr(Ⅲ)。因此,铬污染土壤修复通常是指清除土壤中的Cr(Ⅵ),或将其转化成低毒性的Cr(Ⅲ)[10]。Tessier连续提取法在铬结合态分析中的应用主要出于3个目的:1)了解自然环境下未污染土壤中原生铬结合态的分布;2)了解铬污染土壤中Cr(Ⅲ)、Cr(Ⅵ)和TCr结合态的分布[11];3)比较修复前、后土壤Cr(Ⅲ)、Cr(Ⅵ)或TCr结合态分布的变化,从结合态的角度评估修复技术的有效性[12-13]。然而,Tessier连续提取法在其第3步铁锰氧化物结合态的提取中使用了还原剂盐酸羟胺(NH2OH·HCl),存在将Cr(Ⅵ)还原成Cr(Ⅲ)的可能性。在第4步有机结合态的提取中使用的双氧水(H2O2)也可能导致Cr(Ⅵ)-Cr(Ⅲ)的转化。此外,对于经还原修复的铬污染土壤,土壤中残留的还原剂也可能在提取过程中将Cr(Ⅵ)还原成Cr(Ⅲ),从而影响修复效果评估的准确性。但关于以上条件对铬结合态分析的影响至今仍缺少相关研究报道。目前,Tessier连续提取法在未加评估的情况下,被直接用于铬污染土壤和含铬固废的结合态分析。

    本研究针对当前Tessier连续提取法使用的3种场景,即:1)未污染土壤的原生铬结合态;2)铬污染土壤中的铬结合态;3)铬污染土壤还原修复后残留铬的结合态(还原剂为亚铁[4]和硫化钠[14])。通过液相机理研究和土壤相验证研究相结合的方式,探究提取液自身组分和残留还原剂导致的各提取步骤中Cr(Ⅵ)与Cr(Ⅲ)的转化及机理。本研究结果可为利用Tessier连续提取法准确评估铬污染土壤修复效果提供参考。

    实验试剂。重铬酸钾(K2Cr2O7)、七水硫酸亚铁(FeSO4·7H2O)、九水硫化钠(Na2S·9H2O)、六水合氯化镁(MgCl2·6H2O)、乙酸钠(NaCOOH)、乙酸(HCOOH)、盐酸羟胺(NH2OH·HCl)、30%过氧化氢(H2O2)、乙酸铵(NH4COOH)、硝酸(HNO3)均为分析纯。

    硫化物溶液。为模拟经硫化钠处理后的土壤中残留硫化物的状态,残留还原剂的影响实验中使用的硫化物溶液取自K2Cr2O7与Na2S溶液密闭反应7 d后的上清液,主要成分为硫离子、多硫化物、硫代硫酸钠等[15]

    本研究采用4种土壤样品进行土壤相实验。

    土样1。未污染土壤,取自重庆大学校园内挖出的未经污染的原生黏土。采集后风干、过1 mm孔径的筛网备用。

    土样2。铬污染土壤,采自重庆某铬渣堆场。该渣场铬渣已被清理,土壤样品取自该渣场底部。

    土样3。经硫酸亚铁稳定化处理后的Cr(Ⅵ)污染土壤。以硫酸亚铁为还原剂,对土样2进行稳定化处理,用量为与Cr(Ⅵ)按化学计量比反应所需剂量的5倍。期间密封保存,稳定化处理时间为7 d,然后对其进行Tessier连续提取分析。

    土样4。经硫化钠稳定化处理后的Cr(Ⅵ)污染土壤。以硫化钠为还原剂,用量为与Cr(Ⅵ)按化学计量比反应所需剂量的5倍。稳定化处理方法同土样3,然后对其进行Tessier连续提取分析。

    Tessier连续提取法引起的铬结合态分析误差主要来自于2个方面,一是其提取液自身组分在第3、4步提取过程中对Cr(Ⅵ)的还原;二是土壤中残留还原剂在第1、2步提取过程中对Cr(Ⅵ)的还原。

    1)第3、4步中提取液组分的影响。本实验采用的Tessier连续提取法[1]操作步骤详见表1,其在第3步和第4步分别使用了NH2OH·HCl和H2O2。在酸性条件下,NH2OH·HCl和H2O2均可能将释放到提取液中的Cr(Ⅵ)还原成Cr(Ⅲ)[16-17]。为避免土壤中铬提取不完全的误差和土壤中其他离子的干扰,本实验不加入土壤基质,以Cr(Ⅵ)标准液替代铬污染土壤,进行溶液相反应机理研究。向150 mL锥形瓶中加入0.5 mL不同浓度的Cr(Ⅵ)标准液,具体加入量见表2中“Cr(Ⅵ)初始量”,实验编号分别L3-1、L3-2和L4-1、L4-2。再分别按照Tessier连续提取法第3步、第4步进行操作,测定溶液中残留的Cr(Ⅵ)量。

    表 1  Tessier连续提取法操作步骤
    Table 1.  Operation procedures of Tessier consequential extraction
    步骤结合形态提取方法
    1可交换态称取(1.000 0 ± 0.000 3) g 1)土样于50 mL塑料离心管中,加入8 mL 1 mol·L−1 MgCl2溶液,(22 ± 5) ℃下恒温连续振荡1 h(200 r·min−1)
    2碳酸盐结合态于上步残渣中加入8 mL 1 mol·L−1 NaAc溶液(加入HOAc调至pH = 5.0),(22 ± 5) ℃下恒温连续振荡5 h(200 r·min−1))
    3铁锰氧化物结合态于上步残渣中加入20 mL 0.04 mol·L−1 NH2OH·HCl的25% HAc溶液(pH = 2.0),(96 ± 3) ℃下水浴6 h,每10 min搅拌1次
    4有机结合态于上步残渣中加入3 mL 0.02 mol·L−1 HNO3溶液和5 mL 30% H2O2溶液(pH = 2.0),(85 ± 2) ℃下水浴2 h,间歇搅拌;补加3 mL 30% H2O2溶液(pH = 2.0),(85 ± 2) ℃水浴3 h,每10 min搅拌1次,加入5 mL 3.2 mol·L−1 NH4Ac的20% HNO3溶液,稀释到20 mL,(22 ± 5) ℃下恒温振荡30 min (200 r·min−1))
    5残渣态参见“1.3 分析方法”中土壤TCr和Cr(Ⅵ)的检测方法
      注:1)在土样的土壤Tessier连续提取实验中,为保证残渣态土壤量足够进行碱消解(2.5 g)和微波消解(0.2 g),本实验中每个土壤样品实际用量为本表中的3倍(即:3 g),提取液用量也等比例增加。第1、2步在50 mL离心管中操作,第3、4步在100 mL烧杯中操作。
     | Show Table
    DownLoad: CSV
    表 2  第3、4步提取操作中提取液对Cr()的还原
    Table 2.  Reduction of Cr(Ⅵ) by extraction solution in the 3rd and 4th extraction steps
    提取步骤实验编号Cr(Ⅵ)初始量/mgCr(Ⅵ)残留量/mgCr(Ⅵ)反应量/mg
    第3步(NH2OH·HCl)L3-120.00ND20.00
    L3-260.009.12 ± 1.0250.88
    第4步(H2O2)L4-10.27ND0.27
    L4-21.360.82 ± 0.080.54
     | Show Table
    DownLoad: CSV

    2)第1、2步中残留还原剂的影响。对于修复后的铬污染土壤,残留还原剂和剩余Cr(Ⅵ)都会释放到提取液中,2者可能在第1、2步的操作过程中发生反应,导致Cr(Ⅵ)的还原。在本实验中,首先向第1步和第2步的提取液中添加Cr(Ⅵ)标准液,再加入还原剂FeSO4溶液或硫化物溶液,按表1中步骤操作完成后,检测溶液中剩余的Cr(Ⅵ)量。

    3)土壤铬的Tessier连续提取实验。按照表1中步骤分析4种土壤样品中Cr(Ⅵ)和TCr结合态。每步提取完成后,使用离心机进行固液分离(4 000 r·min−1,10 min)。上清液经0.45 µm滤膜过滤后测定Cr(Ⅵ)和TCr含量,离心管中的土壤继续用于下一步的提取分析。

    以上所有液相和固相土壤实验均设置3个平行。

    硫化物溶液浓度(以S2-计)的测定采用碘量法(HJ/T 60-2000)[18]。水溶液中Cr(Ⅵ)的测定采用二苯碳酰二肼分光光度法(EPA Method 7196a)[19],水溶液中TCr的测定采用高锰酸钾氧化-二苯碳酰二肼分光光度法(GB 7466-1987)[20]。土壤Cr(Ⅵ)的测定采用碱消解(Method 3060a)[21]联合二苯碳酰二肼分光光度法(Method 7196a);土壤TCr的测定采用微波消解[22]联合高锰酸钾氧化-二苯碳酰二肼分光光度法(GB 7466-1987)。以上检测采用空白样、实验室控制样和加标样作为质控措施。

    在残留还原剂的影响实验中,为保证剩余Cr(Ⅵ)浓度测定的准确性,需采取一定方法减小检测误差:为避免残留Fe2+对Cr(Ⅵ)测定的干扰[23],实验完成后要先将溶液pH调至11以上,曝气50 min,放置1 d左右;然后,滤去Fe(OH)3沉淀,测定滤液Cr(Ⅵ)浓度,在此操作下,Fe(OH)3沉淀的吸附不影响Cr(Ⅵ)检测[24]。为减小残留硫化物对Cr(Ⅵ)测定的干扰,实验完成后,对溶液中残留的Cr(Ⅵ)同时采用二苯碳酰二肼显色法(EPA Method 7196a)和UV-VIS扫描测定[25]。如果发现残留硫化物导致显色法测定结果出现显著负偏差,而UV-VIS扫描测定的结果在其检出限以上,则采用UV-VIS扫描的测定结果;如果2种方法的检测结果均在其检出限以下,则认为残留Cr(Ⅵ)含量未检出,记为“ND”。

    1) NH2OH·HCl对Cr(Ⅵ)的还原。实验结果表明(表2),在Tessier提取的第3步,Cr(Ⅵ)被提取液组分中的还原剂NH2OH·HCl所还原,其还原Cr(Ⅵ)的量可高达约50.88 mg(L3-2),换算成1.0 g土样中的Cr(Ⅵ)含量为50 880 mg·kg−1。该量远超常见铬污染土壤中的Cr(Ⅵ)浓度[26-27],这意味着该步骤提取的Cr(Ⅵ)可被全部还原成Cr(Ⅲ),导致误判。在真实铬污染土壤提取中,NH2OH·HCl不仅会还原Cr(Ⅵ),还会还原土壤中铁锰所氧化物。因此,其实际用于还原Cr(Ⅵ)的量随土壤组分而变化。

    在第3步实验中观察到,Cr(Ⅵ)与NH2OH·HCl提取液混合后,有气泡产生(N2和N2O);溶液迅速变成蓝色(Cr(Ⅲ)及其配合离子的混合色),加热后转变为绿色(图1)。加热前、后溶液的UV-VIS扫描结果显示(图2),溶液在375 nm处均无Cr(Ⅵ)吸收峰[25],这说明Cr(Ⅵ)已被全部还原。在加热前,溶液在415 nm处有吸收峰,与含Cr(Ⅲ)对照溶液[Cr2(SO4)3·6H2O配制]吸收峰位置基本相同;加热后,溶液吸收峰位置右移至437 nm处,且吸光度增大,说明有Cr(Ⅲ)配合物产生。

    图 1  Cr()与NH2OH·HCl提取液混合液加热前、后的颜色变化
    Figure 1.  Color development of the mixture of Cr(Ⅵ) and NH2OH·HCl extraction solution before and after heating
    图 2  Cr()与NH2OH·HCl提取液混合液加热前、后UV-VIS扫描图谱
    Figure 2.  UV-VIS spectral scanning of the mixture of Cr(Ⅵ) and NH2OH·HCl extraction solution before and after heating

    第3步铁锰氧化物结合态的提取原理是,在酸性条件下,以NH2OH·HCl为还原剂,将土壤中以固相存在三价铁还原为易溶于水的二价铁[28-29],使得附着其上的其它金属离子失去附着基质而被释放到提取液中,反应方程式如式(1)~式(10)所示。

    Fe()+NH2OHNH2O+Fe()+H+ (1)
    2NH2ON2+2H2O (2)
    Fe()+NH2ONHO+Fe()+H+ (3)
    2NHON2O+H2O (4)
    5Fe()+NH2O+2H2O5Fe()+NO3+6H+ (5)
    NO3+NH2OHNO+NO2+H++H2O (6)

    当有Cr(Ⅵ)存在时,还会发生式(7)~式(10)的反应。

    Cr()+3NH2OH3NH2O+Cr()+3H+ (7)
    Cr()+3NH2O3NHO+Cr()+3H+ (8)
    5Cr()+3NH2O+6H2O5Cr()+3NO3+18H+ (9)
    CrO24+3Fe2++4H2OCr3++3Fe3++8OH (10)

    在液相实验中,由于没有土壤,因此不发生与Fe(Ⅲ)有关的反应,NH2OH·HCl被全部用于还原Cr(Ⅵ)。

    2) H2O2对Cr(Ⅵ)的还原。Tessier连续提取法第4步的操作pH为2.0,在酸性条件下,H2O2相对于土壤有机物为强氧化剂,但相对于Cr(Ⅵ)却是还原剂(式11)。值得注意的是,在碱性条件下,H2O2可以反过来将Cr(Ⅲ)氧化成Cr(Ⅵ)(式12)[30-31]

    4HCrO4+4H2O2+16H+=4Cr3++5O2+14H2OΔGr,20C=554kJ (11)
    2Cr(OH)3+3H2O2+4OH=2CrO24+8H2OΔGr,20C=627kJ (12)

    根据表2可知,实验L4-1中Cr(Ⅵ)因量太低被全部还原,而实验L4-2中有0.54 mg(0.01 mmol)的Cr(Ⅵ)被H2O2还原。在H2O2加入到Cr(Ⅵ)溶液中(L4-2)的瞬间,溶液变成紫色(Cr(Ⅵ)离子的颜色)[17, 32],反应后紫色褪去恢复黄色。提取液中H2O2的加入量为1.5 g(0.044 mol),若按式(11)与Cr(Ⅵ)完全反应,则可还原的Cr(Ⅵ)总量为1.529 g(0.029 mol),远大于0.54 mg。这表明在第4步中,H2O2对Cr(Ⅵ)的还原能力较弱。但其还原的Cr(Ⅵ)量对应到土壤中高达540 mg·kg−1,因此不可忽视其影响。在实际的土壤提取操作中,H2O2会被土壤中的其他物质消耗,实际还原的Cr(Ⅵ)量小于该值。

    1)亚铁离子的影响。Fe2+与Cr(Ⅵ)的氧化还原反应(式10)在弱碱性和酸性条件下均可进行。Tessier连续提取法的第1步未对pH加以控制,第2步要求pH控制在5.0,而要阻止Fe2+与Cr(Ⅵ)的氧化还原反应,溶液的pH通常需要大于10[23, 33]。实验结果(表3)表明,当Fe2+过量时(L1-1-Fe、L1-2-Fe、L2-1-Fe和L2-2-Fe),Cr(Ⅵ)会被Fe2+全部还原。

    表 3  第1、2步提取操作中Fe2+对Cr()的还原
    Table 3.  Reduction of Cr(Ⅵ) by Fe2+ in the 1st and 2nd extraction steps
    提取步骤实验编号Cr(Ⅵ)初始量/mg初始pH反应后pHCr(Ⅵ)剩余量/mgCr(Ⅵ)反应量/mg
    第1步L1-1-Fe0.1466.6±0.25.3±0ND0.146
    L1-2-Fe1.4615.5±0.13.1±0ND1.461
    L1-3-Fe2.9225.1±0.13.2±0.10.95±0.101.972
    第2步L2-1-Fe0.1465.0±0.05.0±0ND0.146
    L2-2-Fe1.4615.0±0.05.0±0ND1.461
    L2-3-Fe2.9225.0±0.05.1±01.32±0.011.602
      注:Fe2+加入量为4.721 mg(0.085 mmol)。
     | Show Table
    DownLoad: CSV

    本实验发现,L1-3-Fe的Cr(Ⅵ)反应量大于L2-3-Fe;对比发现,L1-3-Fe反应后pH明显低于L2-3-Fe。这是因为,L1-3-Fe产生的Fe3+在生成Fe(OH)3的过程中释放出H+。在L2-3-Fe实验中,由于NaAc-HOAc提取液具有较强的缓冲能力,从而能维持在pH=5.0。当有土壤存在时,由于土壤具有较强的缓冲能力,通常不会出现L1-3-Fe中的低pH情况。

    2)硫化物的影响。Na2S还原处理后的铬污染土壤中,残留在土壤中的含硫物质并非S2-这1种形式,还包含零价硫(S0)、多硫化物(S2n)、硫代硫酸根(S2O23)、亚硫酸根(SO23)和硫酸根(SO24);除S0SO24之外,其他几种均具有还原性,可在不同pH条件下与Cr(Ⅵ)发生不同程度的氧化还原反应[34]。这些含硫组分的浓度分布受养护时间、溶解氧、pH等诸多条件的影响。本实验中采用K2Cr2O7与Na2S溶液密闭反应7 d后的上清液,该溶液呈淡黄色,用碘量法检测其硫化物浓度。本实验中硫化物加入量(以等效S2-计)为0.54 mg。

    实验结果表明(表4),在第1步提取实验中,Cr(Ⅵ)的绝对反应量随其初始量的增加而增加,但占初始量的比重却逐渐降低,依次为35%、6%和3%,整体还原效率远低于Fe2+

    表 4  第1、2步提取操作中硫化物对Cr()的还原
    Table 4.  Reduction of Cr(Ⅵ) by sulfides in the 1st and 2nd extraction steps
    提取步骤实验组Cr(Ⅵ)初始量/mg初始pH反应后pHCr(Ⅵ)剩余量/mgCr(Ⅵ)反应量/mg
    第1步L1-1-S0.2928.1±08.0±00.21±00.082
    L1-2-S1.4618.1±07.6±01.37±00.091
    L1-3-S2.9228.1±07.0±0.12.82±0.020.102
    第2步L2-1-S0.2925.0±05.1±00.13±00.162
    L2-2-S1.4615.0±05.0±00.99±00.471
    L2-3-S2.9225.0±05.0±02.13±0.020.792
      注:硫化物加入量(以等效S2−计)为0.54 mg。
     | Show Table
    DownLoad: CSV

    在第2步提取实验中,Cr(Ⅵ)的绝对反应量随其初始量的增加而增加,占初始量的比重分别为55%、32%和27%,与第1步有相同规律。但Cr(Ⅵ)的绝对反应量相较于第1步明显增加,这主要归因于第1步提取液pH呈弱碱性,Cr(Ⅵ)与S2−S2O23SO23反应缓慢。而第2步提取液pH控制在5.0,有利于Cr(Ⅵ)与S2−S2O23SO23的反应。

    在第2 d对溶液中的剩余Cr(Ⅵ)浓度进行复检时,Cr(Ⅵ)浓度下降。这说明该反应过程仍在缓慢进行,进一步影响了该提取步骤检测结果的可信度和重现性。

    根据表5可知,未污染土壤(土样1)中不含有Cr(Ⅵ)。TCr即为Cr(Ⅲ),其可交换态的检测结果低于检出限,这与自然条件下未污染土壤中Cr(Ⅲ)溶解度极低、通常不检出的情况一致。TCr的5种结合态加和值大于直接检测值,这是实验的系统误差所致。操作中发现,由于Tessier连续提取分析时土壤量少,导致数据重现性下降,数据偏差较大。

    表 5  未污染土壤的Tessier连续提取实验结果
    Table 5.  Results of Tessier sequential extraction of the uncontaminated soil
    结合形态Cr(Ⅵ)/(mg·kg−1)TCr/(mg·kg−1)
    可交换态NDND
    碳酸盐结合态ND1.5±0.1
    铁锰氧化物结合态ND5.0±0.7
    有机结合态ND3.4±0.3
    残渣态ND88.4±19.5
    合计aND103.8±13.6
    直接检测值bND78.5±3.3
      注:a 5种结合态检测结果的数学加和值;b对土样Cr(Ⅵ)和TCr的直接检测结果。
     | Show Table
    DownLoad: CSV

    在各步提取液中均未检测到Cr(Ⅵ),说明不存在Cr(Ⅲ)转化成Cr(Ⅵ)的情况,即在实际土壤的Tessier连续提取过程中,有机结合态提取步骤中使用的H2O2只能氧化土壤有机物,不能氧化Cr(Ⅲ),与液相实验结果一致。这表明,当土壤中只有Cr(Ⅲ)时,如农田中少量的铬污染,其存在形态通常只有Cr(Ⅲ)这一种形态,在土壤中的结合态分析可以采用Tessier连续提取法。

    铬污染土壤(土样2)的Tessier连续提取结果表明(表6),其含有较高的Cr(Ⅵ)和TCr。在TCr的可交换态和碳酸盐结合态中,Cr(Ⅵ)占比分别高达91%和78%。与土样1相比,可交换态检测到Cr(Ⅲ)的存在,这是由于该铬污染土壤中的绝大部分Cr(Ⅲ)以Cr(OH)3沉淀存在,仅有少量Cr3+和无定性Cr(OH)3吸附在土壤颗粒表面,这部分Cr(Ⅲ)易被提取出来。

    表 6  铬污染土壤的Tessier连续提取实验结果
    Table 6.  Results of Tessier sequential extraction of the chromium-contaminated soil
    结合形态Cr(Ⅵ)/(mg·kg−1)TCr/(mg·kg−1)
    可交换态170.1±3.4186.6±4.8
    碳酸盐结合态71.4±1.293.0±1.5
    铁锰氧化物结合态ND2 799.0±128.4
    有机结合态ND440.8±57.0
    残渣态7.2±0.1788.0±95.8
    合计a248.7±4.64 307.4±274.9
    直接检测值b361.3±16.74 285.5±607.1
      注:a 5种结合态检测结果的数学加和值;b对土样Cr(Ⅵ)和TCr的直接检测结果。
     | Show Table
    DownLoad: CSV

    Cr(Ⅵ)的铁锰氧化物结合态和有机结合态的检测结果低于检出限,且这2步的加标回收率分别为0和11%~12%,相比于可交换态和碳酸盐结合态的加标回收率在103%~109%之间(每步2个加标回收平行样,RPD = 0~1%),这说明在铁锰氧化物结合态和有机结合态的提取过程中存在严重的Cr(Ⅵ)还原现象。该结果与溶液相实验结果一致,即提取液中的还原性组分会将提取到溶液中的Cr(Ⅵ)还原。此外,在有机结合态提取步骤中,还可能存在原本不能直接与Cr(Ⅵ)反应的土壤有机质,经H2O2氧化降解后与Cr(Ⅵ)发生反应的情况[35]

    TCr的铁锰氧化物结合态和有机结合态检测结果的可信度受多重因素的影响,如:Cr(Ⅵ)被还原成Cr(Ⅲ)后,是否一部分会被重新吸附或沉淀到土壤中?属于铁锰氧化物结合态的Cr(Ⅵ)被还原成Cr(Ⅲ)后,是否会与土壤有机质结合转化成有机结合态[36]?这些影响因素对TCr结合态的检测结果影响是否达到不可接受的水平?需要根据土壤样品的具体成分进行评估研究。

    表7表明,经Na2S还原处理后的铬污染土壤(土样4),其Cr(Ⅵ)的可交换态、碳酸盐结合态、铁锰氧化物结合态和有机结合态均未检出。经FeSO4还原处理后的铬污染土壤(土样3),除了可交换态少量检出外,其他结合态均未检出,以上实验结果与溶液相实验结果(表3表4)一致。苏长青[37]的研究中也出现了类似的可交换态、碳酸盐结合态、铁锰氧化态和有机态为零或少量检出的情况;但更多报道是5种结合态都有检出,这与土壤Cr(Ⅵ)含量、氧化性物质含量等诸多因素有关。土样4中,TCr的可交换态低于检出限,这是由于Na2S的强碱性导致土样4的pH较高(pH=9),Cr(Ⅲ)因生成Cr(OH)3而未被提取。在碳酸盐结合态的检测中可发现,当提取液pH被控制在5时,Cr(Ⅲ)开始大量溶出。其他研究中也存在还原修复后土壤TCr的可交换态低于检出限的情况[2]

    表 7  修复后铬污染土壤的Tessier连续提取实验结果
    Table 7.  Results of Tessier sequential extraction of the remediated chromium-contaminated soil
    结合形态土样3土样4
    Cr(Ⅵ)/(mg·kg−1)TCr/(mg·kg−1)Cr(Ⅵ)/(mg·kg−1)TCr/(mg·kg−1)
    可交换态1.0±0.440.8±1.8NDND
    碳酸盐结合态ND162.4±4.1ND283.1±15.0
    铁锰氧化物结合态ND2 839.6±95.7ND2 991.2±267
    有机结合态ND328.1±33.9ND279.5±42.6
    残渣态9.4±0.5720.9±120.812.±0.6739.0±126.1
    合计a10.4±0.94 047.3±94.912.±0.64 244.7±67.3
    直接检测值b47.2±2.94 368.3±432.624.0±13.84 368.3±432.6
      注:a 5种结合态检测结果的数学加和值;b对土样Cr(Ⅵ)和TCr的直接检测结果。
     | Show Table
    DownLoad: CSV

    另外,由于在碳酸盐结合态提取步骤中依然存在Cr(Ⅵ)还原现象,说明土样3、土样4中残留还原剂在可交换态提取步骤未被完全去除。而还原剂在碳酸盐结合态提取步骤之后是否有残留,继续影响第3、4步的检测结果;由于提取液自身还原性组分的影响,此处无法进一步判断。土样3和土样4中Cr(Ⅵ)的5种结合态检测结果之和显著小于直接检测值,也说明Tessier连续提取过程从整体上存在Cr(Ⅵ)的还原现象。

    目前的研究通常未提供Cr(Ⅵ)检测结果的关键质控数据(如加标回收率),或者未通过直接检测值与5种结合态检测加和值的比较来判断数据的可信度[38],残渣态通常根据直接检测值减去前4种结合态求得,这种算法掩盖了提取过程中的Cr(Ⅵ)还原问题。此外,大部分研究仅将Tessier连续提取法用于TCr的分析[4, 39],只有少数用于Cr(Ⅵ)[6, 37, 40],但由于Cr(Ⅵ)毒性远大于Cr(Ⅲ),对于以评价土壤修复效果为目的的研究,仅对比还原修复前、后TCr结合态分布的变化,存在一定的不合理性。

    此外,BCR提取法中也使用了NH2OH·HCl作为还原剂(pH = 2)[12, 38],在常温下提取可还原结合态。而本研究结果表明,即使在室温条件下,Cr(Ⅵ)也会被还原成Cr(Ⅲ)(图1图2),这说明BCR提取法可能也面临同样的Cr(Ⅵ)-Cr(Ⅲ)转化问题。

    陈英旭等[41]提出了一种专门针对土壤铬的5步提取方案:水溶态、交换态(1 mol·L−1 CH3COONH4)、沉淀态(2 mol·L−1 HCl)、有机结合态(5% H2O2 -2 mol·L−1 HCl)、残渣态。其沉淀态包含了Tessier连续提取法的碳酸盐结合态和铁锰氧化物结合态,因其沉淀态提取液中没有使用还原剂,该步骤不会发生提取液组分还原Cr(Ⅵ)的问题。其有机结合态的分析原理与Tessier连续提取法相同,使用H2O2在酸性条件下氧化有机物,同样可能导致Cr(Ⅵ)还原问题。但该方法对Cr(Ⅵ)的整体还原程度远低于Tessier连续提取法。因此可以认为,对于铬污染土壤的结合态分析,陈英旭等[41]提出的方法使用面相对较广,可适用于未经修复的铬污染土壤中Cr(Ⅵ)的结合态分析,但对于修复后残留大量还原剂的铬污染土壤依然不适用。

    1)Tessier连续提取法的提取液自身还原性组分会在铁锰氧化物结合态和有机结合态的检测中导致Cr(Ⅵ)被还原为Cr(Ⅲ),可还原的Cr(Ⅵ)最大量分别为50.88 mg、0.54 mg。经还原修复的铬污染土壤,土壤残留还原剂会在可交换态和碳酸盐结合态的检测中导致Cr(Ⅵ)的还原。

    2)当用于了解未污染土壤中原生铬结合态分布时,使用Tessier连续提取法无不利影响。

    3)当用于了解铬污染土壤中TCr和Cr(Ⅵ)的结合态分布时,Cr(Ⅵ)铁锰氧化物结合态和有机结合态的检测结果明显低于真实值,TCr结合态的检测结果重现性可能较差,但不一定出现不可接受的偏差。

    4)当用于评价铬污染土壤修复前、后Cr(Ⅵ)结合态分布变化时,修复后土壤中Cr(Ⅵ)可交换态、碳酸盐结合态、铁锰氧化物结合态和有机结合态的检测结果均可能明显低于真实值。

  • 图 1  升流式实验反应装置示意图

    Figure 1.  Schematic diagram of upstream experimental device

    图 2  普鲁兰多糖质量分数对喷膜剂气体截留率的影响

    Figure 2.  Effect of pullulan mass fraction on gas retention

    图 3  薄膜气体阻隔性能示意图

    Figure 3.  Gas-barrier property of film

    图 4  nZVI质量浓度对喷膜剂气体截留率的影响

    Figure 4.  Effect of nZVI mass content on gas retention

    图 5  不同喷膜剂配方对喷膜抗拉强度的影响

    Figure 5.  Effect of different film spraying agent formulas on tensile strength

    图 6  普鲁兰多糖质量分数对喷膜剂成膜时间的影响

    Figure 6.  Effect of Pullulan mass fraction on film forming time

    图 7  吐温80质量分数对喷膜剂接触角的影响

    Figure 7.  Effect of Tween 80 mass fraction on contact angle

    图 8  添加nZVI前后的普鲁兰多糖薄膜SEM图

    Figure 8.  SEM images of pullulan films before and after adding nZVI

    图 9  添加nZVI前后普鲁兰多糖薄膜FTIR图谱

    Figure 9.  FTIR of pullulan films before and after adding nZVI

    表 1  普鲁兰多糖喷膜配方

    Table 1.  Formulas of pullulan film spraying agent

    样品编号普鲁兰多糖质量分数/%吐温80质量分数/%
    110.1
    210.3
    310.5
    430.1
    530.3
    630.5
    750.1
    850.3
    950.5
    样品编号普鲁兰多糖质量分数/%吐温80质量分数/%
    110.1
    210.3
    310.5
    430.1
    530.3
    630.5
    750.1
    850.3
    950.5
    下载: 导出CSV

    表 2  不同天气条件下喷膜剂的成膜时间

    Table 2.  Film forming time of spray agent under different weather conditions

    温度/ ℃湿度/%光照成膜时间/min
    269035.42
    268322.07
    277111.67
    29779.23
    32374.28
    32595.90
    327013.52
    327319.10
    36605.70
    36547.82
    温度/ ℃湿度/%光照成膜时间/min
    269035.42
    268322.07
    277111.67
    29779.23
    32374.28
    32595.90
    327013.52
    327319.10
    36605.70
    36547.82
    下载: 导出CSV
  • [1] 中华人民共和国住房和城乡建设部. 2021年城乡建设统计年鉴[EB/OL]. [2022-10-12]. https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/jstjnj/index.html, 2022
    [2] 张杰. 生活垃圾末端处置过程二次污染控制技术研究[M]. 同济大学, 2016.
    [3] 崔玉雪, 郭广寨, 黄皇, 等. 垃圾填埋场苍蝇和恶臭污染控制技术研究进展[J]. 环境污染与防治, 2016, 38(1): 69-75,110. doi: 10.15985/j.cnki.1001-3865.2016.01.013
    [4] 李海青, 刘欣艳, 孙宇, 等. 垃圾焚烧厂恶臭污染物分布特征及健康风险评价[J]. 环境污染与防治, 2020, 42(9): 1158-1162.
    [5] 孙翔, 肖芸, 阚慧, 等. 基于生命周期分析的餐厨垃圾肥料化利用环境风险评价研究[J]. 环境污染与防治, 2013, 35(8): 33-38. doi: 10.3969/j.issn.1001-3865.2013.08.008
    [6] 朱登磊, 赵修华. 有机垃圾处理机排放臭气的生物脱臭研究[J]. 环境科学与技术, 2007, 30(9): 89-91. doi: 10.3969/j.issn.1003-6504.2007.09.031
    [7] DAI Z N, ZENG F S, LIU J, et al. Application of deodorant in odor control of municipal solid waste//IOP Conference Series: Earth and Environmental Science[J]. IOP Publishing, 2018, 192(1): 012063.
    [8] 杨凯雄, 李琳, 刘俊新. 挥发性有机污染物及恶臭生物处理技术综述[J]. 环境工程, 2016, 34(3): 107-111,179. doi: 10.13205/j.hjgc.201603022
    [9] YOU J, OH B, YUN Y S, et al. Improvement in barrier properties using a large lateral size of exfoliated graphene oxide[J]. Macromolecular Research, 2020, 28(8): 709-713. doi: 10.1007/s13233-020-8089-x
    [10] TRAN T T D, TRAN P H L. Controlled release film forming systems in drug delivery: the potential for efficient drug delivery[J]. Pharmaceutics, 2019, 11(6): 290. doi: 10.3390/pharmaceutics11060290
    [11] ATES O. Systems biology of microbial exopolysaccharides production[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 200.
    [12] 孙华, 张彦昊, 张翔, 等. 普鲁兰多糖在食品保鲜和生物医学中的应用综述[J]. 江苏农业科学, 2019, 47(20): 48-52. doi: 10.15889/j.issn.1002-1302.2019.20.011
    [13] 于雪梅. 新型普鲁兰多糖抗菌食品包装膜制备及性能研究[D]. 黑龙江: 哈尔滨工业大学, 2018.
    [14] OH S, CHO S, LEE J. Preparation and characterization of hydrophilic PLGA/Tween 80 films and porous scaffolds[J]. Molecular Crystals and Liquid Crystals, 2004, 418(1): 229-241. doi: 10.1080/15421400490479352
    [15] YAN W, LIEN H L, KOEL B E, et al. Iron nanoparticles for environmental clean-up: recent developments and future outlook[J]. Environmental Science:Processes & Impacts, 2013, 15(1): 63-77.
    [16] SU L, ZHEN G, ZHANG L, et al. The use of the core–shell structure of zero-valent iron nanoparticles for long-term removal of sulphide in sludge during anaerobic digestion[J]. Environmental Science:Processes & Impacts, 2015, 17(12): 2013-2021.
    [17] LI L, HAN Y, YAN X, et al. H2S removal and bacterial structure along a full-scale biofilter bed packed with polyurethane foam in a landfill site[J]. Bioresource Technology, 2013, 147: 52-58. doi: 10.1016/j.biortech.2013.07.143
    [18] 刘建伟, 高柳堂. 生物滤池高径比对其去除恶臭物质和微生物气溶胶特性的影响[J]. 环境污染与防治, 2018, 40(1): 15-18. doi: 10.15985/j.cnki.1001-3865.2018.01.004
    [19] RYBARCZYK P, SZULCZYŃSKI B, GĘBICKI J, et al. Treatment of malodorous air in biotrickling filters: A review[J]. Biochemical Engineering Journal, 2019, 141: 146-162. doi: 10.1016/j.bej.2018.10.014
    [20] SU L, LIU C, LIANG K, et al. Performance evaluation of zero-valent iron nanoparticles for high-concentration H2S removal from biogas at different temperatures[J]. RSC Advances, 2018, 8(25): 13798-13805. doi: 10.1039/C7RA12125C
    [21] LI X, ZHAN Y, SU L, et al. Sequestration of sulphide from biogas by thermal-treated iron nanoparticles synthesized using tea polyphenols[J]. Environmental Technology, 2020, 41(6): 741-750. doi: 10.1080/09593330.2018.1509891
    [22] SHINGEL K I. Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy[J]. Carbohydrate Research, 2002, 337(16): 1445-1451. doi: 10.1016/S0008-6215(02)00209-4
    [23] SAKATA Y, OTSUKA M. Evaluation of relationship between molecular behavior and mechanical strength of pullulan films[J]. International Journal of Pharmaceutics, 2009, 374(1/2): 33-38. doi: 10.1016/j.ijpharm.2009.02.019
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.9 %DOWNLOAD: 3.9 %HTML全文: 91.6 %HTML全文: 91.6 %摘要: 4.4 %摘要: 4.4 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.7 %其他: 95.7 %XX: 2.3 %XX: 2.3 %三亚: 0.1 %三亚: 0.1 %上海: 0.1 %上海: 0.1 %北京: 0.7 %北京: 0.7 %广州: 0.1 %广州: 0.1 %朝阳: 0.1 %朝阳: 0.1 %沈阳: 0.1 %沈阳: 0.1 %玉林: 0.1 %玉林: 0.1 %西安: 0.1 %西安: 0.1 %运城: 0.1 %运城: 0.1 %酒泉: 0.1 %酒泉: 0.1 %银川: 0.1 %银川: 0.1 %其他XX三亚上海北京广州朝阳沈阳玉林西安运城酒泉银川Highcharts.com
图( 9) 表( 2)
计量
  • 文章访问数:  3388
  • HTML全文浏览数:  3388
  • PDF下载数:  133
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-11-06
  • 录用日期:  2022-12-15
  • 刊出日期:  2023-02-26
王涵, 李季, 刘爱荣, 周涛, 刘静, 赵由才. 普鲁兰多糖基恶臭气体阻隔喷膜的制备及性能[J]. 环境工程学报, 2023, 17(2): 617-624. doi: 10.12030/j.cjee.202211037
引用本文: 王涵, 李季, 刘爱荣, 周涛, 刘静, 赵由才. 普鲁兰多糖基恶臭气体阻隔喷膜的制备及性能[J]. 环境工程学报, 2023, 17(2): 617-624. doi: 10.12030/j.cjee.202211037
WANG Han, LI Ji, LIU Airong, ZHOU Tao, LIU Jing, ZHAO Youcai. Preparation and performance of polymer pullulan-based film spraying agent for garbage odor barrier[J]. Chinese Journal of Environmental Engineering, 2023, 17(2): 617-624. doi: 10.12030/j.cjee.202211037
Citation: WANG Han, LI Ji, LIU Airong, ZHOU Tao, LIU Jing, ZHAO Youcai. Preparation and performance of polymer pullulan-based film spraying agent for garbage odor barrier[J]. Chinese Journal of Environmental Engineering, 2023, 17(2): 617-624. doi: 10.12030/j.cjee.202211037

普鲁兰多糖基恶臭气体阻隔喷膜的制备及性能

    通讯作者: 刘爱荣(1975—),女,博士,副教授,liuairong@tongji.edu.cn
    作者简介: 王涵 (1999—) ,女,硕士研究生,2132808@tongji.edu.cn
  • 同济大学环境科学与工程学院,上海 200092
基金项目:
国家重点研发计划资助项目(2018YFC1901402)

摘要: 针对存余垃圾在开挖、运输过程中释放的恶臭气体,研发一种具有阻隔功能的环保型喷膜配方。选取水溶性的高分子普鲁兰多糖作为成膜基质材料制备成喷膜溶液后,通过改变成膜基质的质量分数,添加表面活性剂、纳米功能性材料等途径进行成膜配方优化,使其在应用中快速成膜发挥阻隔作用。结果表明,质量分数为1%普鲁兰多糖、0.1%吐温80所制成的喷膜溶液,最短可在5 min内形成致密的薄膜,并且对质量浓度70 mg∙m−3的硫化氢 (H2S) 和氨气 (NH3) 的气体截留率分别达到84.73%和86.43%。在此基础上添加质量浓度0.2 mg∙L−1的纳米零价铁 (nanoscale zero-valent iron, nZVI) ,喷膜溶液对相同质量浓度的H2S气体截留率提高至91.74 %,NH3气体截留率提高至99.08%。以上研究结果可为存余垃圾资源化利用,尤其是中途转运过程中的恶臭气体阻隔提供参考。

English Abstract

  • 截至2021年底,我国城镇生活垃圾年清运量为2.487×108 t,其中生活垃圾无害化处理量达2.484×108 t,占比接近100%[1]。在垃圾无害化处理过程中,恶臭气体释放是亟待解决的难题之一。它不仅会污染空气,还会对周边居民的身体健康造成危害[2-5]。目前,应用于治理恶臭气体的方法主要包括物理、化学和生物法3种方法 [6-8]。常用的除臭技术如垃圾覆盖技术和除臭剂技术等,都是将上述多种方法综合应用,从而达到较好的除臭效果。其中常用于处理垃圾填埋场的恶臭气体的覆盖技术,以物理法阻隔为主,化学法联合除臭为辅。该技术具有使用规模较大、持续时间长的优点,但存在操作、运输不便的缺点。除臭剂技术可利用多种具有不同去除原理的除臭剂进行恶臭气体的去除,如物理吸附除臭剂、化学法除臭剂、植物除臭剂、微生物除臭剂等。除臭剂具有便于运输储存的优点,但存在效果不稳定、持续时间较短的缺点。尤其是在垃圾中途转运过程中,因路途颠簸的等特点特性,单独使用上述2种除臭技术很难实现恶臭气体的有效阻隔。高分子喷涂薄膜技术,能够方便快捷地形成兼具物理覆盖以及化学、生物法联合的恶臭去除的薄膜,从而实现恶臭气体的有效去除[9-11]

    普鲁兰多糖是一种天然线性高分子[12],由于其具有良好的成膜性[13],且无毒无害,有较好的生物可降解性能,已在医疗、食品、石油、化工、轻工业等领域广泛应用。非离子型表面活性剂吐温80由于其无毒、无害,常应用于医药配方、食品薄膜等领域[14],能够增加所制备薄膜的粘附性,使其更紧密地黏附在垃圾表面。除此之外,在成膜材料中添加功能纳米材料,能够增强薄膜对于恶臭气体的吸附。其中,纳米零价铁 (nanoscale zero-valent iron, nZVI) 具有典型的核壳结构,内核为零价铁,外层为氧化铁[15],能够作为填充物填充到有机高分子链的孔隙中,使其形成的薄膜更加致密,提高薄膜的物理阻气能力;另因nZVI表面的氧化层与硫化物发生反应,可达到固定、去除有毒有害硫化物的效果[16]

    本研究选取普鲁兰多糖作为成膜基质材料,对恶臭气体的主要成分硫化氢 (H2S) 和氨气 (NH3) 进行阻隔实验。首先,拟测试普鲁兰多糖喷涂薄膜对H2S和NH3的阻隔能力,并探究在普鲁兰多糖喷膜溶液中添加表面活性剂吐温80、无机纳米材料nZVI,对成膜性能及气体阻隔性能的影响等,以为存余垃圾开挖及中途转运过程中垃圾恶臭气体的有效阻隔提供参考。开发高分子成膜配方并应用于垃圾短途转运过程中恶臭气体的阻隔具有实际使用价值。

    • 普鲁兰多糖 ((C37H62O30)n) 为分析纯;吐温80 (C24H4O6) 为化学纯;硫化氢标准气体 (H2S, 70 mg∙m−3) 、氨气标准气体 (NH3, 70 mg∙m−3) ;所有溶液均采用去离子水配制。

    • 手持泵吸式H2S检测仪 (BSQ-B H2S,上海本杉仪器设备有限公司) ;手持泵吸式NH3检测仪 (BSQ-B NH3,上海本杉仪器设备有限公司) ;数显恒温磁力搅拌器 (85-2,上海本杉仪器设备有限公司) ;数显式推拉仪 (HLD+HP-500,乐清艾德堡仪器有限公司) ;电动搅拌器 (D2004W,上海梅颖浦仪器仪表制造有限公司) ;扫描电子显微镜 (Zeiss Gemini 300,上海卡尔蔡司科技管理有限公司) ;傅里叶红外光谱仪 (Nicolet 5700,上海赛德威科技有限公司) ;接触角测试仪 (JY-82,承德鼎盛试验机检测设备有限公司) 。

      气体吸收实验装置参考生物滴滤装置[17-19],设计如图1所示的升流式实验反应器,装置直径为20 cm,中间装有布气板,用于承载橡胶粒填料,采用50 mL小型塑料喷瓶作为喷淋装置将喷膜剂喷洒在填料上形成薄膜。实验时将质量浓度为70 mg∙m−3的H2S、NH3标准气体以0.8 L∙min−1的速度从装置下方通入,向上流动。气体流经平板后,由上方出气孔流出,并在出口处测量流出气体中的H2S、NH3质量浓度。

    • 1) 喷膜液的配制。称取适量普鲁兰多糖、吐温80溶解于100 mL去离子水中,在45 ℃的温度下搅拌20 min,使其成为均匀溶液。为了提高喷膜性能,在喷膜液中添加适量的nZVI,在300 r∙min−1的转速下搅拌15 min,使其与高分子溶液充分混合形成均一溶液。

      2) 喷膜液单因素实验各组分添加量设计。为探究膜配方组成对恶臭气体截留率以及膜性能方面的影响,通过单因素实验确定喷膜剂中普鲁兰多糖、吐温80的最佳添加量,最终确定气体截留率较高、膜性能较佳的喷膜配方。单因素实验各组分质量分数如表1所示。

    • 1) 薄膜性能分析。通过测定气体截留率、抗拉强度和成膜时间等指标分析薄膜的性能。气体截留率采用升流式实验装置测定,由于在实际中生活垃圾恶臭气体中H2S和NH3占比较高,故本实验使用H2S和NH3标准气体混合通入模拟垃圾场恶臭气体。在室温条件下,将50 mL喷膜液喷涂到盛有橡胶颗粒的升流式反应器表面,将质量浓度均为70 mg∙m−3的H2S和NH3标准气体以0.8 L∙min−1的速度混合通入,并在出口处使用手持泵吸式检测仪测量流出气体的H2S、NH3质量浓度。设置喷洒等量去离子水作为空白对照。每组实验运行时间控制在30 min,每间隔5 min测量1 次,每次测量用时1 min,以 30 min 内的平均质量浓度计为出口气体质量浓度,每组进行3次平行实验。H2S、NH3的气体截留率计算如式 (1) 所示。

      式中:η为混合气体中H2S (NH3) 的气体截留率,%;C0为混合气体中H2S (NH3) 的入口质量浓度,mg∙m−3C1为混合气体中H2S (NH3) 的出口质量浓度,mg∙m−3

      抗拉强度采用机械推拉计测定,将70 mL喷膜液倒入培养皿中,待其干燥成膜后,选取平整无缺陷的部分,裁成长方形,测量其横截面积,并使用数显式机械推拉计进行抗拉强度测试,同一配方薄膜测量3 次计算平均值。薄膜的抗拉强度 (Rm) 计算如式 (2) 所示。

      式中:Rm为抗拉强度,MPa ;Fb为样品断裂时所能承受的最大张力,单位为牛顿 (N) ;So为试样横截面积,单位为mm2

      成膜时间的测定方法为自然风干法。量取15 mL的喷膜剂喷洒在表面积约100 cm2的橡胶板上,放置于室外环境中。记录测量时的天气温度、湿度、光照条件等情况以及喷膜剂完全干燥形成薄膜所用的时间。

      2) 薄膜性质表征。采用测试接触角、表面形貌和官能团等,来确定薄膜物理化学性质。接触角测试:将70 mL喷膜液倒入培养皿中,待其自然干燥成膜后,将其裁成长方形,使用接触角测试仪器进行检测。薄膜形貌表征:采用扫描电子显微镜 (Scanning electron microscopy, SEM) 表征薄膜的表面和截面形貌,即将70 mL喷膜液倒入培养皿中,待其自然干燥成膜后,将膜片裁剪成小片;喷金后,使用Zeiss Gemini 300 SEM进行观察。工作电压3 kV,图片信号来源于二次电子成像 (SE2) 。薄膜官能团采用傅里叶红外光谱 (Fourier transform infrared spectroscopy, FTIR) 进行表征,即使用衰减全反射模式 (Attenuated total reflection mode, ATR) 进行测试。检测波数为650~4 000 cm−1

    • 1) 气体截留率。为了研究成膜基质材料普鲁兰多糖对于气体的截留效果,首先进行了普鲁兰多糖质量分数单因素实验。由图2 (a)~图2 (b) 可以看出,与空白对照去离子水组相比,普鲁兰多糖喷膜剂对H2S和NH3的截留率有显著提升,且与普鲁兰多糖的质量分数成正相关关系。结果表明,室温条件下,普鲁兰多糖喷膜液喷涂到升流反应器5 min的时候,截留率最大,对H2S气体的截留率达到接近95%,对于氨气的截留率高达97%。在5~30 min内,截留率稍有降低,H2S气体的截留率在30 min时为84.73%, NH3气体的截留率为86.43%。

      除此之外,如图所示,当普鲁兰多糖质量分数为3%和5%时,薄膜截留率曲线几乎重合,说明3%的喷膜剂已经具有较好的截留效果。这可能是由于普鲁兰多糖是一种高分子多糖类成膜材料,溶液喷洒在承载物表面后,会在短时内形成高分子薄膜,因其高分子长链结构减缓了气体分子在薄膜中的传播速度,从而起到了物理阻气作用 (图3) 。普鲁兰多糖质量分数越高,高分子链连接越致密,对气体的阻隔性能就越强;但与此同时,普鲁兰多糖质量分数越高,溶液越粘稠,喷洒至材料表面后就越不均匀,会对喷膜剂气体截留率造成一定影响。

      图4为普鲁兰多糖质量分数保持1%不变,nZVI质量浓度分别为0.02、0.04、0.06 mg∙L−1时所制备的薄膜的气体截留率。添加nZVI后喷膜剂对H2S和NH3的气体截留率均有所提升,其中对H2S气体的截留率由84.73%提高至91.74%,对NH3气体的截留率由86.43%提升至99.08%。原因可能为,nZVI添加到高分子膜溶液中,与普鲁兰多糖高分子形成氢键,填补了高分子图链中间的孔隙,堵住了气体分子在薄膜中的传递路径,从而达到了更高的气体阻隔效率。二价铁离子可以与H2S发生反应,生成硫化铁沉淀,但由于nZVI为固体状态,在25和100 ℃时对H2S去除质量分数分别为 (12.56±0.43) 和 (14.77±0.10) mg ∙g −1。这说明,存余垃圾表面在温度为25~100 ℃时,nZVI与H2S不易发生反应[20-21]。综上所述,包埋于普鲁兰多糖薄膜中的nZVI对H2S和NH3的去除机理主要为增强薄膜的物理性能,即物理阻隔效果。

      2) 抗拉强度。垃圾在无害化处理过程中不可避免出现垃圾翻动、移位的情况,为避免因薄膜破裂而导致喷膜剂的恶臭阻隔能力降低的情况,要求喷膜具有一定的抗拉性能。图5为不同喷膜剂配方与薄膜Rm的关系图。当其他配方保持不变,普鲁兰多糖质量分数分别为1%、3%、5%时,普鲁兰多糖质量分数越高,喷膜剂所成薄膜Rm越大;当普鲁兰多糖质量分数为1%时,添加0.2 mg∙L−1 nZVI后薄膜Rm从34.3 MPa提升至37.0 MPa。结果表明,由普鲁兰多糖喷膜剂干燥所成薄膜具有一定的抗拉性,普鲁兰多糖质量分数越高,抗拉性能越好,且添加nZVI也能提升薄膜的抗拉性能。因此,本研究所制普鲁兰多糖喷膜剂能够承担垃圾轻微移动所产生的拉力,保证其恶臭阻隔能力。

      3) 成膜时间。 为了使得喷膜剂在垃圾中途转运过程的短时间内形成致密薄膜,需要研究喷膜剂配方的成膜时间。环境中温度32 ℃、相对湿度58%,无光照的实验条件下,研究了成膜基材普鲁兰多糖的质量分数对于成膜时间的影响。普鲁兰多糖的质量分数分别为1%、3%、5%时,喷膜剂的成膜时间如图6所示。由图6中可以看出,普鲁兰多糖质量分数越高,喷膜剂的成膜时间越长。当普鲁兰多糖质量分数为1%时,该条件下最短成膜时间为11 min。这说明,该喷膜配方可实现在分钟尺度内快速成膜,可以用于在一定条件下转运途中发挥最佳阻隔效果。

      除此之外,实验还探究了不同的环境条件对于喷涂薄膜成膜性能的影响,主要探究了温度、湿度和光照时间等环境因素,数据如表2所示。结果表明,该喷膜剂成膜受环境条件的影响较大,且在温度较高、湿度较小的环境条件下成膜时间较短。

    • 1) 接触角测试 液体在固体材料表面上的接触角, 是衡量该液体对材料表面润湿性能的重要参数。若接触角小于90°,则固体表面是亲水性的,即液体较易润湿固体,其角越小,表示润湿性越好。接触角测试可判断喷膜剂在垃圾表面的粘附性以及贴合程度,喷膜剂与垃圾表面黏附越紧密,对垃圾恶臭气体的阻隔效果越佳。图7为固定喷膜剂中普鲁兰多糖质量分数为1%,分别添加质量分数为0.1%、0.3%、0.5%的吐温80时的接触角,分别为37.47°、45.14°和44.9°。上述结果表明,在普鲁兰多糖质量分数为1%、吐温80质量分数为0.1%时,喷膜剂的接触角最小,粘附性最佳。

      2) 薄膜形貌表征 通过对薄膜微观形貌分析,可确定薄膜的致密程度和均匀性。图8 (a) 、图8 (b) 为添加nZVI前后的薄膜表面SEM图。从图8 (a) 可以看出,由普鲁兰多糖喷膜剂干燥形成的薄膜表面光滑。吐温80与普鲁兰多糖在水中混合均匀,能够对气体产生良好的物理阻隔效果。图中出现的杂质颗粒,可能是由于薄膜是在自然环境下风干而成的,在干燥过程中有少量杂质进入到溶液中。从图8 (b) 可以看出,添加了nZVI后的普鲁兰多糖膜表面依然光滑、密实,nZVI颗粒均匀分散在普鲁兰薄膜中,说明在普鲁兰多糖膜溶液中加入nZVI后,普鲁兰多糖高分子链能够包裹住nZVI颗粒,使其在溶液中均匀分散。图8 (c) 、图8 (d) 为添加nZVI前后的薄膜截面SEM图。从图8 (c) 截面图可以看出,普鲁兰多糖薄膜是一种光滑、紧密的膜材料,能够对气体产生良好的物理阻隔效果。图中出现的椭圆形为喷膜溶液在制备过程中,气体进入溶液中而形成的气泡。图8 (d) 为添加nZVI后普鲁兰多糖薄膜截面SEM图。截面凹凸不平主要是普鲁兰多糖紧密包裹着nZVI颗粒造成的,但膜截面依然密实,无空隙。

      3) FTIR表征薄膜官能团。官能团表征可探究薄膜对于H2S、NH3气体阻隔作用的机理。图9是喷膜剂配方为普鲁兰多糖质量分数1%、吐温80质量分数0.1%的薄膜,以及在此基础上添加nZVI质量浓度为0.2 mg∙L−1后的薄膜FTIR图谱。可以看出,在3 300 cm−1波数处,代表了羟基O—H的拉伸振动和聚合物中的氢键,普鲁兰多糖分子中含有丰富的羟基结构,其自身分子间在混合搅拌过程中,能够形成大量氢键。此处透过率较小,说明普鲁兰多糖混合均匀,形成了大量氢键。在2 920 cm−1和1 350 cm−1波数处,为CH、CH2拉伸吸收带。1 640 cm−1波数处对应的吸收带,应为吸收的水 (O—H—O) 。在1 150、1 080、1 000 cm−1波数处出现的吸收带,主要是由于C—O键、C—C键的价振动以及CCH、COH、HCO键的变形振动形成的。从FTIR图谱可以看出,在普鲁兰多糖膜溶液混合溶解的过程中,高分子链间形成了丰富的氢键,以致膜剂干燥后可形成致密光滑的薄膜,对气体分子起到物理阻隔的效果[22-23]。而从添加0.2 mg·L−1 nZVI后的普鲁兰多糖薄膜FTIR图谱可以看出,nZVI的加入并没有影响普鲁兰多糖膜原有的价键,说明nZVI并没有与普鲁兰多糖及吐温80发生化学反应,只是单纯物理方面的普鲁兰多糖高分子包裹缠绕在nZVI表面,nZVI表面的羟基与普鲁兰多糖分子交联,产生氢键。

    • 1) 质量分数1%普鲁兰多糖、质量分数0.1%吐温80、质量浓度0.2 mg·L−1 nZVI复配而成的喷膜剂可形成有效阻隔H2S、NH3的复合薄膜。该薄膜对H2S和NH3主要起到了物理阻隔的效果,延长了气体分子在薄膜中的传播路径,增加了其透过薄膜的时间,最终实现H2S去除率为91.74%,NH3去除率为99.08%。

      2) 因喷膜剂的成膜时间与成膜溶剂水的挥发密切相关,因此气候因素对成膜具有较大的影响。其中光照条件、湿度、温度对成膜时间影响较大,在有光照、湿度低、温度高的条件下,成膜时间最短。

      3) 普鲁兰多糖基喷膜溶液制成的薄膜表面密实、光滑,对气体能够起到良好的物理阻隔效果,且具有一定的粘附性和抗拉强度,可承担垃圾轻微移动所产生的拉力,适用于垃圾填埋场存量垃圾短途转运过程场景应用。

    参考文献 (23)

返回顶部

目录

/

返回文章
返回