负载型Co3O4活化过二硫酸盐非自由基降解有机污染物

王棵, 王根, 杨生炯, 金鹏康. 负载型Co3O4活化过二硫酸盐非自由基降解有机污染物[J]. 环境工程学报, 2022, 16(12): 3874-3883. doi: 10.12030/j.cjee.202210053
引用本文: 王棵, 王根, 杨生炯, 金鹏康. 负载型Co3O4活化过二硫酸盐非自由基降解有机污染物[J]. 环境工程学报, 2022, 16(12): 3874-3883. doi: 10.12030/j.cjee.202210053
WANG Ke, WANG Gen, YANG Shengjiong, JIN Pengkang. Nonradical oxidation of bis-phenol A by peroxydisulfate activated over immobilized Co3O4 nanoparticles[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3874-3883. doi: 10.12030/j.cjee.202210053
Citation: WANG Ke, WANG Gen, YANG Shengjiong, JIN Pengkang. Nonradical oxidation of bis-phenol A by peroxydisulfate activated over immobilized Co3O4 nanoparticles[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3874-3883. doi: 10.12030/j.cjee.202210053

负载型Co3O4活化过二硫酸盐非自由基降解有机污染物

    作者简介: 王棵 (1998—) ,女,硕士研究生,wangkeeeae@163.com
    通讯作者: 王根 (1986—),男,博士,副教授,wanggen@xauat.edu.cn
  • 基金项目:
    陕西省自然科学基础研究计划(2021JQ-503)
  • 中图分类号: X703

Nonradical oxidation of bis-phenol A by peroxydisulfate activated over immobilized Co3O4 nanoparticles

    Corresponding author: WANG Gen, wanggen@xauat.edu.cn
  • 摘要: 通过在三维矿物载体表面包覆金属-多酚配合物并煅烧实现了Co3O4纳米颗粒的原位负载,制得了易分离回收的负载型Co3O4催化剂,利用SEM、XRD以及XPS表征分析其形貌和微观结构,采用活化过二硫酸盐(PDS)降解药、护品类有机污染物以评价其催化性能。以双酚A为目标污染物,考察了初始pH、PDS浓度、催化剂投加量、共存阴离子(CO32−、SO42−、NO3、Cl)以及腐殖酸(HA)对BPA降解效率的影响。结果表明,负载型Co3O4能有效活化PDS降解有机物,在Co3O4投加量0.075 g·L−1,BPA初始浓度0.04 mmol·L−1,PDS初始浓度0.4 mmol·L−1以及初始pH=7的最优条件下,120 min内BPA可被完全去除。淬灭实验与EPR实验结果表明,负载型Co3O4活化PDS通过单线态氧(1O2)主导的非自由基途径氧化分解有机物。
  • 氮及其化合物会污染地表水体,还会经微生物作用转化为硝酸盐氮积累在土壤中造成地下水污染[1],已成为水体污染治理中的重要污染物。因此,寻求高效、低耗的脱氮技术成为国内外水处理领域亟待解决的重要课题。相较于离子交换、膜分离、化学还原等物理化学手段,生物脱氮具有高效低耗、稳定运行等优点,并已被广泛应用于实际污水处理中[2]。由于反硝化过程中微生物所需碳源种类不同,可将反硝化过程分为异养反硝化和自养反硝化两大类[3]。常见的自养反硝化过程包括氢自养反硝化、硫自养反硝化[2]、铁自养反硝化[4]等。有研究表明,在厌氧条件下甲烷能直接作为碳源及电子供体发生反硝化脱氮[5],这一过程被称为厌氧甲烷氧化的反硝化(denitrifying anaerobic methane oxidation, DAMO)。与其他电子供体相比,甲烷获得途径广泛、无毒且经济便宜[6]。同时,甲烷是温室气体,所产生的温室效应是等质量二氧化碳的26倍,对全球变暖的贡献率约占20%[7]。因此,厌氧甲烷氧化与自养反硝化的耦合反应将人为产生的甲烷用于废水反硝化脱氮处理,可为低物耗废水处理和节能减排提供新思路。

    由于DAMO微生物为自养型微生物,生长缓慢,富集培养比较困难,故基于此类微生物的生物膜反应器研究较少。因此本研究拟采用序批实验,利用人工模拟低氮负荷废水,比较不同环境因素对DAMO系统中间产物的积累与脱氮效果的影响,并通过高通量测序技术,探究不同pH作用下的污泥中微生物的生态分布、群落结构组成和演替变化规律,以揭示系统pH对DAMO功能微生物种群分布及变迁情况的影响,以期为甲烷厌氧氧化的自养反硝化系统的pH调控及条件优化提供参考。

    本研究通过序批实验考察CH4供应、初始硝氮质量浓度和溶液pH对厌氧甲烷氧化型自养反硝化性能的影响。将经过前期培养的50 mL污泥接种至具塞摇瓶(250 mL)内,再加入150 mL模拟硝酸盐废水,调节溶液pH;每日向具塞摇瓶内以0.01 MPa压力注入足量甲烷;为避免光照影响,用双层锡箔纸包住瓶身以保证反应在黑暗环境下进行;将摇瓶置于恒温振荡培养箱中进行反应,调节温度为(30±1) ℃,转速为(150±5) r·min−1;定时检测溶液中NO3-N、NO2-N和NH+4-N的质量浓度。

    本实验采用的接种种泥取自武汉市沙湖污水处理厂二沉池,污泥的初始MLSS约为8 900 mg·L−1。实验开始前,将取回的活性污泥放置在5 L的密闭容器内进行为期30 d的培养驯化。在污泥驯化期间,向容器中加入模拟硝酸盐废水([NO3-N]=20 mg·L−1)以促进微生物的增殖,并每天更换新鲜模拟硝酸盐废水。此外,向上述容器中通15 min氮气以形成厌氧氛围,然后再通入足量甲烷气体,以达到对污泥培养驯化的目的。将经驯化后能够发生基于甲烷厌氧氧化的反硝化作用的污泥用于后续实验。模拟硝酸盐废水的具体成分及质量浓度为:NO3-N 20~50 mg·L−1,K2HPO4 25 mg·L−1,KH2PO4 20 mg·L−1,CaCl2 10 mg·L−1,NaHCO3 2 000 mg·L−1。添加微量元素液的体积分数为0.5 mL·L−1,调节pH至7.3~7.5。微量元素液的成分及质量浓度为:ZnSO4·7H2O 0.5 g·L−1,CaCl2 2 g·L−1,MnCl2·4H2O 2.5 g·L−1,Na2MoO4·4H2O 0.5 g·L−1,KI 0.18 g·L−1,CuSO4·5H2O 0.1 g·L−1,CoCl2·6H2O 0.15 g·L−1,FeCl3·6H2O 1.5 g·L−1

    水质指标的检测方法依照国家环保总局编制的《水与废水监测分析方法(第4版)》,以及美国公共卫生协会编写的《Standard Methods for the Examination of Water and Wastewater》(第十九版)中的标准方法检测。其中,[NO3-N]采用紫外分光光度法测试,[NO2-N]采用N-(1-萘基)-乙二胺分光光度法测试,[NH+4-N]用纳氏试剂分光光度法测试。采用SPSS 23.0进行方差分析(ANOVA),以确定数据集之间是否存在差异,如果p<0.05,则认为存在显著差异。

    为探究环境pH对甲烷厌氧氧化耦合自养反硝化微生物的多样性和种群群落结构变化的影响,分别取pH为6、7、8、9时的污泥样品进行高通量测序,测序结果分别标记为P1、P2、P3和P4。本实验中,高通量测序在上海美吉生物医药科技有限公司进行,利用Illumina Miseq平台,以515F(5′-GTGCCAGCMGCCGCGG-3′)与907R(5′-CCGTCAATTCMTTTRAGTTT-3′)作为引物进行PCR扩增与焦磷酸测序。

    为探究甲烷在自养反硝化体系中的作用,分别向S1、S2系统中通入氮气和甲烷,将pH调至7.5,并检测系统的反硝化速率(见图1),未检测到NO2-N和NH+4-N的积累。由图1可知,通入氮气时(S1),NO3-N含量基本保持不变,几乎没有降解;而在充足甲烷的供应下(S2),6 d内NO3-N基本完全降解,平均脱氮速率为3.67 mg·(L·d)−1。这说明甲烷供应是反硝化过程中的重要条件,也证明了经前期培养驯化的污泥能发生基于甲烷厌氧氧化的反硝化作用。

    图 1  甲烷供应对反硝化速率的影响
    Figure 1.  Effect of methane supply on denitrification rate

    将摇瓶内溶液pH保持在7.5,供以充足的甲烷气体,初始NO3-N质量浓度分别设为20、30、40和50 mg·L−1,探究不同NO3-N质量浓度对反硝化速率的影响,实验结果如图2所示。由图2可知,整个过程几乎没有NH+4-N的积累,NH+4-N质量均维持在0.3 mg·L−1以下。当初始硝氮浓度从20 mg·L−1增加至30 mg·L−1时,平均去除速率也从3.33 mg·(L·d)−1增加至4.28 mg·(L·d)−1 (p<0.05)。这表明在一定范围内,随着初始NO3-N质量浓度的增加,脱氮速率呈上升趋势。这可能是由于:一方面增加了氮源,有利于微生物的增长繁殖;另一方面,在甲烷厌氧氧化耦合自养反硝化过程中,NO3-N经过一系列还原酶的作用被转化成N2,同时还有O2生成,而甲烷在甲烷氧化菌的作用下被O2氧化成甲醇,最终氧化为CO2[8]NO3-N质量分数的增加有可能促进了O2的生成,加快了甲烷被氧化成甲醇的速率,而甲醇又可以为NO3-N及NO2-N的还原提供电子,最终导致脱氮速率的提升。此外,自养反硝化菌的一系列脱氮过程属于酶促反应,底物浓度是影响酶促反应速率的重要因素,在系统中底物浓度较低的情况下,酶促反应的速率会随着底物浓度的增加而提高。然而,当系统中底物浓度增大到一定值时,酶促反应速率便不再提升。当初始NO3-N质量浓度增至40和50 mg·L−1时,平均反硝化速率有所降低,分别为4和3.85 mg·(L·d)−1。这说明过高的NO3-N质量浓度抑制了自养反硝化菌的活性[9]。由于系统中底物浓度过高会抑制酶促反应,从而导致系统脱氮速率的降低。

    图 2  初始NO3--N质量浓度对反硝化过程的影响
    Figure 2.  The effect of initial nitrate concentration on the denitrification process

    图2 (b)可知,NO2-N质量浓度整体都呈现先增加后减小的趋势。这说明在甲烷厌氧氧化反硝化反应中存在NO2-N的积累及进一步的还原过程。当初始NO3-N质量浓度从20 mg·L−1增至50 mg·L−1时,NO2-N积累量峰值从0.27 mg·L−1增至2.69 mg·L−1。由此可见,当NO3-N质量浓度增加时,NO2-N的积累量也逐渐增加,而中间产物的不断积累也会影响反硝化效果,这也是导致脱氮速率有所下降的原因之一。

    为探究初始pH对反硝化速率的影响,将初始NO3-N质量浓度控制在30 mg·L−1,分别调节系统pH为6、7、8、9,研究在不同pH下系统脱氮速率的变化,结果如图3所示。实验过程中几乎没有NH+4-N的积累,NH+4-N质量浓度均在0.3 mg·L−1以下。由图3 (a)可知,4个反应器均能在一定时间内将NH+4-N降解完全。当初始pH为7时,系统对NH+4-N的平均去除速率最高,为5.45 mg·(L·d)−1;当pH增大至8时,反应器平均脱氮速率虽有所下降,但仍保持在5 mg·(L·d)−1左右。然而,当pH继续升至9时,NO3-N平均去除速率降至4.28 mg·(L·d)−1;当pH为6时,反应器的平均脱氮速率最低,仅为4 mg·(L·d)−1。不同pH条件下的脱氮速率之间均存在显著差异(p<0.05)。由此可见,反应器在中性和微碱性环境中能保持良好的脱氮速率,过高或过低的pH都会影响反应器对NO3-N的去除效果。在HE等[10]的研究中,厌氧甲烷氧化反硝化菌在pH为7.0~8.0时保持较高活性,在高pH(pH=9)及低pH(pH=6)时,其活性均会下降,pH=6时其活性最低。这与本实验的结论相似。

    图 3  初始pH对反硝化过程的影响
    Figure 3.  The effect of initial pH on the denitrification process

    由于甲烷厌氧氧化的自养反硝化主要靠微生物的反硝化作用来实现,而各种微生物都有其生存适宜的pH范围,故当环境pH偏离适宜pH过多时,微生物的生长和繁殖就会受到影响,甚至死亡。环境中的pH主要通过3个方面限制微生物的反硝化过程。一是影响微生物胞外水解酶的活性并引起细胞膜上蛋白质的变性,从而影响微生物对物质的降解和吸收;二是通过影响膜的通透性并引起膜表面电荷性质的变化,进一步抑制细胞对物质的分解和吸收;三是影响营养物质的降解和吸收。其中,反硝化过程又由一系列的酶促反应组成,环境pH的变化会影响酶的离子化程度,改变蛋白质结构,从而影响酶的活性。当环境pH过高或过低时,酶也会失去活性[11]。因此,当pH为7~8时,系统反硝化速率良好,差别不大,但随着环境的初始pH增大到9或者减小至6时,反应器的平均脱氮效率也会随之下降。

    图3 (b)可知,系统初始pH对甲烷厌氧氧化的自养反硝化过程中亚硝氮的积累也会产生一定程度的影响。当pH为7和8时,系统NO2-N积累量较低;但随着pH升高至9时,NO2-N积累量也随之增加;而当pH减小至6时,反应过程中NO2-N质量浓度的峰值也较高。这可能是由于:在反应过程中,亚硝酸盐还原酶有迟缓期,而迟缓期的长短由驯化时间的长短和反应条件决定,如pH和营养物质浓度等,因此,不适宜的环境pH(pH<7或pH>8)会延长亚硝酸盐还原酶的迟缓期,从而造成NO2-N的积累[12]。另外,虽然系统处于酸性环境中的平均反硝化速率最低,但pH为6时NO2-N的积累量却比pH为9时要少。这可能是由于:NO3-N首先在硝酸盐还原酶的作用下被还原成NO2-N,然后在亚硝酸盐还原酶的作用下进一步被还原、降解。有研究表明,亚硝酸盐还原酶在中性和微碱性环境中活性最高,但在酸性环境中反应器的平均脱氮速率下降幅度比碱性环境中更大。因此,当初始pH为6的时候,由于系统反硝化效率低,并没有过多的NO3-N被还原成NO2-N。尽管此时亚硝酸盐还原酶活性较低,但由于NO2-N含量的减少,也使得反应器中没有过多的NO2-N积累。

    对初始pH分别为6、7、8、9的摇瓶内污泥取样后进行高通量测序,分析其微生物种群多样性和群落结构。反映系统微生物种群丰度和多样性的各种指标可由样品的Alpha多样性分析得出,见表1。由表1可知,当相似度为97%时,4个样品中分别获得49 400、48 248、55 726和46 796条有效序列(Reads)。4个样品的Coverage值均大于0.99,这表明样品测序得到的序列可覆盖大部分的区域,测序深度能较好地代表4个样品中的微生物群落,结果可有效反映样品的真实状况。

    表 1  不同pH下微生物Alpha多样性指数表
    Table 1.  Microbial Alpha diversity index at different pH values
    样品编号ReadsOTUsAceChaoShannonSimpsonShannonevenSimpsonevenCoverage
    P149 4007388698813.860.063 50.584 00.065 090.997
    P248 2489521 0771 0824.500.060 70.656 40.044 790.996
    P355 7269651 0761 0874.840.023 10.704 30.021 350.997
    P446 7968801 0171 0164.900.017 50.723 40.017 300.996
     | Show Table
    DownLoad: CSV

    Ace和Chao指数可用来估计物种的丰度,数值越大说明微生物的丰度越高,微生物数目也就越多。由表1可知,这2组数据呈现相同的变化趋势,大小顺序均为P2≈P3>P4>P1。这表明在pH=7和pH=8的环境下,微生物丰度最高,微生物的数目也最多。然而,随着环境pH的增大或减小,系统内微生物的丰度均有所下降,并且在酸性环境下丰度最低。Shannon和Simpson指数能够代表测序样本的生物多样性,Shannon越大,Simpson越小,表明微生物的多样性越高,因此4个样品按多样性高低排序为P4>P3>P2>P1。Shannoneven与Simpsoneven指数为反映样品均匀度的指标,Shannoneven越大,Simpsoneven越小,表明微生物的均匀度越好。4个样本按均匀度高低排序为P4>P3>P2>P1。

    另外,pH=7和pH=8的反应器微生物丰度最高,多样性及均匀度适中。这主要是由于中性和微碱性环境有利于微生物的生长繁殖,并且对微生物中功能菌的筛选作用强。随着pH的升高,微生物多样性和均匀度也越高,说明碱性环境可提高微生物的多样性和均匀度。

    以上结果与图4中的稀释曲线和等级-丰度曲线所显示的结果相同,4个样品的稀释曲线最后都趋于平缓。这表明此次测序的取样合理,继续增加序列数只会产生少量的OTU,且从曲线中得到4个样品的OTU数目变化趋势与前述相同。等级-丰度曲线可用来表示微生物中物种丰度和物种均匀度2个方面的内容。其中,物种的丰度由水平方向曲线的宽度来反映,曲线在横轴上的范围越大,物种的丰富度就越高;而曲线的形状(平缓程度)反映了样本中群落的均匀度,曲线越平缓,物种分布越均匀。本结果表明,当pH=7和pH=8时,物种丰度较大,均匀度较好。

    图 4  微生物群落多样性
    Figure 4.  Microbial community diversity

    韦恩图可用来统计多个样本中所共有和独有OTU数量,能直观表达不同样品间物种的相似性。由图4 (c)所示,4个样品共获得了1 204个OTU,P1、P2、P3、P4所单独特有的OTU数分别为41、41、55和38,分别占总数的3.4%、3.4%、4.6%和3.2%。而4个样品共有的OTU数目为514,占各样品OTU总数的50%~70%。这说明不同pH下微生物物种的相似性较高,pH的改变并未使系统中微生物的种类发生太大变化。因此,不同条件下微生物仍具备一定的脱氮能力,而环境pH的改变可能引起系统中主要脱氮功能菌丰度的变化,从而导致脱氮效率的不同。

    为进一步揭示pH对微生物群落的影响,分别在门、纲、属水平上分析了4个样品的微生物群落结构。图5显示了门水平的种群分布,4个样品中丰度最多的8个菌门分别是Proteobacteria(变形菌门)、Bacteroidetes(拟杆菌门)、Chloroflexi(绿弯菌门)、Planctomycetes(浮霉菌门)、Latescibacteria(匿杆菌门)、Firmicutes(厚壁菌门)、Acidobacteria(酸杆菌门)和Zixibacteria(河床菌门)。这些菌门总和在4个样品中占90%以上。其中,Proteobacteria在4个样品中所占比例最高,分别为47.58%、45.79%、38.89%和35.96%;其次是Bacteroidetes和Chloroflexi,Bacteroidetes在4个样品中占比分别28.12%、21.33%、22.76%和26.52%,Chloroflexi占比分别为4.73%、10.79%、15.61%和14.49%。钱祝胜等[13]在中空纤维膜反应器内富集的反硝化厌氧甲烷氧化菌群中,占优势的菌门依次为Chloroflexi(绿弯菌门)、Proteobacteria(变形菌门)、Planctomycetes(浮霉菌门)、Chlorobi(绿菌门)、Acidobacteria(酸杆菌门)、Bacteroidetes(拟杆菌门),与本研究中占优势的菌门相似。Proteobacteria和Bacteroidetes一直被认为是反硝化脱氮过程中最常见的自养反硝化微生物,这2种菌门包含各种类型的反硝化菌及甲烷氧化菌[14]图5表明,在4个样品中,这2种菌门所占比例的总和差别不大,即各种pH环境下都具备一定的反硝化脱氮能力。在LUO等[15]构建的以甲烷作为电子供体去除地下水中硝酸盐的生物膜反应器中,Planctomycetes作为主要菌门被检出。Chloroflexi作为厌氧污泥中一种常见的复杂菌门[16],包含了好氧嗜热菌、厌氧光养菌、利用卤化物或有机物的厌氧微生物等多种微生物,并被认为能够参与自养反硝化过程。绿弯菌门细菌能够将多糖、蛋白质等大分子有机物分解为乙酸等低分子有机酸,这些产物又能够被产甲烷菌利用进行产甲烷作用[17-18]。由图5可知,当初始pH从6逐渐升高时,系统内Chloroflexi所占比例也有一定的增长,这表明环境pH对Chloroflexi有较强的选择作用,过酸的环境不利于它的增长繁殖。除以上4种菌门外,Firmicutes和Acidobacteria也被证明具有脱氮基因,具备相应的反硝化能力[19]。除以上所述的主要菌门外,其他如Synergistetes、Gracilibacteria、Gemmatimonadetes、Hydrogenedentes和Cyanobacteria等菌门微生物由于在样品中具有较低的丰度(<1%)而被归为“Other”类,但这些菌种也在系统反硝化脱氮的过程中发挥着作用[20-24]。总的来说,虽然初始pH会影响不同菌门的相对丰度,但系统中同时存在的多种与反硝化相关的微生物还是使得系统具有高效的脱氮性能。

    图 5  门水平微生物相对丰度
    Figure 5.  Relative abundance of microorganisms at phylum level

    图6显示了在纲水平上4个样品的菌群结构。由图6可知,系统中的主要优势菌纲为Gammaproteobacteria、Deltaproteobacteria、Bacterodia、Ignavibacteria、Anaerolineae和Alphaproteobacteria,这些菌纲总和占各个样品总数比例的70%以上。其中Gammaproteobacteria、Deltaproteobacteria和Alphaproteobacteria同属于变形菌门,在此前多项自养反硝化的研究中被证明具有去除硝酸盐的能力[19]。在pH=7和pH=8的环境下,Gammaproteobacteria在样品中所占比例分别为13.22%和12.58%;随着pH的增大或减小,其含量均有一定的增加,在pH=6时占比为26.02%,pH=9时占比为21.29%。而Deltaproteobacteria菌纲的占比随着pH的变化趋势与此相反,在4个样品中所占比例分别为14.44%、26.91%、14.50%和6.65%。这说明这2种菌纲存在一定的竞争关系,中性和弱碱性环境适合Deltaproteobacteria的生长繁殖,从而导致丰度增加,而Gammaproteobacteria适合在酸性和强碱性环境下生长,因此表现出相反的变化趋势。Alphaproteobacteria在4个样品中所占比例分别为7.05%、5.58%、11.77%和7.96%,其中,在初始pH为8时其丰度最高。以上3种菌纲具有反硝化能力,可利用甲烷氧化生成的甲醇将系统中的NO3-N转化成N2;同时,某些菌纲中包含同时在甲烷厌氧氧化和反硝化过程中发挥作用的细菌,如Chitinophagaceae(Alphaproteobacteria菌纲)在甲烷厌氧氧化和反硝化过程中扮演重要角色[25]。同属于拟杆菌门的Bacterodia和Ignavibacteria菌纲也有相似的变化趋势,它们在4个样品中所占比例分别为24.43%、11.79%、9.57%、10.62%和3.12%、9.07%、12.91%、15.83%。由此可见,两者也可能存在一定的竞争关系,酸性条件下更利于Bacterodia的增长繁殖。Anaerolineae是一种典型的自养反硝化菌[26],它在4个样品中的相对丰度分别为4.05%、9.48%、12.83%和13.02%。这说明环境pH的增加有利于该菌纲的富集,在酸性环境下其含量最低,也与前文得出的在酸性环境下系统脱氮效果较差的结果相吻合。

    图 6  纲水平微生物相对丰度
    Figure 6.  Relative abundance of microorganisms at class level

    初始pH的变化会引起系统内微生物在门、纲水平上的丰度变化,从而对微生物的群落结构变化产生了一定影响。为进一步了解环境pH对种群结构的影响,对4个样品中的物种进行了属水平上的分析,并挑选相对丰度最高的50个菌属作热图(图7)。

    图 7  属水平微生物热图
    Figure 7.  Heat map of microorganisms at genus level

    4个样品中的微生物在属水平的分布上也均存在相似性和差异性。具体来说,P1中相对丰度最高的10个菌属及其所占的比例分别为norank_f_Microscillaceae(15.07%)、norank_f__P3OB-42(12.57%)、unclassified_f__Methylophilaceae(10.10%)、Methylotenera(8.85%)、OLB12(7.81%)、Bacillus(3.71%)、norank_c__OM190(3.35%)、norank_c__Latescibacteria(2.94%)、norank_o__SJA-28(2.07%)、Phreatobacter(1.95%);P2中相对丰度最高的10个菌属及其所占的比例分别为norank_f__P3OB-42(24.09%)、norank_c__Latescibacteria(7.18%)、norank_o__SJA-28(6.70%)、OLB12(3.58%)、norank_f_BSV26(3.14%)、norank_f__Anaerolineaceae(2.94%)、norank_o__Bacteroidetes_VC2.1_Bac22 (2.61%)、norank_p__Zixibacteria (2.45%)、norank_f__Caldilineaceae (1.81%)、unclassified_f__Burkholderiaceae (1.77%);P3中相对丰度最高的10个菌属及其所占的比例分别为norank_f__P3OB-42 (9.88%)、norank_o__SJA-28 (7.30%)、Methylocystis (5.79%)、norank_f__Anaerolineaceae (5.12%)、norank_c__Latescibacteria (5.03%)、norank_f__BSV26 (3.19%)、norank_c__OM190(2.39%)、norank_f__Caldilineaceae (2.17%)、Sediminibacterium (2.16%)、norank_p__Zixibacteria (2.12%);P4中相对丰度最高的10个菌属及其所占比例分别为norank_o__SJA-28 (7.08%)、norank_f__BSV26 (6.37%)、norank_f__Anaerolineaceae (5.43%)、norank_c__Latescibacteria (4.13%)、Methylotenera (3.37%)、Ellin6067 (2.87%)、norank_f__SC-I-84 (2.81%)、norank_f__P3OB-42 (2.75%)、norank_f__AKYH767 (2.24%)、norank_o__Bacteroidetes_VC2.1_Bac22 (2.20%)。

    由此可见,随着初始pH的变化,4个样品中微生物群落结构发生了较大变化,主要微生物菌属也有较大差异。其中,Methylocystis在初始pH为8的环境下有明显富集。Methylocystis是常见的甲烷氧化菌II型菌株,能以甲烷作为唯一碳源和能量来源,在大多数含有甲烷和氧气的环境中都被发现。同时,LAI等[27]也在以甲烷作为电子供体同步去除硝酸盐和溴酸盐的系统中发现了Methylocystis的存在,并且认为其在甲烷氧化、硝酸盐及溴酸盐的还原过程中发挥了重要作用。在本系统中,Methylocystis作为甲烷氧化菌,氧化甲烷生成甲醇,甲醇为硝氮及亚硝氮的还原提供电子进行反硝化反应脱氮,其对甲烷氧化及硝酸盐的还原均发挥重要作用。Methylotenera和未分类的Methylophilaceae同属于嗜甲基菌科,能利用甲醇作为碳源和能量来源,使其氧化分解[28]。LONG等[29]在关于甲烷作为电子供体还原六价铬和硝酸盐的研究中也发现了这2种微生物的存在。在初始pH为6的环境中,这2种微生物可得到大量富集。这可能是由于:在内部好氧的亚硝酸盐依赖型厌氧甲烷氧化途径中,酸性条件加快了甲烷被甲烷氧化菌氧化成甲醇的过程,从而使得MethyloteneraMethylophilaceae大量富集。MethyloteneraMethylophilaceae也是甲烷氧化菌,能利用O2将甲烷转化为甲醇。同时,生成的甲醇可用于反硝化脱氮。此外,norank_f__Anaerolineaceae属于Anaerolineaceae科,随着初始pH的增大,相对丰度也有所增加。Anaerolineaceae菌科被证明存在于许多以甲烷为电子供体的自养反硝化体系中[30],同时,这种丝状菌能为微生物的附着提供骨架[31],有利于微生物的生长繁殖。另外,还有诸如norank_o__SJA-28、norank_f__P3OB-42 、norank_c__Latescibacteria等菌属也在4个污泥样品中被检测出来。虽然有研究表明这些菌可在有硝酸盐负荷的环境中存在,但暂时还无法明确其能否参与甲烷厌氧氧化的自养反硝化过程,故还需进一步研究来证明。

    虽然单一菌属的相对丰度随环境初始pH变化的差异较大,但除污性能是由系统内不同菌群、多种功能微生物间的相互协作实现的。不同pH下,污泥样品的微生物种群结构虽有所差别,但其大多具备甲烷氧化或反硝化能力,且不同初始pH下功能菌在整个系统中所占比例仍然较高,这也为甲烷厌氧氧化型反硝化工艺能在较广pH范围内维持可靠的脱氮效率奠定了微生物基础。

    1)在CH4供应充足的情况下,系统具备良好的反硝化速率,且没有NO2-N的积累,而空白组几乎没有还原NO3-N的能力,表明经前期培养驯化的污泥能够以甲烷作为电子供体进行自养反硝化。

    2)随着初始NO3-N质量浓度的升高,系统平均脱氮速率呈现先升高后下降的趋势,表明在一定范围内增加NO3-N质量浓度可提高系统反硝化速率,平均脱氮速率最高可达到4.28 mg·(L·d)−1;反应器内出现不同程度的NO2-N积累,当初始NO3-N质量浓度为50 mg·L−1时,NO2-N积累量达到峰值,为2.69 mg·L−1

    3)系统在不同pH环境下均具备一定的脱氮能力,而反硝化速率有所差异。在中性和弱碱性环境下,系统脱氮效果最优,脱氮速率最高可达5.45 mg·(L·d)−1。此时,NO2-N积累量最少,峰值仅为1.07 mg·L−1。当系统初始pH增大或减小,平均脱氮速率都会有所下降,且NO2-N积累量明显增加。

    4)由微生物菌群分析结果可知,环境pH对微生物种群结构具有选择作用。在pH=7和pH=8时,系统内厌氧污泥微生物的丰度最高,物种多样性和均匀性适中;不同pH下,厌氧污泥内微生物群落的主要菌门为Proteobacteria和Bacteroidetes,在纲水平上,Gammaproteobacteria、Deltaproteobacteria、Bacterodia、Ignavibacteria和Anaerolineae为优势菌纲。在适宜的pH(pH=8)下,常见甲烷氧化菌Methylocystis大量富集。不同pH环境下均存在常见于许多以甲烷为电子供体的自养反硝化体系中的Anaerolineaceae,其具体功能有待进一步探究。

  • 图 1  气泡石与气泡石负载Co3O4的电子照片与SEM分析

    Figure 1.  Digital images of airstone with and without Co3O4 and their SEM analysis

    图 2  负载型Co3O4和粉体Co3O4的XRD以及Co-TA配合物的热解分析

    Figure 2.  XRD patterns for powdery Co3O4 and supported Co3O4 and TG curve for Co-TA polymer

    图 3  负载型Co3O4活化PDS降解不同有机物的性能

    Figure 3.  Degradation of different organic pollutants by PDS activated over supported Co3O4

    图 4  负载型Co3O4活化PDS降解BPA的影响因素

    Figure 4.  Effect of operation parameters on BPA removal in the supported Co3O4/PDS system

    图 5  负载型Co3O4活化PDS的电子自旋共振测试和淬灭实验

    Figure 5.  EPR spectra and quenching experiments on BPA removal

    图 6  负载型Co3O4活化PDS的机理研究

    Figure 6.  Mechanism of PDS activated over the supported Co3O4 catalyst

    图 7  负载型Co3O4活化PDS降解BPA的机理示意图

    Figure 7.  Schema for BPA degradation by PDS activated over the supported Co3O4 catalyst

    图 8  循环降解过程中BPA的去除性能和TOC的去除效率

    Figure 8.  Removal of BPA and corresponding TOC during the consecutive runs over the supported Co3O4

  • [1] WANG G, GE L, LIU Z, et al. Activation of peroxydisulfate by defect-rich CuO nanoparticles supported on layered MgO for organic pollutants degradation: An electron transfer mechanism[J]. Chemical Engineering Journal, 2022, 431: 134026. doi: 10.1016/j.cej.2021.134026
    [2] NIKRAVESH B, SHOMALNASAB A, NAYYER A, et al. UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104244. doi: 10.1016/j.jece.2020.104244
    [3] 王丽娟, 路井义, 王汉铮, 等. 层状镍铁水滑石活化过二硫酸盐降解亚甲基蓝的研究[J]. 应用化工, 2021, 50(10): 2756-2760. doi: 10.3969/j.issn.1671-3206.2021.10.028
    [4] DONG X, DUAN X, SUN Z, et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis[J]. Applied Catalysis B:Environmental, 2020, 261: 118214. doi: 10.1016/j.apcatb.2019.118214
    [5] DONG X, REN B, ZGANG X, et al. Diatomite supported hierarchical 2D CoNi3O4 nanoribbons as highly efficient peroxymonosulfate catalyst for atrazine degradation[J]. Applied Catalysis B:Environmental, 2020, 272: 118971. doi: 10.1016/j.apcatb.2020.118971
    [6] ZHONG Q Z, LI S, CHEN J, et al. Oxidation‐mediated kinetic strategies for engineering metal–phenolic networks[J]. Angewandte Chemie International Edition, 2019, 58(36): 12563-12568. doi: 10.1002/anie.201907666
    [7] WANG G, QIN J, ZHOU X, et al. Self‐template synthesis of mesoporous metal oxide spheres with metal‐mediated inner architectures and superior sensing performance[J]. Advanced Functional Materials, 2018, 28(51): 1806144. doi: 10.1002/adfm.201806144
    [8] WANG G, QIN J, FENG Y, et al. Sol–gel synthesis of spherical mesoporous high-entropy oxides[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45155-45164.
    [9] LI P, LIN Y, ZHAO S, et al. Defect-engineered Co3O4 with porous multishelled hollow architecture enables boosted advanced oxidation processes[J]. Applied Catalysis B:Environmental, 2021, 298: 120596. doi: 10.1016/j.apcatb.2021.120596
    [10] WANG G, ZHANG Y, GE L, et al. Monodispersed CuO nanoparticles supported on mineral substrates for groundwater remediation via a nonradical pathway[J]. Journal of Hazardous Materials, 2022, 429: 128282. doi: 10.1016/j.jhazmat.2022.128282
    [11] YANG S, XU S, TONG J, et al. Overlooked role of nitrogen dopant in carbon catalysts for peroxymonosulfate activation: Intrinsic defects or extrinsic defects[J]. Applied Catalysis B:Environmental, 2021, 295: 120291. doi: 10.1016/j.apcatb.2021.120291
    [12] YANG Y, LI X, ZHOU C, et al. Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: A critical review[J]. Water Research, 2020, 184: 116200. doi: 10.1016/j.watres.2020.116200
    [13] WANG G, AN W, ZHANG Y, et al. Mesoporous carbon framework supported Cu-Fe oxides as efficient peroxymonosulfate catalyst for sustained water remediation[J]. Chemical Engineering Journal, 2022, 430: 133060. doi: 10.1016/j.cej.2021.133060
    [14] 伍倩, 于芹芹, 戴友芝. CNQDs/Ag3PO4/g-C3N4复合光催化材料的制备及其对双酚A的降解性能[J]. 环境工程学报, 2022, 16(1): 101-111. doi: 10.12030/j.cjee.202108170
    [15] WANG C, JIA S, ZHANG Y, et al. Catalytic reactivity of Co3O4 with different facets in the hydrogen abstraction of phenol by persulfate[J]. Applied Catalysis B:Environmental, 2020, 270: 118819. doi: 10.1016/j.apcatb.2020.118819
    [16] KARRER C, DE BOER W, DELMAAR C, et al. Linking probabilistic exposure and pharmacokinetic modeling to assess the cumulative risk from the bisphenols BPA, BPS, BPF, and BPAF for Europeans[J]. Environmental Science & Technology, 2019, 53(15): 9181-9191.
    [17] 安晓静, 刘东方, 梁啸夫, 等. 铁酸钴活化过一硫酸盐处理高盐废水中罗丹明B的研究[J]. 水处理技术, 2022, 48(06): 50-53. doi: 10.16796/j.cnki.1000-3770.2022.06.010
    [18] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants[J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064
    [19] ZHU S, LI X, KANG J, et al. Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J]. Environmental Science & Technology, 2018, 53(1): 307-315.
    [20] Jawad A, Zhan K, Wang H, et al. Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-redox magnesium oxide[J]. Environmental Science & Technology, 2020, 54(4): 2476-2488.
    [21] YANG S, QIU X, JIN P, et al. MOF-templated synthesis of CoFe2O4 nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A[J]. Chemical Engineering Journal, 2018, 353: 329-339. doi: 10.1016/j.cej.2018.07.105
    [22] ZHU X, ZHANG Y, YAN W, et al. Peroxymonosulfate activation by mesoporous CuO nanocage for organic pollutants degradation via a singlet oxygen-dominated pathway[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106757. doi: 10.1016/j.jece.2021.106757
    [23] ZHU X, GE L, YAN W, et al. Peroxymonosulfate activation by immobilized CoFe2O4 network for the degradation of sulfamethoxazole[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107781. doi: 10.1016/j.jece.2022.107781
    [24] LIU Y, LUO J, TANG L, et al. Origin of the enhanced reusability and electron transfer of the carbon-coated Mn3O4 nanocube for persulfate activation[J]. ACS Catalysis, 2020, 10(24): 14857-14870. doi: 10.1021/acscatal.0c04049
    [25] LEE J, VON G U, KIM J H. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks[J]. Environmental Science & Technology, 2020, 54(6): 3064-3081.
    [26] 许晟硕, 钱征, 王龄侦, 等. 氮掺杂碳催化剂活化过一硫酸盐的活性位点分析及其对双酚A的降解机制[J]. 环境工程学报, 2022, 16(02): 452-461. doi: 10.12030/j.cjee.202111044
    [27] WANG G, ZHOU X, Qin J, et al. General synthesis of mixed semiconducting metal oxide hollow spheres with tunable compositions for low-temperature chemiresistive sensing[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35060-35067.
    [28] HU J, ZENG X, WANG G, et al. Modulating mesoporous Co3O4 hollow nanospheres with oxygen vacancies for highly efficient peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 400: 125869. doi: 10.1016/j.cej.2020.125869
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.4 %DOWNLOAD: 3.4 %HTML全文: 85.4 %HTML全文: 85.4 %摘要: 11.1 %摘要: 11.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 97.9 %其他: 97.9 %XX: 1.4 %XX: 1.4 %丽水: 0.1 %丽水: 0.1 %北京: 0.4 %北京: 0.4 %台州: 0.1 %台州: 0.1 %衡阳: 0.1 %衡阳: 0.1 %其他XX丽水北京台州衡阳Highcharts.com
图( 8)
计量
  • 文章访问数:  4149
  • HTML全文浏览数:  4149
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-12
  • 录用日期:  2022-12-02
  • 刊出日期:  2022-12-31
王棵, 王根, 杨生炯, 金鹏康. 负载型Co3O4活化过二硫酸盐非自由基降解有机污染物[J]. 环境工程学报, 2022, 16(12): 3874-3883. doi: 10.12030/j.cjee.202210053
引用本文: 王棵, 王根, 杨生炯, 金鹏康. 负载型Co3O4活化过二硫酸盐非自由基降解有机污染物[J]. 环境工程学报, 2022, 16(12): 3874-3883. doi: 10.12030/j.cjee.202210053
WANG Ke, WANG Gen, YANG Shengjiong, JIN Pengkang. Nonradical oxidation of bis-phenol A by peroxydisulfate activated over immobilized Co3O4 nanoparticles[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3874-3883. doi: 10.12030/j.cjee.202210053
Citation: WANG Ke, WANG Gen, YANG Shengjiong, JIN Pengkang. Nonradical oxidation of bis-phenol A by peroxydisulfate activated over immobilized Co3O4 nanoparticles[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3874-3883. doi: 10.12030/j.cjee.202210053

负载型Co3O4活化过二硫酸盐非自由基降解有机污染物

    通讯作者: 王根 (1986—),男,博士,副教授,wanggen@xauat.edu.cn
    作者简介: 王棵 (1998—) ,女,硕士研究生,wangkeeeae@163.com
  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
  • 2. 西安交通大学环境科学与工程系,西安 710049
基金项目:
陕西省自然科学基础研究计划(2021JQ-503)

摘要: 通过在三维矿物载体表面包覆金属-多酚配合物并煅烧实现了Co3O4纳米颗粒的原位负载,制得了易分离回收的负载型Co3O4催化剂,利用SEM、XRD以及XPS表征分析其形貌和微观结构,采用活化过二硫酸盐(PDS)降解药、护品类有机污染物以评价其催化性能。以双酚A为目标污染物,考察了初始pH、PDS浓度、催化剂投加量、共存阴离子(CO32−、SO42−、NO3、Cl)以及腐殖酸(HA)对BPA降解效率的影响。结果表明,负载型Co3O4能有效活化PDS降解有机物,在Co3O4投加量0.075 g·L−1,BPA初始浓度0.04 mmol·L−1,PDS初始浓度0.4 mmol·L−1以及初始pH=7的最优条件下,120 min内BPA可被完全去除。淬灭实验与EPR实验结果表明,负载型Co3O4活化PDS通过单线态氧(1O2)主导的非自由基途径氧化分解有机物。

English Abstract

  • 药品和个人护理品类污染物(如内分泌干扰物、抗生素等)导致的水体污染问题是生态安全和人类身体健康的一大威胁[1-3]。基于过硫酸盐的高级氧化技术可通过产生羟基自由基(OH)、硫酸根自由基(SO4•−)、单线态氧(1O2)等活性氧物种降解水中多种类型的有机污染物,在药、护品类污染物处理方面受到了广泛关注[1]。与过一硫酸盐(peroxymonosulfate,PMS)相比,过二硫酸盐(peroxydisulfate,PDS)价格低廉、水溶性好、稳定性高便于储存和运输,已被广泛用于催化降解有机污染物[1]。PDS可通过热活化、碱活化、金属离子催化、金属氧化物催化等多种方法活化,其中基于纳米金属氧化物(如Co3O4等)的异相催化由于催化剂价格低廉、反应条件温和、催化活性高等优点,是目前研究的一个重要方向[2]。然而,纳米尺寸的金属氧化物分散于水中易团聚,导致催化剂活性位点暴露有限,并且分散于水中的纳米催化剂还存在难以分离和回收的问题,极大地限制了其应用。

    将金属氧化物纳米催化剂负载于活性炭、泡沫金属、矿物颗粒以及陶瓷膜等三维载体的表面,不仅可以有效缓解氧化物纳米颗粒的团聚问题,而且便于分离和回收,对纳米金属氧化物活化过硫酸盐降解有机物具有重要意义[4]。现阶段,金属氧化物主要通过浆料涂覆的方式负载于载体表面,合成方法简单但稳定性较差[5]。添加高分子粘结剂可增强其稳定性,但催化体系中引入导电性较差的高分子不利于过硫酸活化过程中电子的转移,同时添加粘结剂也可能会带来二次污染[6]。因此,亟需发展一种可将金属氧化物原位负载于三维载体表面的绿色合成方法。植物多酚如单宁酸(tannic acid,TA)普遍存在于植物的根、茎、叶及果实中,是一种价格低廉的生物质[7]。TA分子富含邻二酚羟基,具有较强的金属离子络合能力和优异的表面粘附性能,可与多种金属离子(Co2+、Fe2+、Cu2+等)在聚乙烯球、陶瓷、玻璃等不同载体表面配位形成金属-多酚配合物[7]。作为由金属离子和有机配体组成的复合物,金属-多酚配合物可进一步热解制成不同种类的金属氧化物,并且研究表明有机配体TA分解还会产生多孔结构而形成多孔结构的金属氧化物[8]

    基于TA分子的金属离子络合能力和表面粘附性能,本研究以具有稳定物理化学性质且价格低廉的气泡石为载体,通过在其表面包覆Co2+与TA的配合物,进一步热解将纳米尺寸的Co3O4原位负载于气泡石表面,制备易分离回收的负载型Co3O4催化剂,通过SEM、XRD、ICP等详细分析了负载型Co3O4的结构和组成。利用负载型Co3O4催化剂活化PDS降解水中的双酚A(bis-phenol A,BPA)、磺胺甲恶唑(sulfamethoxazole,SMX)等药、护品类有机污染物,分析了溶液初始pH、PDS浓度、催化剂投加量、共存化学组分等对有机物降解性能的影响,并通过电子顺磁共振分析、化学淬灭实验、光谱分析等手段深入分析了PDS的活化机制和有机物的降解机理。

    • 主要试剂包括六水合硝酸钴(Co(NO3)2·6H2O)、单宁酸(tannic acid)、双酚A(bisphenol A)、盐酸(HCl,1 mol·L−1)、过硫酸钠(sodium persulfate, Na2S2O8)、氢氧化钠(NaOH,1 mol·L−1)、叔丁醇(tert-butyl alcohol, TBA)、对苯醌(p-benzoquinone, BQ)、碳酸钠(Na2CO3)、氯化钠(NaCl)、硝酸钠(NaNO3)、硫酸钠(Na2SO4)、腐殖酸(HA)、甲醇、乙腈、无水乙醇等,所有试剂均为分析纯,实验用水为超纯水。

    • 1)负载型Co3O4的制备:将尺寸0.5 cm×0.5 cm×0.5 cm的气泡石颗粒置于Co(NO3)2与TA的混合溶液中,利用TA分子的表面粘附特性及其与Co2+的配位反应,在气泡石颗粒表面形成Co-TA包覆层,进一步在空气气氛下焙烧制得负载于气泡石表面的Co3O4催化剂。具体步骤如下:将5 g Co(NO3)2和10 g TA依次溶解于250 mL纯水,然后加入30 g气泡石载体搅拌30 min,加入5 mL氨水后继续搅拌1 h,将修饰后的气泡石用纯水反复清洗。重复上述负载步骤4次后,制得负载有Co-TA配合物的气泡石颗粒,充分干燥后将其置于马弗炉中在400 °C下焙烧2 h (升温速率设置为2 ℃·min−1),即制得负载型Co3O4催化剂。

      2)材料表征:通过场发射扫描电子显微镜(Hitachi, S-4800)分析负载型Co3O4的形貌与元素组成,利用Rigaku Ultimate IV型X射线衍射(XRD)表征其晶体结构,借助X射线光电子能谱(XPS)研究催化剂反应前后各元素的化学价态,采用电感耦合等离子体发射光谱仪(ICP, NexION 350D)测定浸出钴离子的浓度以及气泡石颗粒表面Co3O4的负载量。ATR-FTIR测试以超纯水为背景,将PDS与Co3O4纳米催化剂的混合物滴至ATR附件晶体表面,在400~3000 cm−1内至少扫描3次,扫描分辨率为4 cm−1

      3)BPA降解实验:本研究通过催化降解BPA评价负载型Co3O4活化PDS的性能。室温条件下,配制50 mL 0.04 mmol·L−1的BPA溶液,加入3.0 g负载型Co3O4催化剂和0.5 mL 40 mmol·L−1的PDS溶液,然后于特定时间取1 mL水样与0.5 mL甲醇混合以终止反应,进一步用0.22 μm微孔滤膜过滤后,通过高效液相色谱仪测定BPA的浓度,流动相为水和乙腈的混合溶液,两者的体积比为1:1,流速为1 mL·min−1

    • 图1为气泡石载体负载Co3O4前后的照片及其表面Co3O4纳米催化剂的微观结构。如图1(a)所示,气泡石表面粗糙呈白色,负载Co3O4后变为灰褐色(图1(b)),表明Co3O4纳米催化剂成功负载于其表面。通过SEM表征了气泡石表面Co3O4纳米催化剂的微观结构,如图1(c)所示,气泡石光滑的表面存在大量的纳米颗粒团簇,进一步表明Co3O4纳米催化剂的成功负载。纳米团簇的高倍SEM图表明Co3O4纳米催化剂呈多孔结构(图1(d)),这可能是Co-TA配合物中有机组分TA分解导致的。多孔结构利于催化位点的充分暴露,利于PDS的活化和有机污染物的降解[9]

      图2(a)为Co-TA焙烧衍生粉体Co3O4及气泡石负载Co3O4的XRD谱图。粉体催化剂在2θ为31.27°、36.85°、44.8°、59.35°、65.23°的衍射峰分别对应于立方相Co3O4的(220)、(311)、(400)、(511)和(440)晶面(JCPDS-no.42-1467)。气泡石的XRD图谱表明其主要成分为SiO2 (JCPDS-no.78-2315);SiO2化学性质稳定,便于在复杂环境中使用。气泡石表面负载催化剂后,在2θ为31.27°、44.81°检测到了属于Co3O4的衍射峰,分别对应于立方相Co3O4的(220)和(400)晶面,进一步表明Co3O4成功负载于气泡石表面。通过热重分析研究了Co-TA配合物的热分解过程。如图2(b)所示,Co-TA配合物的残余质量在20~400 °C内持续降低,这主要归咎配合物表面水分子的脱附以及有机配体TA的氧化分解[10]。DTA分析表明Co-TA分解过程中在380 °C出现了明显的吸热峰,表明Co-TA热解生成了新的固相。400 °C后配合物的质量损失保持不变,表明Co-TA中的有机配体在400 °C下完全分解,因此本研究将负载型Co3O4催化剂的合成温度设定为400 °C。通过ICP-MS分析了气泡石表面Co3O4的负载量,结果表明每克气泡石表面负载有1.25 mg的Co3O4纳米颗粒。

    • 在反应温度为(25±1) °C、负载型Co3O4投加量60 g·L−1(即0.075 g·L−1 Co3O4纳米颗粒)、BPA初始浓度为0.04 mmol·L−1、PDS初始浓度为0.4 mmol·L−1和pH为7的条件下测试了负载型Co3O4活化PDS降解BPA的性能。如图3(a)所示,PDS氧化降解BPA的能力有限,120 min内BPA的去除率仅为9%,同时负载型Co3O4仅吸附了4.8%的BPA。负载型Co3O4活化PDS可有效降解BPA,120 min内BPA的去除率达到了100%。BPA的降解遵循拟一级反应动力学,反应动力学常数为0.04 min−1 (图3(b))。ICP分析表明催化反应结束后溶液中Co2+的质量浓度为0.55 mg·L−1,低于地表水环境质量标准(GB 3838-2002D)规定的标准(1.0 mg·L−1),表明负载型Co3O4具有良好的稳定性。溶出的Co2+在相同实验条件下催化PDS仅降解了11%的BPA,表明负载型Co3O4主要通过异相催化反应降解有机物[10]图3(b)反映了负载型Co3O4活化PDS降解不同类型有机物的性能,苯酚(Phenol)、对乙酰氨基酚(AAP)、磺胺甲恶唑(SMX)均可被有效去除,相同反应条件下120 min内的去除率分别为78.2%、93.6%、67.3%,对应的反应动力学常数分别为0.01、0.02、0.01 min−1(图3(d))。以上结果表明负载型Co3O4活化PDS可催化降解不同类型的药、护品类有机污染物。

    • 图4(a)反映了溶液初始pH分别为3、5、7、9、11时,负载型Co3O4活化PDS降解BPA的性能。在pH=3~9内,BPA均可得到有效去除,120 min内BPA的去除率均达到100%,同时反应速率也并未受到显著影响;然而,当pH提升至11时,BPA的降解受到抑制,120 min内BPA的去除率降低了24.4%,反应速率也由中性时的0.04 min−1降至0.01 min−1,这可能是由于碱性条件下OH的氧化还原电位降低所致[11]图4(b)为不同PDS投加量下,负载型Co3O4对BPA的催化降解性能。当PDS浓度由0.1 mmol·L−1增加到0.4 mmol·L−1时,BPA的去除率从20.9%增加到98.2%,反应速率也由0.002 min−1提升至0.03 min−1。增加PDS的浓度可增加活性氧物种的生成量,进而促进有机物的催化降解[12]。然而,进一步增加PDS的浓度至0.8 mmol·L−1和1.6 mmol·L−1时,BPA的降解性能并未得到进一步提升。这可能是由于负载型Co3O4的催化位点有限,不能完全活化反应体系中的PDS[13]。增加催化剂的投加量可提供更多的催化位点而充分活化PDS,进而产生更多的活性氧物种而显著提升有机物的降解效率[14]。如图4(c)所示,在BPA溶液体积为50 mL的情况下,当负载型Co3O4催化剂的投加量由1.5 g增加至3.0 g时,BPA的降解速率由0.02 min−1提高至0.037 min−1,当催化剂的投加量进一步增加至6.0 g时,BPA在60 min即可被完全去除,降解速率达0.039 min−1。这表明增加负载型Co3O4的剂量可显著提升PDS的有效利用率。

      为考察水中常见无机阴离子对负载型Co3O4活化PDS降解有机物性能的影响,研究了Cl、NO3、CO32−对BPA去除效率和降解速率的影响。如图4(d)所示,在负载型Co3O4/PDS体系中加入10 mmol·L−1 Cl并未降低BPA的去除效率,同样加入10 mmol·L−1的NO3也未影响BPA的去除。Co3O4活化PDS降解有机物主要有2种途径:一种是基于SO4•−和OH的自由基氧化;另一种是基于单线态氧(1O2)的非自由基氧化[15]。在自由基途径中,Cl、NO3等无机阴离子会竞争消耗强氧化性的SO4•−和OH,进而抑制有机污染物的降解[16-18]。在本研究中,Cl和NO3对BPA的去除影响较弱,表明自由基氧化不是Co3O4活化PDS降解有机物的主要途径。然而,向反应体系中添加10 mmol·L−1的CO32−可显著抑制BPA的去除,同样反应条件下BPA仅去除了16.64%,同时反应速率由0.04 min−1降低至了0.001 min−1。CO32−是一种常用的1O2淬灭剂,其对BPA降解的显著抑制表明负载型Co3O4活化PDS降解有机物是1O2主导的非自由途径[19]。除了无机阴离子,天然有机物如腐殖酸(HA)也是一种常见的水体背景成分[6]。在10 mg·L−1 HA存在的情况下,负载型Co3O4催化降解有机物的效率也未受到显著影响,进一步说明本反应体系中有机物的降解为非自由基途径[20]。综上所述,负载型Co3O4/PDS体系不仅能够在较宽的pH范围内降解有机物,而且对无机阴离子和腐殖酸等常见的水体背景成分具有较强的抗干扰能力,因此,有着较强的应用潜力。

    • 为明确负载型Co3O4活化PDS降解有机物的机理,通过EPR鉴定分析了该体系产生的活性氧的种类。如图5(a)所示,当仅有PDS时,以DMPO为自旋捕获剂未检测到任何信号,而当加入负载型Co3O4催化剂后,EPR谱图观测到了峰强度为1: 2 : 2 : 1的特征峰,这是催化产生的OH被DMPO捕获所致,表明负载型Co3O4活化PDS产生了OH•[21]。此外,以TEMP为1O2捕获剂还检测到了TEMP-1O2的特征峰,因此,负载型Co3O4活化PDS也产生了1O2[22]。进一步通过化学淬灭实验判别了反应体系中OH1O2对BPA降解的贡献。图5(b)反映了不同浓度MeOH的淬灭效果,可以看出MeOH对BPA的降解影响有限,在1 000 mmol·L−1 MeOH存在的情况下,BPA的去除率仍高达94.7%。MeOH可与SO4•−和OH快速反应,反应速率常数分别为k 分别为 2.5×107 (mol·s)−1和9.7×108 (mol·s)−1,是常用的自由基淬灭剂;MeOH对负载型Co3O4/PDS有限的淬灭能力表明该体系降解有机物的过程中,自由基的氧化作用有限[7]。然而,L-组氨酸可显著抑制BPA的降解,如图5(c)所示,1 mmol·L−1的组氨酸使得BPA的降解率由100%降低至89%;当L-组氨酸的浓度增加至5 mmol·L−1时,BPA的去除率进一步降低至21.98%,反应速率也由0.04 min−1降低至0.002 min−1。L-组氨酸具有一定的还原性,可能会消耗PDS而降低负载型Co3O4催化降解BPA的能力[23]。为排除L-组氨酸消耗PDS对淬灭实验的干扰,研究了不同浓度L-组氨酸对PDS的降解效率。如图5(d)所示,L-组氨酸分解PDS的能力有限,例如5 mmol·L−1的L-组氨酸在120 min内仅分解了5.8%的PDS。因此,L-组氨酸对负载型Co3O4/PDS降解BPA的抑制作用主要归咎于其对活性氧物种的淬灭,而L-组氨酸是常用的1O2淬灭剂,这表明负载型Co3O4活化PDS降解有机物是以1O2为主导的非自由基氧化途径。过渡金属氧化物活化PDS产生1O2已被广泛报道,有研究表明,O2•−1O2生成的重要中间体(2O2·+2H2O21O2+2OH+H2O2)[24]。本研究中,化学淬灭实验结果表明BQ(一种常用的O2•−淬灭剂)[25]可显著抑制BPA的降解。如图5(e)所示,加入5 mmol·L−1 BQ后BPA的去除率由100%降低至48.4%,同时速率常数由0.04 min−1降至0.008 min−1(图5(f)),表明O2•−的淬灭可显著抑制BPA的降解。O2•−的氧化还原电位较低,本身不能氧化分解有机物[24],而1O2是本研究中BPA降解的主要活性物种,这说明O2•−1O2形成的中间体,也就是说负载型Co3O4活化PDS先生成了O2•−,O2•−再进一步反应生成1O2

    • 过渡金属氧化物主要通过金属离子的价态循环活化过硫酸盐[26]。为解析负载型多孔Co3O4活化PDS的机理,通过XPS分析了Co3O4中Co元素的价态及其反应前后含量的变化。如图6(a)所示,Co2p在794.9 eV和779.7 eV的特征峰分别对应于Co2p1/2和Co2p3/2,而Co2p3/2的高分辨XPS谱图拟合结果表明,781.2 eV和779.7 eV处的峰分别对应于Co2+和Co3+,所占比例分别为34.2%和54.5%。反应后,Co3O4表面Co2+、Co3+比例变化表明Co3+/Co2+的氧化还原参与了PDS的活化[27]。进一步通过原位ATR-FTIR分析研究了PDS分子在负载型Co3O4表面的反应机理。如图6(b)所示,在1 050 cm−1和1 272 cm−1处检测到PDS振动峰,加入Co3O4催化剂后在其表面观测到了PDS的特征峰的位置并且未发生偏移,表明PDS吸附于Co3O4催化剂的表面。此外,在Co3O4/PDS体系中还观测到了SO42‒的特征峰(1 107 cm−1),表明Co3O4活化PDS产生了SO42‒;随着反应时间的增加PDS特征峰的强度逐渐降低,而SO42‒特征峰的强度逐渐增加,表明PDS在Co3O4催化剂表面持续分解[1]

      金属氧化物(MOx)活化过硫酸盐时,吸附于其表面的水分子会解离形成MOx-OH[19]。因此,结合XPS和ATR-FTIR分析,提出了负载型Co3O4活化PDS降解BPA的可能反应机理(图7)。首先,PDS分子通过氢键与[≡Co3+—OH]2+结合形成[≡Co3+—O—O—SO3]+络合物(式(1)),该络合物具有较高的氧化电势,还原PDS分子生成O2•−,同时Co3+被还原为Co2+形成中间态[≡Co2+—OH] (式(2)),随之生成的O2•−进一步反应生成1O2 (式(3))。中间态[≡Co2+—O—O—SO3]通过内电子转移被氧化为≡Co3+—OH,同时生成少量的自由基(式(4))。如上所述,负载型Co3O4/PDS体系中自由基对有机物的降解贡献有限,因此1O2进一步氧化有机物将其分解为中间产物或者H2O和CO2 (式(5))。本研究中,负载型Co3O4有效活化PDS主要有2点原因,一是负载型Co3O4避免了纳米催化剂的团聚,可暴露更多的活性位点而提升催化效率;另一方面,Co-TA配合物热解会产生富含氧缺陷的Co3O4[28],而氧缺陷可有效提升PDS分子在Co3O4表面的吸附,也会提升内电子催化PDS的效能。

      催化剂的稳定性是衡量其实际应用潜力的一个重要因素,本研究通过循环降解实验研究了负载型Co3O4的稳定性。如图8(a)所示,3次循环后负载型Co3O4对BPA的去除率仍保持在89%,表明负载型Co3O4具有良好的稳定性。循环降解过程中催化活性的轻微降低可能是BPA的降解产物堵塞活性位点导致的[10]。此外,XRD分析表明循环使用后负载型Co3O4的晶相没有明显变化(图2(a)),进一步说明负载型Co3O4具有良好的稳定性。负载型Co3O4可有效矿化BPA(图8(b)),TOC去除率高达73%,而且3次循环后TOC的去除率仍高达63%,表明负载型Co3O4可持续稳定地处理水中酚类有机污染物。

    • 1)基于植物多酚的界面配位原理,通过在三维矿物载体表面原位负载Co3O4纳米颗粒制得了易分离回收的负载型Co3O4催化剂,比Co3O4粉体催化剂展现出更优异的催化活性和良好的稳定性。

      2)负载型Co3O4催化剂活化PDS可高效降解BPA、SMX、AAP等多种类型的药、护品类有机污染物,中性条件下,负载型Co3O4投加量为60 g·L−1(即0.075 g·L−1 Co3O4纳米颗粒),在BPA/PDS摩尔比为1:10的情况下可在120 min内将BPA完全降解。

      3)负载型Co3O4主要通过内电子转移活化PDS,降解有机物时自由基氧化的作用有限,主要是1O2主导的非自由基氧化途径,对无机阴离子和腐殖酸等水体背景成分有着较强的抗干扰能力,在实际水体处理方面展现出广阔的应用前景。

    参考文献 (28)

返回顶部

目录

/

返回文章
返回