载镧酒糟污泥生物炭对磷的吸附性能及机理

吴嘉煦, 李凯, 孙鑫, 王盛, 何莉莉, 高红. 载镧酒糟污泥生物炭对磷的吸附性能及机理[J]. 环境工程学报, 2022, 16(12): 3884-3894. doi: 10.12030/j.cjee.202209013
引用本文: 吴嘉煦, 李凯, 孙鑫, 王盛, 何莉莉, 高红. 载镧酒糟污泥生物炭对磷的吸附性能及机理[J]. 环境工程学报, 2022, 16(12): 3884-3894. doi: 10.12030/j.cjee.202209013
WU Jiaxu, LI Kai, SUN Xin, WANG Sheng, HE Lili, GAO Hong. Fabrication of La-LBCZ composites for phosphate removal: Adsorption performance and mechanism[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3884-3894. doi: 10.12030/j.cjee.202209013
Citation: WU Jiaxu, LI Kai, SUN Xin, WANG Sheng, HE Lili, GAO Hong. Fabrication of La-LBCZ composites for phosphate removal: Adsorption performance and mechanism[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3884-3894. doi: 10.12030/j.cjee.202209013

载镧酒糟污泥生物炭对磷的吸附性能及机理

    作者简介: 吴嘉煦 (1998—) ,男,硕士研究生,wujiaxu1998@163.com
    通讯作者: 高红(1967—),男,博士,讲师,gaohong208@163.com
  • 基金项目:
    国家重点研发计划项目(2018YFC1900305)
  • 中图分类号: X705

Fabrication of La-LBCZ composites for phosphate removal: Adsorption performance and mechanism

    Corresponding author: GAO Hong, gaohong208@163.com
  • 摘要: 为实现市政污泥的无害化和资源化利用,以酒糟和市政污泥为原料热解制备酒糟污泥生物炭(LBCZ),采用共沉淀法将镧(La)负载到LBCZ表面制得La改性酒糟污泥生物炭(La-LBCZ),探究了改性剂浓度、La-LBCZ投加量、溶液初始pH和共存离子对La-LBCZ吸附磷的影响,使用SEM-EDS、BET、XRD、FTIR和XPS等表征手段分析了吸附机理。结果表明:改性剂浓度为0.1 mol·L−1时La-LBCZ对磷的吸附效果最好(吸附量为68.32 mg·g−1),为改性前的6倍;吸附过程符合准二级动力学模型和Langmuir模型,为单分子层表面的化学吸附。此外,生物炭孔隙结构不发达,La以氢氧化物形态负载到生物炭表面,络合反应是其主要的吸附机理。在吸附-脱附实验中,La-LBCZ经过5次循环后吸附量为61.2 mg·g−1,吸附率为87.79%,脱附量为52.65 mg·g−1,脱附率为75.52%,说明其具有良好的循环性能和磷回收性能。
  • 清洁水和卫生设备供应不足是全球性最大的挑战之一,特别是在中低收入国家和地区[1]。据报道,世界上有21亿人不能或难以获得清洁安全的供水[23]。氯化和臭氧化是最为广泛使用的化学消毒方法[45]。它们能够有效地杀死有害微生物,但仍存在一些问题。例如,氯化处理会导致致癌消毒副产物(disinfection byproducts , DBPs)的形成,甚至会引发军团杆菌等耐氯病原体的生长,以及在处理后的水中产生不良的气味[67]。臭氧化同样会产生有害的DBPs,在大规模臭氧生产、储存和运输过程中还体现出急性毒性和腐蚀性特征[810]。相对来讲,煮沸是一种有效常用且不会产生DBPs的家庭水处理方法[1112],但由于其需要大量额外供能而不适于大规模水消毒。此外,与煮沸相比,使用免费阳光的SODIS技术更加具有可持续性。根据光热催化材料的存在与否,将SODIS分为光热催化杀菌和紫外线杀菌。紫外线杀菌是利用UVC和UVB(200—280 nm)来破坏DNA,形成胸腺嘧啶二聚体来阻断繁殖并灭活微生物[11]。然而,紫外线在太阳光谱中占比极低(约4 %),导致对水的消毒效率低下,尤其是对病毒。早期研究表明,需要超过30 h的太阳光照射,才能灭活99.9%的噬菌体MS2[13]。相比之下,光热催化杀菌主要通过光热催化材料产生热量和活性氧物种(ROSs)来协同灭菌,更加具有广谱灭菌性,包括对VBNC(viable but non-culturable)细菌以及病毒都有高灭活效率[1415]。优良的光热催化材料对紫外光、可见光甚至红外光都能产生响应,从而充分利用太阳能。因此,光热催化消毒法在实际水杀菌,特别是在终端(point of use,POU)水处理中展现出强大的应用潜力。

    常用的光热材料包括(1)通过局域表面等离子体共振效应(SPR)来转换光热的纳米金属及其化合物,如金、银、铂、镍和铜等;(2)直接吸收光子热量的碳材料如炭黑,碳量子点、碳纳米管,石墨烯等;(3)具有红外响应光催化效应的半导体材料如窄隙半导体(CuS、黑磷))、重掺杂半导体(WO3x、MoO3x) 等。这些光热材料具有高消光系数ε和高光热转换效率η,能够有效吸收光辐射电磁波且不让其发散,并将其快速转换为热量,因此利于实现太阳能高效利用。

    贵金属(如Au、Ag和Pt)是应用最广泛的等离子体纳米颗粒,表现出良好的光热催化杀菌性能。贵金属的光热活性在很大程度上取决于其形态、颗粒大小、颗粒间排列和周围环境[1618]。以金纳米颗粒为例,虽然比表面积和活性位点数会随着颗粒的减小而增加,但较小的颗粒直径可能会使较多Au原子被覆盖,从而导致SPR(surface plasmonic resonance)强度下降。根据之前的研究,表现出最有效的光热催化杀菌效果的Au NPs的最佳直径为2—40 nm [16];但当Au颗粒被控制为粒径小于2 nm的Au团簇时,SPR几乎可以忽略[17]。在高温和近红外辐照下,Au NPs或Au纳米棒会形成较大的团聚体,导致比表面积减小和催化活性降低[18]。Au的形状也会显著影响其光热催化性能。Loeb等制备了Au纳米立方体(nanocubes,NCs)和纳米棒(nanorods,NRs),并比较了它们的光热催化杀菌性能[1]。Au NRs(25 μmol·L−1)能分别杀灭约5.6×106、5.5×106、1.61×106 CFU·mL−1的K-12大肠杆菌、MS2噬菌体和PR772噬菌体,而Au NCs在相同条件下对上述微生物率仅灭活约4.1×106、2.0×106、0.51×106 CFU·mL−1。结果表明,Au NRs在光热催化杀菌过程中表现出更高的潜力,而Au NRs具有高生物相容性和低细胞毒性。

    考虑到纯贵金属纳米颗粒的光稳定性低、易在近红外辐射下聚集等缺点,随后设计和制备了贵金属基复合材料来解决上述问题。Zhao等制备了负载Au NRs的多隔室介孔二氧化硅NPs(mesoporous silica , MMSN@AuNR),发现其具有超高的光稳定性和优异的光热催化活性[19]。MMSN@AuNR能在808 nm近红外光照射下快速杀死细胞,并在11次照射启动/关闭的循环后保持高灭菌效率。MMSN@AuNR比纯Au NRs具有更高的稳定性,这主要是由于MMSN的保护能有效抑制Au NRs在近红外光下的团聚。

    为降低材料成本,采用廉价的非贵金属如镍(Ni)和铜(Cu)作为替代等离子体材料。例如,He等开发了Ni-TiO2异质结构,并在该系统中观察到SPR介导的载流子转移[20]。在可见光照射下,Ni通过等离子体激发产生热电子和热空穴。然后热载流子从Ni转移到TiO2,占据氧空位,产生Ti3+,并固定在TiO2的表面氧上。Ni NRs负载的氧化石墨烯(Ni/RGO)表现出高效的光热转换,在氙灯(850 mW·cm−2)照射400 s内将水从25 ℃加热到50 ℃以上[21]。虽然贵金属纳米颗粒表现出了强光热转换能力,但其高成本限制了其大规模应用。因此,更经济的廉价金属或非贵金属光热催化剂在抗菌应用中受到关注。

    宽而强的光吸收能力使碳纳米颗粒能够进行高效光热催化反应。碳纳米颗粒,如碳黑、碳纳米管、碳纤维和纳米氧化石墨烯等,具有完整的紫外-可见-近红外吸收,已被广泛开发并应用于杀菌[1]、产生蒸汽[22]和有机物聚合[23]。与金属基材料相比,碳纳米颗粒作为光热催化剂除了具有广谱吸收特性外,还具有成本低、光腐蚀少、无金属释出等优点。

    碳黑优异的光热转换性能已被广泛报道。Han等证明了碳黑粉末及其纳米流体在200 nm到2500 nm的宽波长范围内表现出良好的吸收[24]。在光照射下,碳黑纳米流体的温度在42 min内从24.4 ℃上升到38.4 ℃,而纯水的温度仅上升到31.2 °C,表明了碳黑良好的光热转换能力。Loeb等人工作中[1]表明,在日光照射(AM 1.5G)时长分别为60 min和100 min的条件下,碳黑纳米颗粒对大肠杆菌几乎无杀灭效果,对噬菌体MS2有轻微杀灭效果。与纯碳黑和Au相比,其复合膜材料对噬菌体PR722的光热催化灭活作用增强。

    碳纳米管(carbon Nanotubes = CNTs),由于其大表面积、优秀的光学性能(如高效光热转换和广谱吸收)和高光热导率,已成为一种很有前途的抗菌材料。将碳纳米管与等离子体材料复合已被证明是提高光热效率的有效策略。在模拟日光照射(AM 1.5)下,将等离子体Ni NPs嵌入N掺杂CNTs的表面温度在2 min内迅速上升至56.8 ℃,展现了有效的光热转换能力[25]。Ag修饰的多壁碳纳米管(MWCNTs)表现出更高的导热性和光热活性,在670 nm照射下实现了细胞的有效光热消融[26]。Sun等报道了一种Au纳米颗粒/羧基功能化的碳纳米管(AuNP/CNT-COOH)[27]具有优异的光热转换能力。在852 nm激光的照射下,这种碳纳米管基材料可以将水从约20 ℃加热至75 ℃。

    氧化石墨烯纳米复合材料具有强烈的近红外光吸收、光催化活性和“纳米刀”效应,可实现有效光热催化杀菌。值得注意的是,纯氧化石墨烯表现出有限的光热转换效率,在近红外照射8 min后温度只有小幅升高[28]。因此,人们制造了不同的氧化石墨烯基复合材料,并将其应用于水消毒。氨基化的氧化石墨烯(GO-NH2)纳米片可以通过静电引力轻易吸附细菌细胞,并表现出显著增强的光热催化抗菌性能[29]。如图1,在白光照射(159 mW·cm−2)下,GO-NH2浓度为0.10 mg·mL−1和0.25 mg·mL−1时,水的温度分别从20.5 ℃快速上升至55.5 ℃和81.4 ℃。GO-NH2纳米片对金黄色葡萄球菌和大肠杆菌的光热催化抗菌活性分别提高了16倍和32倍。此外,通过扫描电镜观察发现GO-NH2纳米片的锐利边缘所产生的“纳米刀”效应在细菌失活中起着关键作用。

    图 1  (a) 在光照射下不同GO-NH2的升温曲线;(b) GO-NH2作用 2min前后金黄色葡萄球菌和大肠杆菌的图像;(c)不同浓度的GO-NH2对金黄色葡萄球菌和大肠杆菌的灭活[29]
    Figure 1.  (a) Heating curves of GO-NH2 with different catalyst concentrations irradiated by white light (159 mW·cm-2). (b) SEM images of (A, B) S. aureus and (C, D) E. coli before and after interaction with GO-NH2 for 2 min. (c) Growth inhibition of S. aureus and E. coli after the photothermal treatment by GO-NH2.

    在光催化剂中制造缺陷结构(也称为空位),通过空位可以缩小能带隙、促进电荷转移和/或引起局部SPR效应,从而可以使宽带隙半导体产生近红外光诱导的光热催化性能。例如,被广泛报道的存在氧缺陷的WO3-x [30],In2O3-x [3132]、ZrO2-x [33]和MoO3-x [3435]等光催化剂,不仅在可见光到近红外光区域表现出可调谐的光吸收,而且可以通过调控颗粒尺寸和氧缺陷的比例[36]来进一步增强其光热催化性能。然而,吸附在空位上的O2和H2O会导致氧缺陷光催化剂被氧化,故存在化学不稳定性。构建缺陷型复合材料被认为是提高稳定性和光催化活性的有效策略[37]。例如,Zhang等通过一锅水热法制备了WO3-x/C纳米片[30],其中氧空位和碳涂层的存在显著延长了可见到红外光区域的光吸收带。除了提高光催化性能外,碳涂层还促进了电荷载流子的分离,从而提高了光热催化效率。在Zhao等[38]的另一项研究中,半金属Bi与有氧缺陷的BiO1-xI结合,形成Bi/BiO1-xI复合材料,具有光热协同催化消毒能力。Bi和氧空位不仅在600—1400 nm范围内引起了表面等离子体效应,而且还显著增加了光生电子和空穴的生成量。机理研究表明,活性物种(1O2、h+和·O2)与热协同作用可有效灭活细菌。

    窄带隙半导体,如磷系催化剂、MoS2、Bi2S3和CuS等,表现出很强的近红外吸收,也有有用作光热催化剂的潜力。磷是一种地球富含的非金属元素,有3种同素异形体,即红、黑、白磷。其中红磷(red Phosphorus ,RP)和黑磷(black Phosphorus,BP)可作为光催化剂或光热催化剂来实现光催化和/或光热消毒。BP和RP都是无毒的,具有生物相容性,但RP比BP更具成本效益[39]。Zhang等评估了在不同照射波长下Ti-RP/GO薄膜的光热灭菌效果[40]。在模拟日光照射下,Ti-RP/GO膜在20 min内迅速灭活99.9%金黄色葡萄球菌和大肠杆菌(1×107 CFU·mL−1)。Li等将BP纳米片作为POU末端水消毒系统中的光热催化剂[41]。在该体系中,壳聚糖水凝胶与黑色BP纳米片逐层叠加形成了三明治式过滤器。基于BP纳米片的过滤器表现出优异的近红外光驱动的光热特性,能够实现高杀菌温度(> 140 ℃),导致粘附的枯草芽孢杆菌和大肠杆菌完全失活。其他含硫半导体如MoS2织物的表面温度迅速上升到77 ℃左右,并伴随着ROS例如·O2的产生。结果表明,MoS2织物对革兰氏阴性大肠杆菌和革兰氏阳性金黄色葡萄球菌(细胞密度= 1×106 CFU·mL−1)均有有效的灭活效果,3 h内的抑菌效率分别为58%和60%左右。这些窄带隙半导体不仅可以作为光热剂直接灭活细菌,还可以作为释放热敏性药物的载体进行间接抗菌处理。

    MOFs是一类新兴的多孔固体催化剂,含有与有机配体配位的金属离子/团簇。它们作为抗菌材料时主要是利用生物毒性金属离子的释放[42]。此外,MOFs通常具有较宽的带隙,例如,MOF-5的带隙为3.4 eV [43-44], ZIF-8为3.87 eV[45],使得它们不适合宽光谱响应和光热转换。然而,考虑到金属离子或有机配体的合理调节赋予了MOFs在分子水平上的高设计性,MOFs展示出用于抗菌处理的光热催化剂的潜力。Wang等发现通过在空气中200 ℃下对ZIF-8 NPs进行简单的热处理,会改变ZIF-8中配体结构 (例如, 生成了—N=C=O键),进而造成ZIF-8 MOF的光吸收从紫外到可见和近红外区域的显著延长[45]。此研究证明了宽带隙MOFs作为光热催化剂的可行性。此外,一些MOFs,比如PCN-224(Eg= 1.81 eV)[46],IRMOF-M2a(Eg= 1.5 eV)[43],和Sr-MOF(Eg= 2.3 eV)[43],表现出窄带隙和宽光谱吸收的性质,也可以用于光热催化剂。Wu等通过将Cu2+引入卟啉环的核心,开发了一种Cu掺杂的PCN-224 MOF [47],能够高效光热催化灭菌。一方面,掺杂的Cu2+促进了载流子的转移,从而促进了ROSs的生成,例如1O2等的生成。另一方面,由于d-d跃迁,Cu2+在660 nm处表现出了额外的吸光,并增强了光热转换。由于协同作用,在660 nm光照射(0.4 W·cm−2)下20 min内,Cu掺杂的PCN-224对金黄色葡萄球菌的抗菌效果达到99.71%。表1为近几年报道的光热催化剂及其细菌杀菌性能。

    表 1  最近报道的纳米结构的光热细菌失活性能的比较
    Table 1.  Comparison of the photothermal bacterial inactivation by the recently reported nanostructures
    催化剂Catalysts辐照(强度)Irradiation(intensity)催化剂浓度/(mg·mL−1)Catalyst concentration光热杀菌性能Photothermal disinfection performance参考文献References
    Au纳米棒模拟日光4.93×10−3100 min内,分别灭活5.6-lg CFU·mL−1、5.5-lg CFU·mL−1和1.6-lg CFU·mL−1 左右的大肠杆菌K-12、MS2噬菌体和PR772噬菌体[1]
    Ni/rGO808 nm 激光(2 W·cm−2)0.0258 min内,对2×106 CFU·mL−1的大肠杆菌和枯草芽孢杆菌分别达到99.6%和99.5%的灭活率[28]
    GO-NH2白光(0.159 W·cm−2)0.03210 min内,对107 CFU·mL−1大肠杆菌和金黄色葡萄球菌的灭活率超过90%[29]
    RP模拟日光(0.2 W·cm−2)0.220 min内,对5×106 CFU·mL−1金黄色葡萄球菌的灭活率达到99.98%[39]
    Ti-RP/GO模拟日光(0.2 W·cm−2)N.A.15 min内,对107 CFU·mL−1的大肠杆菌的灭活率达到99.91%[40]
    WO3-x/C带有700 nm截止滤光片的氙灯(0.2 W·cm−2)140 min内,灭活了1.2×107 CFU·mL−1的大肠杆菌[30]
    碳化ZIF-8808 nm 激光(3 W·cm−2)0.1610 min内,对107 CFU·mL−1的金黄色葡萄球菌的灭活率达到80%左右[43]
    PB-PCN-224600 nm LED(0.3 W·cm−2)115 min内,对1×107 CFU·mL−1的金黄色葡萄球菌的灭活率达到99.84%[47]
     | Show Table
    DownLoad: CSV

    如前所述,在光照射下,光热催化材料会通过光热转换产生局部高温和/或通过光催化和热催化生成ROSs进行协同作用, 如图2 [14]。在光热催化材料界面会形成局部热场而升温至约50 ℃以上[48-49]。光热催化材料表面的高温会导致蛋白质变性,导致微生物一旦接触到材料表面就会迅速失活。局部热场会扩散到周围环境,导致体相及水溶液温度升高。当细菌暴露于亚沸温度溶液(55—60 ℃)时,细胞膜上的蛋白质和脂质将被破坏[50]。随后,酶、核酸和其他胞内成分随着照射时间的延长而失活,这与巴氏杀菌相似。同时,生成的ROSs攻击细胞会诱导微生物产生氧化应激以致生理系统紊乱,进而导致细胞膜破裂、胞内成分(如蛋白质、核酸、K+等)的泄漏氧化以及细胞的最终死亡。

    图 2  Ag/MnO2光热催化杀菌机理图[14]
    Figure 2.  Scheme of photothermalcatalytic inactivation over Ag/MnO2.

    (1)细胞膜的损伤

    细菌细胞膜主要由脂质、蛋白质和少量碳水化合物组成。它是细菌抵御外界攻击和环境变化的第一层保护层。在光照射下暴露于光热催化剂时,细胞膜的脂质双分子层会受到热和ROSs的攻击。ROSs与细胞膜不饱和脂肪酸之间的反应引发了随后的链式反应,导致脂质过氧化。ROSs和脂质过氧化产物都会对细菌细胞造成损伤。用MDA检测试剂盒测定细胞膜氧化情况。此外,与底物运输、特异性识别和呼吸相关的膜蛋白对细菌代谢至关重要[19]。在光热处理中,ROSs和局域热场会引起胞内氨基酸氧化和蛋白质变性。如果目标病原微生物是病毒(如MS2),ROSs和局域热场则会破坏蛋白质衣壳并导致抗原性降低[51]

    光热催化杀菌可通过两条途径增加细胞膜的渗透性:①通过脂质过氧化破坏细胞膜的微观结构和降低细胞膜的流动性;②通过ROSs和局域热场灭活在细胞呼吸和跨膜运输中起重要作用的膜蛋白和ATP酶[52]。首先,细菌膜通透性的增加可以破坏钠钾(Na+-K+)泵,导致K+离子等小分子的释放。因此,释放的K+的量被用于测量细胞膜渗透性的变化。此外,利用邻硝基苯-β-D-吡楠半乳糖苷(ONPG)结合比色法可以测定细胞质膜的穿透性[14]。8-苯胺基-1-萘磺酸(ANS) 会与外膜结合发出荧光,也可用于检测外膜的通透性。

    此外,利用扫描电镜(SEM)、透射电镜(TEM)和原子力显微镜(AFM)观察细菌细胞膜的完整性和形态变化。在光热催化处理之前,大肠杆菌和金黄色葡萄球菌保持光滑的表面和完整的微观结构。在光热系统中照射10 min后,细胞膜发生严重变形和皱缩,出现凸出和凹坑的变形。光热催化处理10 min后,在细胞膜上观察到一些孔洞。透射电镜提供了细菌样品的高分辨率成像,并显示了细胞膜和胞内成分的变化:在光热催化处理下大肠杆菌细胞膜的功能紊乱并受损,导致细胞质分离和胞内组分渗漏[53].

    (2)胞内成份的释放和氧化

    在破坏细胞膜的形态和改变其通透性后,进一步检测胞内组分在ROSs和热攻击下的变化,以更好地了解杀菌机制。细胞膜通透性的增加和破坏使ROSs得以加速通过。荧光探针法可用于检测细胞内ROS水平,其中2',7'-二氯二氢荧光素二乙酸酯是检测·OH和H2O2的常用荧光探针。羟苯基荧光素(HPF)和二氢乙啶(HE)也可分别作为·OH和·O2的荧光探针[5455]

    通过谷胱甘肽(GSH)、超氧化物酶(SOD)、过氧化氢酶(CAT)以及ATP的量可以分析细菌受到攻击时的自卫能力。GSH不仅是H2O2和·O2的清除剂,而且还能产生分解ROSs的酶[56-57]。此外,GSH能稳定酶活性,维持细胞内氧化平衡,阻止血红蛋白被氧化。SOD则通过与·O2特异性反应而参与细菌的自卫系统。CAT在H2O2的防御系统中起着重要作用。用对应的检测试剂盒通过分光光度法测定SOD、CAT、GSH的含量。基本能量载体ATP的合成与细胞代谢活性直接相关。ATP含量用ATP检测试剂盒监测,通过测量636 nm处的吸光度来定量分析[58]。值得注意的是,在光热催化杀菌初期,细胞会产生更多的GSH、SOD和CAT来保护自己免受氧化,并且合成上述抗氧化物质需要更多的能量,ATP水平呈上升趋势。但是,随着处理时间的延长,ROSs和局域热场的持续攻击会使细菌代谢紊乱。最终所有的抗氧化物质和ATP都会被分解。

    细菌包膜的破坏也导致细胞内成分的释放,如K+、核酸和蛋白质等。释放的蛋白质可以通过二喹啉甲酸(BCA)法监测,因为蛋白质的肽键结构可以在碱性条件下将Cu2+转换为Cu+,然后BCA可以与Cu+反应形成紫色化合物, 可以通过分光光度计在562 nm处定量分析。然后利用2D电泳进行定性分析可深入了解蛋白质的释放和氧化,还可以用分光光度计测定释放的核酸浓度,有关DNA/RNA的特征吸收峰位于260 nm附近[40]。进一步采用三维荧光激发-发射矩阵技术,通过分析溶解有机物的变化来研究生物分子的破坏。此外,利用单细胞的傅立叶变换红外吸收光谱和拉曼显微光谱还可以分析细胞内成分结构的演化[51-53]

    (3)核酸的损伤

    为了更好地理解ROS和局域热场对细菌核酸的损伤,进行了DNA琼脂糖凝胶电泳和转录组分析。前者是用Ezup柱式细菌基因组DNA抽提试剂盒提取染色体DNA,然后用DNA琼脂糖凝胶电泳验证。此外,转录组学研究中的样品制备和数据分析也比电泳法复杂。一般情况下,提取总RNA、片段化处理mRNA、合成cDNA、末端修复、添加单核苷酸后,选择样品进行琼脂糖凝胶电泳、PCR扩增,然后定量定性分析[54]。通过这种方法可以确定参与各种正常生理活动(如代谢活动、氧化应激反应和细胞呼吸过程等)的基因表达的变化,为细菌失活机制提供了更深入的见解[54-55]。总有机碳(TOC)的测定也可以表示细菌矿化程度[56]

    本文总结了光热催化消毒的研究进展,显示出了实际应用的巨大潜力。然而,光热催化消毒技术仍面临挑战,需要采取进一步的策略来降低成本,提高效率。为了实现光热催化剂的实际应用,较高的材料和运行成本在一定程度上限制了大规模的光热应用。使用低成本和可持续的材料,如生物质碳,非贵金属等离子体NPs和丰富的自然资源(例如,矿物),更适于大规模水消毒处理。虽然可以利用各种方法来分析光热催化灭菌,但对光热催化过程中生物分子变化的深入认识还有待进一步评价。此外,由于天然水或污水中TOC和浊度高、各种微生物的共存、pH值不理想等原因,其杀菌效果是完全不同的;需要进一步设计和优化光热反应器如采用间歇式和连续流式反应器。总之,光热催化法有望成为环境修复(包括但不限于水消毒)的一种有效策略。

  • 图 1  改性剂浓度和La-LBCZ投加量对吸附效果的影响

    Figure 1.  Effects of modifier concentration and La-LBCZ dosage on phosphorus adsorption by La-LBCZ

    图 2  溶液pH对La-LBCZ吸附效果和Zeta电位的影响

    Figure 2.  Effect of solution pH on phosphorus adsorption by La-LBCZ and zeta potential

    图 3  La-LBCZ对磷的吸附动力学模型和颗粒内扩散模型拟合

    Figure 3.  Kinetic model of phosphate adsorption on La-LBCZ and the fitting by the intra-particle diffusion model

    图 4  La-LBCZ对磷的吸附等温线模型

    Figure 4.  Adsorption isotherm model of phosphate adsorption on La-LBCZ

    图 5  La-LBCZ的共存离子实验和吸附-脱附实验

    Figure 5.  Effects of coexisting ions on phosphate adsorption by La-LBCZ and the absorption-desorption experiment

    图 6  La-LBCZ的 N2吸附/脱附等温线和孔径分布图

    Figure 6.  N2 adsorption/desorption isotherms and pore size distributions of La-LBCZ

    图 7  LBCZ、La-LBCZ的 SEM-EDS 图

    Figure 7.  SEM-EDS images of LBCZ and La-LBCZ

    图 8  BCZ、La-LBCZ吸附磷前后的XRD谱图和FTIR谱图

    Figure 8.  XRD and FTIR spectra of BCZ, La-LBCZ before and after phosphorus adsorption

    图 9  La-LBCZ吸附磷前后的 XPS 分析

    Figure 9.  XPS analysis of La-LBCZ before and after phosphorus adsorption

    表 1  La-LBCZ吸附磷的动力学模型拟合参数

    Table 1.  Fitting parameters of phosphorus adsorption kinetics model on La-LBCZ

    初始溶液磷质量浓度/(mg·L−1)准一级动力学准二级动力学
    k1/(min−1)qe/(mg·g−1)R2k2/(min−1)qe/(mg·g−1)R2
    500.02357.940.9410.00163.610.981
    300.02240.250.9210.00144.040.974
    100.08916.760.9390.00718.270.981
    初始溶液磷质量浓度/(mg·L−1)准一级动力学准二级动力学
    k1/(min−1)qe/(mg·g−1)R2k2/(min−1)qe/(mg·g−1)R2
    500.02357.940.9410.00163.610.981
    300.02240.250.9210.00144.040.974
    100.08916.760.9390.00718.270.981
    下载: 导出CSV

    表 2  La-LBCZ吸附磷的颗粒内扩散模型拟合参数

    Table 2.  Fitting parameters of intraparticle diffusion model for phosphorus adsorption on La-LBCZ

    初始溶液磷质量浓度/(mg·L−1)第1阶段第2阶段第3阶段
    kd1/(mg·(g·min0.5)−1)C1R2kd2/(mg·(g·min0.5)−1)C2R2kd3/(mg·(g·min0.5)−1)C3R2
    506.706−4.630.8781.53430.090.9600.12258.780.886
    302.8994.670.9573.44922.550.9580.00242.030.983
    101.5824.620.9911.0137.560.9890.00117.840.906
    初始溶液磷质量浓度/(mg·L−1)第1阶段第2阶段第3阶段
    kd1/(mg·(g·min0.5)−1)C1R2kd2/(mg·(g·min0.5)−1)C2R2kd3/(mg·(g·min0.5)−1)C3R2
    506.706−4.630.8781.53430.090.9600.12258.780.886
    302.8994.670.9573.44922.550.9580.00242.030.983
    101.5824.620.9911.0137.560.9890.00117.840.906
    下载: 导出CSV

    表 3  La-LBCZ的吸附等温模型拟合参数

    Table 3.  Fitting parameters of adsorption isotherm model on La-LBCZ

    温度/ ℃Langmuir模型Freundlich模型
    qm/(mg·g−1)KL/(L·mg−1)R2KF/(g·(mg·min)−1)1/nR2
    1586.950.1160.97525.6760.2220.930
    3091.090.5540.95436.5700.1780.939
    4599.810.9720.97544.5810.1590.912
    温度/ ℃Langmuir模型Freundlich模型
    qm/(mg·g−1)KL/(L·mg−1)R2KF/(g·(mg·min)−1)1/nR2
    1586.950.1160.97525.6760.2220.930
    3091.090.5540.95436.5700.1780.939
    4599.810.9720.97544.5810.1590.912
    下载: 导出CSV

    表 4  La-LBCZ的吸附热力学参数

    Table 4.  Adsorption thermodynamic parameters of La-LBCZ

    温度/℃lnKΔG/(kJ·mol−1)ΔH/(kJ·mol−1)ΔS/(J·(mol·K)−1)
    151.31-3.2522.2185.43
    301.74-4.53
    452.13-5.81
    温度/℃lnKΔG/(kJ·mol−1)ΔH/(kJ·mol−1)ΔS/(J·(mol·K)−1)
    151.31-3.2522.2185.43
    301.74-4.53
    452.13-5.81
    下载: 导出CSV

    表 5  La-LBCZ的BET分析

    Table 5.  BET analysis of La-LBCZ

    样品总比表面积/(m²·g−1)总容积/(cm³·g−1)介孔容积/(cm³·g−1)平均孔径/nm
    LBCZ287.880.250.224.84
    LBCZ-P270.650.220.214.77
    La-LBCZ148.320.310.2811.10
    La-LBCZ-P116.320.240.229.67
    样品总比表面积/(m²·g−1)总容积/(cm³·g−1)介孔容积/(cm³·g−1)平均孔径/nm
    LBCZ287.880.250.224.84
    LBCZ-P270.650.220.214.77
    La-LBCZ148.320.310.2811.10
    La-LBCZ-P116.320.240.229.67
    下载: 导出CSV
  • [1] LIAO Y, CHEN S, ZHENG Q, et al. Removal and recovery of phosphorus from solution by bifunctional biochar[J]. Inorganic Chemistry Communications, 2022, 139: 1-11.
    [2] PAYEN S, COSME N, ELLIOTT A H. Freshwater eutrophication: Spatially explicit fate factors for nitrogen and phosphorus emissions at the global scale[J]. International Journal of Life Cycle Assessment, 2021, 26(2): 388-401. doi: 10.1007/s11367-020-01847-0
    [3] DAI Y, WANG W, LU L, et al. Utilization of biochar for the removal of nitrogen and phosphorus[J]. Journal of Cleaner Production, 2020, 257: 1-15.
    [4] WANG X, CHANG V W-C, LI Z, et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals[J]. Journal of Hazardous Materials, 2021, 412: 1-12.
    [5] ZHOU H, BROWN R C, WEN Z. Biochar as an additive in anaerobic digestion of municipal sludge: Biochar properties and their effects on the digestion performance[J]. Acs Sustainable Chemistry & Engineering, 2020, 8(16): 6391-6401.
    [6] LI Y H, CHANG F M, HUANG B, et al. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage[J]. Fuel, 2020, 266: 1-11.
    [7] WANG Z, XIE L, LIU K, et al. Co-pyrolysis of sewage sludge and cotton stalks[J]. Waste Management, 2019, 89: 430-438. doi: 10.1016/j.wasman.2019.04.033
    [8] HSU D, LU C, PANG T, et al. Adsorption of ammonium nitrogen from aqueous solution on chemically activated biochar prepared from sorghum distillers grain[J]. Applied Sciences-Basel, 2019, 9(23): 1-16.
    [9] ELKHLIFI Z, SELLAOUI L, ZHAO M, et al. Lanthanum hydroxide engineered sewage sludge biochar for efficient phosphate elimination: mechanism interpretation using physical modelling[J]. Science of the Total Environment, 2022, 803: 1-12.
    [10] TANG Q, SHI C, SHI W, et al. Preferable phosphate removal by nano-La(III) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge[J]. Science of the Total Environment, 2019, 662: 511-520. doi: 10.1016/j.scitotenv.2019.01.159
    [11] HE Y, LIN H, DONG Y, et al. Preferable adsorption of phosphate using lanthanum-incorporated porous zeolite: Characteristics and mechanism[J]. Applied Surface Science, 2017, 426: 995-1004. doi: 10.1016/j.apsusc.2017.07.272
    [12] ZONG E, LIU X, WANG J, et al. Facile preparation and characterization of lanthanum-loaded carboxylated multi-walled carbon nanotubes and their application for the adsorption of phosphate ions[J]. Journal of Materials Science, 2017, 52(12): 7294-7310. doi: 10.1007/s10853-017-0966-0
    [13] HOLLISTER C C, BISOGNI J J, LEHMANN J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (Zea mays L. ) and oak wood (Quercus spp. )[J]. Journal of Environmental Quality, 2013, 42(1): 137-144. doi: 10.2134/jeq2012.0033
    [14] LIAO T, LI T, SU X, et al. La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal[J]. Bioresource Technology, 2018, 263: 207-213. doi: 10.1016/j.biortech.2018.04.108
    [15] NGUYEN T A H, NGO H H, GUO W S, et al. Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: Potential and obstacles[J]. Bioresource Technology, 2014, 169: 750-762. doi: 10.1016/j.biortech.2014.07.047
    [16] GUO Y, HUANG W, CHEN B, et al. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism[J]. Journal of Hazardous Materials, 2017, 339: 22-32. doi: 10.1016/j.jhazmat.2017.06.006
    [17] 桑倩倩, 王芳君, 赵元添, 等. 铁硫改性生物炭去除水中的磷[J]. 环境科学, 2021, 42(5): 2313-2323. doi: 10.13227/j.hjkx.202008302
    [18] ZHAO X, JIANG T, DU B. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils[J]. Chemosphere, 2014, 99: 41-48. doi: 10.1016/j.chemosphere.2013.09.030
    [19] LIU Y, HU X. Kinetics and thermodynamics of efficient phosphorus removal by a composite fiber[J]. Applied Sciences-Basel, 2019, 9(11): 1-19.
    [20] LI Z, LIU X, WANG Y. Modification of sludge-based biochar and its application to phosphorus adsorption from aqueous solution[J]. Journal of Material Cycles and Waste Management, 2020, 22(1): 123-132. doi: 10.1007/s10163-019-00921-6
    [21] 许润, 石程好, 唐倩, 等. 氢氧化镧改性介孔稻壳生物炭除磷性能[J]. 环境科学, 2019, 40(4): 1834-1841. doi: 10.13227/j.hjkx.201809140
    [22] 张海婷, 张永敏, 王天慧, 等. 镧改性介孔材料对砷、磷的吸附[J]. 环境工程学报, 2019, 13(8): 1791-1799. doi: 10.12030/j.cjee.201811112
    [23] 周可人, 张世熔, 彭雅茜, 等. 镧、锆改性油菜杆和菱角壳去除养猪废水中的磷[J]. 环境工程学报, 2021, 15(1): 20-29. doi: 10.12030/j.cjee.202002147
    [24] ZHANG L, ZHOU Q, LIU J, et al. Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber[J]. Chemical Engineering Journal, 2012, 185: 160-167.
    [25] 孙晓菲, 陈桂芳, 安东海, 等. 粉末活性焦对水中磷酸盐的吸附性能[J]. 中国环境科学, 2019, 39(9): 3797-3806. doi: 10.3969/j.issn.1000-6923.2019.09.024
    [26] 宋小宝, 何世颖, 冯彦房, 等. 载镧磁性水热生物炭的制备及其除磷性能[J]. 环境科学, 2020, 41(2): 773-783. doi: 10.13227/j.hjkx.201906088
    [27] QU J, AKINDOLIE M S, FENG Y, et al. One-pot hydrothermal synthesis of NaLa(CO3)2 decorated magnetic biochar for efficient phosphate removal from water: Kinetics, isotherms, thermodynamics, mechanisms and reusability exploration[J]. Chemical Engineering Journal, 2020, 394: 1-10.
    [28] HUANG H-J, YUAN X-Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge[J]. Bioresource Technology, 2016, 200: 991-998. doi: 10.1016/j.biortech.2015.10.099
    [29] AGRAFIOTI E, BOURAS G, KALDERIS D, et al. Biochar production by sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 72-78. doi: 10.1016/j.jaap.2013.02.010
    [30] YIN X, XI M, LI Y, et al. Improvements in physicochemical and nutrient properties of sewage sludge biochar by the co-pyrolysis with organic additives[J]. Science of the Total Environment, 2021, 779: 1-12.
    [31] HUANG H J, YANG T, LAI F Y, et al. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 61-68. doi: 10.1016/j.jaap.2017.04.018
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401234Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.9 %DOWNLOAD: 3.9 %HTML全文: 89.4 %HTML全文: 89.4 %摘要: 6.8 %摘要: 6.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 97.5 %其他: 97.5 %XX: 1.4 %XX: 1.4 %乐山: 0.1 %乐山: 0.1 %内网IP: 0.1 %内网IP: 0.1 %大连: 0.1 %大连: 0.1 %成都: 0.1 %成都: 0.1 %昆明: 0.2 %昆明: 0.2 %焦作: 0.1 %焦作: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %其他XX乐山内网IP大连成都昆明焦作郑州重庆Highcharts.com
图( 9) 表( 5)
计量
  • 文章访问数:  4088
  • HTML全文浏览数:  4088
  • PDF下载数:  47
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-09-02
  • 录用日期:  2022-11-11
  • 刊出日期:  2022-12-31
吴嘉煦, 李凯, 孙鑫, 王盛, 何莉莉, 高红. 载镧酒糟污泥生物炭对磷的吸附性能及机理[J]. 环境工程学报, 2022, 16(12): 3884-3894. doi: 10.12030/j.cjee.202209013
引用本文: 吴嘉煦, 李凯, 孙鑫, 王盛, 何莉莉, 高红. 载镧酒糟污泥生物炭对磷的吸附性能及机理[J]. 环境工程学报, 2022, 16(12): 3884-3894. doi: 10.12030/j.cjee.202209013
WU Jiaxu, LI Kai, SUN Xin, WANG Sheng, HE Lili, GAO Hong. Fabrication of La-LBCZ composites for phosphate removal: Adsorption performance and mechanism[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3884-3894. doi: 10.12030/j.cjee.202209013
Citation: WU Jiaxu, LI Kai, SUN Xin, WANG Sheng, HE Lili, GAO Hong. Fabrication of La-LBCZ composites for phosphate removal: Adsorption performance and mechanism[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3884-3894. doi: 10.12030/j.cjee.202209013

载镧酒糟污泥生物炭对磷的吸附性能及机理

    通讯作者: 高红(1967—),男,博士,讲师,gaohong208@163.com
    作者简介: 吴嘉煦 (1998—) ,男,硕士研究生,wujiaxu1998@163.com
  • 1. 昆明理工大学建筑工程学院,昆明 650504
  • 2. 昆明理工大学环境科学与工程学院,昆明 650504
基金项目:
国家重点研发计划项目(2018YFC1900305)

摘要: 为实现市政污泥的无害化和资源化利用,以酒糟和市政污泥为原料热解制备酒糟污泥生物炭(LBCZ),采用共沉淀法将镧(La)负载到LBCZ表面制得La改性酒糟污泥生物炭(La-LBCZ),探究了改性剂浓度、La-LBCZ投加量、溶液初始pH和共存离子对La-LBCZ吸附磷的影响,使用SEM-EDS、BET、XRD、FTIR和XPS等表征手段分析了吸附机理。结果表明:改性剂浓度为0.1 mol·L−1时La-LBCZ对磷的吸附效果最好(吸附量为68.32 mg·g−1),为改性前的6倍;吸附过程符合准二级动力学模型和Langmuir模型,为单分子层表面的化学吸附。此外,生物炭孔隙结构不发达,La以氢氧化物形态负载到生物炭表面,络合反应是其主要的吸附机理。在吸附-脱附实验中,La-LBCZ经过5次循环后吸附量为61.2 mg·g−1,吸附率为87.79%,脱附量为52.65 mg·g−1,脱附率为75.52%,说明其具有良好的循环性能和磷回收性能。

English Abstract

  • 磷在生态系统中起着重要作用,是生物生长的重要元素之一[1],但也是水体污染的主要控制指标之一,其被认为是导致湖泊和水库富营养化的关键因素[2]。水体中高浓度的磷含量会导致水生植物疯长,从而消耗水体中的溶解氧,导致水质恶化,水生生物死亡。从废水中吸附和回收磷是解决磷污染和磷短缺的重要思路。在众多除磷方法中,吸附法由于其高效、环保、方便、价格低廉等优势而受到广泛关注。生物炭具有丰富的孔隙率和高比表面积,并且表面含有丰富的官能团[3],将其作为吸附剂吸附污水中的磷成为当下的研究热点。

    随着我国城市化进程的推进,污水处理厂市政污泥产量急剧上升[4]。市政污泥作为污水处理过程中产生的一种半固体副产物[5],存在土地占用、二恶英和温室气体排放等问题[6],制约着我国生态环境建设。污泥资源化成为当下亟待解决的问题,污泥热解制备生物炭成为实现污泥资源化的一个突破口。然而,由于污泥中碳(C)含量较低,与纤维素或木质素为原料的生物炭相比,污泥生物炭存在比表面积低、孔隙结构差以及重金属含量高等问题,这都会限制污泥生物炭的实际应用[7]。酒糟作为酿酒过程中的固体废物,产量大,有机质含量高,处理成本高,如果没能得到适当的处理,很容易腐烂[8],造成资源浪费。所以酒糟作为碳源与污泥共热解制备生物炭不仅提高了生物炭的比表面积和孔隙结构,还能固定污泥中重金属,降低重金属释放风险。

    镧(La)基化合物与磷酸盐具有高度亲和力[9],在磷吸附方面引起越来越多的关注。目前的La载体有生物炭[10]、多孔沸石[11]、碳纳米管[12]等材料。但生物炭表面通常带有负电荷,导致其对阴离子的吸附能力较差[13],通过负载La到生物炭表面以减少表面负电荷,降低生物炭与磷酸盐之间的排斥力,提高生物炭对磷的吸附效果。LIAO[14]等制备了La(OH)3改性菠萝生物炭,磷吸附量达到101.16 mg·g−1,相比于未负载La的生物炭提升近27倍。WANG等将La负载到橡木锯末生物炭上,负载La前后磷吸附量由10.33 mg·g−1提高到46.52 mg·g−1,提高近4.5倍。因此,本研究通过共沉淀法,以酒糟污泥生物炭为载体,将对磷具有高亲和度的La负载到生物炭表面,实现高磷酸盐吸附能力和高回收率,并探究镧改性酒糟污泥生物炭的吸附过程和吸附机理。

    • 实验用市政污泥取自昆明主城污泥处理处置厂(含水率约为80%),置于烘箱110 ℃烘干;玉米酒糟取自昆明市某酿酒厂,超纯水洗净后在室外风干7 d,置于烘箱110 ℃烘干。均研磨后过100目筛网,保存在密封袋中。

      实验用磷酸二氢钾(KH2PO4)、氯化锌(ZnCl2)、氢氧化钠(NaOH)和盐酸(HCl)购自天津福晨化学试剂有限公司,LaCl3·7H2O购自上海麦克林生化科技有限公司。所有试剂纯度均为分析纯,实验用水为超纯水。

    • 由于污泥单独热解无法获得丰富的孔隙结构,因此,在污泥中加入一定比例的酒糟作为生物质,采用ZnCl2作为活化剂进行活化。将污泥与酒糟按照质量比7:3混合后作为原材料,原材料与ZnCl2(2 mol·L−1)按固液比1:3(g:mL)混合搅拌24 h,搅拌结束后置于烘箱中以110 ℃烘12 h。将一定量烘干材料放入坩埚加盖密封,于马弗炉内升温至450 ℃(升温速率为15 ℃·min−1)保温1.5 h,自然冷却至室温后取出,用0.1 mol·L−1 HCl溶液浸泡0.5 h,然后用超纯水洗至pH接近中性,烘干研磨制得酒糟污泥生物炭(LBCZ)。

    • 将1 g LBCZ加入50 mL改性剂(La(OH)3·7H2O浓度为0.1 mol·L−1)中,在40 ℃下搅拌30 min后滴加15 mL NaOH(1 mol·L−1)溶液,继续搅拌1 h,搅拌结束后置于60 ℃烘箱中老化24 h。老化完成后用超纯水洗至pH接近中性,烘干制得镧改性酒糟污泥生物炭(La-LBCZ)。

    • 1)影响因素实验。通过控制改性剂浓度、La-LBCZ投加量、溶液初始pH和共存离子探讨各因素对La-LBCZ吸附磷的影响效果。溶液的初始pH用HCl(0.1 mol·L−1)和NaOH(0.1 mol·L−1)溶液控制。

      2)吸附动力学。分别投加50 mg La-LBCZ于250 mL锥形瓶中,依次加入100 mL初始浓度为10、30、50 mg·L−1的磷溶液(pH=6), 室温下转速为180 r·min−1,在不同时间(5~800 min)取上清液过0.45 μm滤膜测定滤液磷浓度。采用一级动力学方程(式(1))、二级动力学方程(式(2))、颗粒内扩散方程(式(3))对吸附结果进行拟合。

      式中:t为吸附时间,min;qe为平衡吸附量,mg·g−1qtt时刻吸附量,mg·g−1k1k2kp分别为准一级动力学、准二级动力学、颗粒内扩散模型速率常数;C是常数。

      3)吸附热力学。分别投加50 mg La-LBCZ于250 mL锥形瓶中,依次加入100 mL不同浓度梯度(10~500 mg·L−1)的磷溶液(pH=6), 设置实验温度为15、30、45 ℃,转速为180 r·min−1,振荡12 h后取上清液过0.45 μm滤膜测定滤液磷浓度。采用Langmuir方程(式(4))和Freundlich方程(式(5))对吸附结果进行拟合,并通过计算热力参数(式(6))~(式(8))了解吸附过程。

      式中:ce为吸附平衡时的磷浓度,mg·L−1qe为平衡吸附量,mg·g−1qm为饱和吸附量,mg·g−1KL为常数;KF为Freundlich方程速率常数;n为吸附有关的常数;ΔG为吉布斯自能变,kJ·mol−1;ΔH为焓变,kJ·mol−1;ΔS为熵变,J·(mol·K)−1R为气体常数,取值为8.314 J·(mol·K)−1T为开氏温度,K;lnK为热力学平衡常数,K为ln(qe/ce)qe线性关系的截距。

    • 投加50 mg La-LBCZ于250 mL锥形瓶中,加入100 mL初始浓度为50 mg·L−1的磷溶液(pH=6),室温下转速为180 r·min−1,振荡12 h后取上清液过0.45 μm滤膜测定滤液磷浓度。收集饱和吸附剂置于100 mL NaOH(3 mol·L−1)溶液中,65 ℃下恒温搅拌2 h,测定上清液磷浓度后烘干吸附剂,用于下一循环实验。吸附-脱附实验共进行5次。

    • 1)表征方法。采用扫描电子显微镜(SEM-EDS, ZEISS Sigma 500, 英国)观察生物炭的表面形貌结构;采用Zeta电位分析仪(Zeta, NanoBrook 90plus PALS, 美国)测定生物炭表面电荷;采用全自动比表面积和孔隙度测定仪(BET, TriStar II 3020, 美国)测定生物炭的比表面积大小和孔径分布;采用X射线衍射仪(XRD, Empyrean, 荷兰)分析晶体类型;采用傅里叶红外光谱仪(FT-IR, Bruker Tensor 27, 德国)分析生物炭的表面官能团;采用x射线光电子能谱(XPS, Thermo Scientific K-Alpha, 美国)对表面元素定性和定量分析。

      2)吸附实验分析方法。采用钼酸铵分光光度法测定溶液中磷的浓度。根据(式(9))计算平衡吸附量qe(mg·g−1,以P计)。

      式中:c0为磷酸盐初始浓度,mg·L−1ce为吸附平衡时的磷浓度,mg·L−1V为溶液体积,L;m为生物炭投加量,g。

    • 1)改性剂浓度对吸附效果的影响。为探究改性剂浓度对La-LBCZ吸附效果的影响,其他制备条件不变,设置La-LBCZ投加量为1 g,改性剂浓度为(0~0.3 mol·L−1),室温下转速为180 r·min−1,振荡12 h后取上清液过0.45 μm滤膜测定滤液磷浓度。由图1(a)可以看出,随着改性剂浓度的增加,La-LBCZ吸附量先增大后减小最后趋于稳定。这是因为在相同改性时间下,随着改性剂浓度增加,生物炭表面位点被La(OH)3占据,当改性剂浓度为0.1 mol·L−1时已经达到最大吸附吸附量(68.56 mg·g−1),为改性前的6倍,继续加大改性剂浓度不能提升吸附效果。

      2) La-LBCZ投加量对吸附的影响。分别投加不同质量La-LBCZ(10~200 mg)到250 mL锥形瓶中,依次加入100 mL初始浓度为50 mg·L−1的磷溶液(pH=6),室温下转速为180 r·min−1,振荡12 h后取上清液过0.45 μm滤膜测定滤液磷浓度。由图1(b)可见,随着La-LBCZ投加量的增大,吸附量先增大后减小,磷去除率不断增大。这是因为La-LBCZ的投加为磷提供了更多的吸附位点。当投加量超过150 mg,去除率达到99%以上,表示La-LBCZ对处理高浓度含磷废水效果优异。

      3)溶液初始pH对吸附效果的影响。溶液初始pH对生物炭的影响较大,为了探究其影响,分别投加50 mg La-LBCZ到250 mL锥形瓶中,依次加入100 mL初始浓度为50 mg·L−1的磷溶液,调溶液初始pH为(2~10),室温下转速为180 r·min−1,振荡12 h后取上清液过0.45 μm滤膜测定滤液磷浓度。由图2可以看出,随着溶液初始pH的增加,La-LBCZ对磷的吸附量先增加后减小。当pH=2时,La-LBCZ结构被破坏,La失去活性点位,对磷酸根的固定作用减弱,吸附效果较差。在pH=3~7内吸附效果最好,吸附量最高为68.56 mg·g−1(pH=4)。通过对磷酸盐的存在形式进行分析,当pH偏酸性时,溶液中磷酸根主要以H2PO4和HPO42-的形式存在[15],与La-LBCZ表面产生静电吸附,吸附效果较好;当pH偏碱性时,溶液中磷酸根主要以HPO42-和PO43-的形式存在,溶液中的OH与之产生位点竞争,吸附效果较差。通过对表面电荷进行分析,等电位点pHpzc=7.50,当pH小于该值时,La-LBCZ表面带有正电荷,更容易与磷酸根产生静电吸附;当pH大于该值时,La-LBCZ表面带有负电荷,磷酸根与La-LBCZ表面产生静电斥力,吸附受到抑制。

    • 生物炭的吸附动力学拟合模型和参数见图3(a)和表1。由图3(a)可以看出,随着吸附时间的增加,吸附逐渐趋于稳定,当初始磷浓度为10 mg·L−1时,可在100 min内快速达到吸附平衡。表中数据表示准一级动力学方程和准二级动力学方程均能对La-LBCZ吸附磷的过程进行高度拟合(R2>0.90)。但准二级动力学方程能更好的描述吸附过程(R2>0.97),并且准二级动力学方程得到的qe更接近实测值,拟合结果表示La-LBCZ对P的吸附过程为化学吸附[16]图3(b)、表2为La-LBCZ内扩散模型拟合结果。将吸附过程分为3个阶段:第1阶段为膜扩散,吸附过程较快,斜率最大;第2阶段磷酸盐向孔隙内部扩散,斜率变缓;第3阶段溶液中离子浓度趋于平衡,斜率最小。

    • La-LBCZ对磷的吸附等温线如图4所示,随着温度的升高,吸附量也随之变大,这是因为吸附是一个吸热过程,升高温度有利于吸附的进行。等温线模型拟合参数如表3所示,Langmuir模型(R2=0.954~0.975)相比于Freundlich模型(R2=0.912~0.939)能更好的拟合La-LBCZ的吸附过程,表示La-LBCZ对P的吸附过程属于单分子层吸附[17]。在Freundlich模型中,KF代表了生物炭与污染物的结合能力[18],随着温度的升高,KFqm均变大,说明温度的升高能提高La-LBCZ对P的吸附效果。并且1/n(0.159~0.222)在0.1~0.5,说明吸附是容易进行的[19]

    • 表4为La-LBCZ吸附磷时的热力学参数,随着温度的增加,ΔG的值减小,ΔG<0,这表示吸附是一个自发过程[20],温度的升高对吸附是有利的。ΔH>0,表示吸附是一个吸热过程,并且当ΔH>20 kJ·mol−1时,吸附过程为化学吸附,这与动力学拟合结果一致。ΔS>0表示吸附过程是一个熵增的过程,磷酸盐与La-LBCZ的亲和度较好。

    • 为探究共存离子对吸附效果的影响,选取常见阴离子Cl、SO42-、NO3和HCO3作为共存离子。结果如图5(a)所示,Cl、SO42-和NO3对吸附效果的影响不大,HCO3对吸附效果的影响最大,这是因为HCO3和H2PO4均通过与La-LBCZ形成内层络合物,相互竞争活性位点,从而导致吸附量降低。并且,HCO3水解使溶液呈碱性[21],-OH与磷酸根竞争吸附位点,也不利于吸附。

    • 为探究La-LBCZ的再生性能及磷回收性能,实验采取3 mol·L−1 NaOH溶液作为脱附剂,循环5次后结果如图5(b)所示,La-LBCZ的吸附量和脱附量随着循环次数的增加均降低,5次循环后吸附量为61.2 mg·g−1,吸附率为87.79%,脱附量为52.65 mg·g−1,脱附率为75.52%,表明该吸附剂具有优异的循环性能和磷回收性能。

    • 图6为改性前后生物炭的BET分析结果。N2吸附/脱附等温线均为Ⅳ型等温线,结合图6(b)可知,生物炭的孔径分布大多位于2~20 nm,表明生物炭以介孔(2~50 nm)为主。H3和H4型回滞环表示生物炭的介孔孔径分布不均匀。由表5可见,改性前后生物炭总比表面积由257.88 m2·g−1降至148.32 m2·g−1,平均孔径从4.84 nm升至11.1 nm,表明La被成功负载到生物炭表面,并且La-LBCZ的比表面积和孔隙空间百分比较小。吸附后的生物炭总比表面积和总孔容相比于吸附前略微降低,这是因为磷酸盐与La(OH)3发生化学沉淀形成LaPO4占据了生物炭的内部孔隙,这与平均孔径的变化情况一致。图7(a)和图7(b)分别为生物炭改性前后SEM图。可以看出生物炭改性前表面结构较为光滑,生物炭改性后表面被颗粒物覆盖,十分粗糙。结合图7(c)可知,生物炭中除了含有C和O外还含有大量的La,表明La被成功负载到生物炭表面[22]

      图8(a)的XRD谱图可以看出,LBCZ吸附磷前后谱图变化较小,有很少的新晶体结构产生。反观改性后的La-LBCZ出现许多较强的衍射峰,对比标准衍射图谱JCPDS:36-1481,该晶体为La(OH)3,表示La被成功以La(OH)3的形态负载到生物炭表面。La-LBCZ吸附磷后的谱图中,La(OH)3的衍射峰明显减弱,在2θ为21.1、26.8和36.6°时峰值明显增强,对比标准衍射图谱JCPDS:28-0515,该峰为LaPO4的衍射峰,该结果表明,在磷的吸附过程中,生物炭表面-OH与磷酸根通过配体交换,La(OH)3转换为LaPO4

      图8(b)为LBCZ和La-LBCZ吸附前后的FTIR谱图。可见,在3 417 cm−1处的吸收峰来自于O—H键的伸缩振动,1 402 cm−1的位置对应O—H键的弯曲振动,这些峰的出现表明生物炭样品中含有丰富的羧基。在2 848 cm−1和2 920 cm−1附近较弱的吸收峰可归因为C—H的伸缩振动[23],而C=O的伸缩振动特征峰出现在1 623 cm−1,峰型尖锐,面积较大。1 033 cm−1处较强的吸收峰来自C—O键的伸缩振动。La-LBCZ在653 cm−1出现1个新的吸收峰,这是典型的La-OH键的振动[24],吸附磷后该峰消失,在618 cm−1和539 cm−1处出现了新的吸收峰,这与O—P—O的弯曲振动有关。这些结果表明La与磷之间通过配位体交换形成La—O—P内层络合物[25],同时也证明La-LBCZ在碱性条件下具有良好的磷回收性能和再生性能。

      图9为吸附前后La-LBCZ的XPS谱图。由图9(a)中可以看到La3d、O1s、C1s等峰的存在,在吸附后结合能为134.51 eV处出现新峰P2p,表示La被成功负载到生物炭表面,并且对磷产生了吸附效果。由图9(b)可知,O1s被分为O2-、-OH和H2O,其中-OH的相对含量由42.68%降至32.82%,表示磷酸盐与La(OH)3发生络合反应[26],导致-OH相对含量降低。在La3d的谱图中出现La3d3/2和La3d5/2典型峰,其结合能分别由835.38 eV和851.78 eV增加到835.48 eV和851.88 eV,这是因为价带中的电子转移和内层络合物La-O-P的形成[27]

    • 市政污泥中含有重金属、合成有机物和致病微生物[28]。污泥生物炭与原始市政污泥相比,前者重金属含量更高,导致污泥生物炭在吸附过程中重金属浸出含量超过相应标准,造成潜在环境污染风险[29]。有研究发现,污泥与其他生物质共热解制备生物炭可以有效解决这一问题。YIN[30]等将污泥和酒糟共热解制备生物炭,探究了其物理化学和营养特性,结果表明,添加酒糟后污泥生物炭的重金属总浓度和潜在生态风险指数分别降低了7.31%~54.0%和5.28%~60.5%。HUANG[31]等的研究结果同样证实了这一观点,污泥生物炭中的3种金属(Cd、Ni和Pb)含量超过相应标准,但添加锯末/稻草后降低了生物炭中重金属含量,特别是Cu、Zn和Ni。以上研究结果表明酒糟和污泥共热解是可行的,不仅能显著提高污泥比表面积和孔隙结构,还能有效降低生物炭潜在环境污染风险。

    • 1)通过共沉淀法将La以氢氧化物形态负载到LBCZ上使其具有优异的除磷能力,最大吸附量68.32 mg·g−1,为改性前的6倍。

      2) La-LBCZ在pH=3~7内吸附效果较好,并且废水中常见阴离子对吸附影响可忽略不计。

      3)吸附过程更符合准二级动力学方程和Langmuir模型,表明吸附过程主要为在单分子层上的化学吸附。

      4) La-LBCZ在5次吸附-脱附循环后,仍具有87.79%的吸附率和75.52%的脱附率,有较好的循环性能和磷回收性能。

    参考文献 (31)

返回顶部

目录

/

返回文章
返回