壳聚糖改性钠基膨润土稳定剂对重金属污染底泥的处理

刘丁玮, 王春荣, 赵明川, 韩璐瑞, 韩善萌, 柯述, 韩港胜, 董滨, 李攀. 壳聚糖改性钠基膨润土稳定剂对重金属污染底泥的处理[J]. 环境工程学报, 2022, 16(12): 3906-3915. doi: 10.12030/j.cjee.202208068
引用本文: 刘丁玮, 王春荣, 赵明川, 韩璐瑞, 韩善萌, 柯述, 韩港胜, 董滨, 李攀. 壳聚糖改性钠基膨润土稳定剂对重金属污染底泥的处理[J]. 环境工程学报, 2022, 16(12): 3906-3915. doi: 10.12030/j.cjee.202208068
LIU Dingwei, WANG Chunrong, ZHAO Mingchuan, HAN Lurui, HAN Shanmeng, KE Shu, HAN Gangsheng, DONG Bin, LI Pan. Treatment of heavy metal polluted sediment with chitosan modified Na-bentonite stabilizer[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3906-3915. doi: 10.12030/j.cjee.202208068
Citation: LIU Dingwei, WANG Chunrong, ZHAO Mingchuan, HAN Lurui, HAN Shanmeng, KE Shu, HAN Gangsheng, DONG Bin, LI Pan. Treatment of heavy metal polluted sediment with chitosan modified Na-bentonite stabilizer[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3906-3915. doi: 10.12030/j.cjee.202208068

壳聚糖改性钠基膨润土稳定剂对重金属污染底泥的处理

    作者简介: 刘丁玮 (1996—) ,男,硕士研究生,1277162257@qq.com
    通讯作者: 李攀(1980—),女,博士,副教授,ipan@tongji.edu.cn
  • 基金项目:
    国家重点研发计划项目 (2020YFC1908703-02)
  • 中图分类号: X524

Treatment of heavy metal polluted sediment with chitosan modified Na-bentonite stabilizer

    Corresponding author: LI Pan, ipan@tongji.edu.cn
  • 摘要: 为有效处理重金属污染的疏浚底泥并验证重金属稳定剂的稳定性,采用重金属稳定化的方法,以Cu2+、Zn2+、Cd2+单一和复合重金属污染的疏浚底泥为研究对象,以壳聚糖改性后的钠基膨润土为稳定剂,在不同稳定剂投加量、pH和液固比的条件下,对污染底泥进行稳定化处理,并采用毒性特征沥滤方法 (TCLP) 和BCR连续提取法对稳定化效果进行分析与评价。结果表明:经过壳聚糖改性后的钠基膨润土稳定重金属的能力显著提高,在投加量为5%时,对Cu2+、Zn2+、Cd2+单一重金属污染底泥便可达到较高的稳定化率;聚糖改性钠基膨润土稳定剂 (NaBent-CTS) 处理Cu2+、Zn2+、Cd2+单一重金属污染底泥的最佳投加量为5%~7%,pH为6~7,液固比为1.3:1~1.7:1;NaBent-CTS处理Cu2+、Zn2+、Cd2+复合重金属污染底泥的最佳投加量为5%、pH为7、液固比为1.5:1,稳定化率分别达到75.95%、73.71%和59.00%;NaBent-CTS处理复合重金属污染底泥时重金属存在竞争吸附,由强到弱排列顺序为Cu2+>Zn2+>Cd2+;经NaBent-CTS稳定化处理14 d后,可氧化态和残渣态占比显著提高,稳定性能佳。NaBent-CTS对Cu2+、Zn2+、Cd2+单一和复合重金属污染底泥具有较好的稳定效果。该研究结果可为重金属污染疏浚底泥的稳定化处理提供相关参考。
  • 氟污染是一个全球性问题,特别是在发展中国家[1],其中钢铁冶金、铝电解、铅锌冶炼、铜冶炼、光伏产业、锂离子电池等冶金行业是氟污染的主要来源[2]。过量摄入氟化物将会对人体产生有害影响,阻碍儿童生长发育[3]。我国对地表水体及生活饮用水中的氟化物质量浓度有严格的限值,也不断强化关于氟化物排放的管控。目前,水体中氟化物的去除技术主要有沉淀絮凝法、膜处理法、离子交换法、吸附法[4-7],其中吸附法具有产生无害废物数量少、材料成本低、操作简便等优点,被认为是最有前途的除氟方法。

    生物炭具有较大的比表面积,表面含有丰富的含氧官能团,且相对廉价,可作为新型吸附材料用于环境修复领域[8-9]。近年来,已有关于不同生物质来源(改性)生物炭除氟应用的研究报道。汤家喜等[10]利用花生壳、玉米秸秆制备的生物炭,最大吸附容量为1.18 mg·g−1;邱会华等[11]制备的氢氧化钾活化的荷叶基生物炭,最大吸附容量为0.85 mg·g−1;张涛等[12]制备了铁改性猪粪生物炭,最大吸附容量为4.4 mg·g−1;徐凌云等[13]制备了铝负载酒糟生物炭,最大吸附容量为18.05 mg·g−1;FENG等[14]利用城市污水处理厂污泥合成的改性污泥生物炭最大吸附容量高达30.49 mg·g−1。显然,不同原料衍生的生物炭吸附除氟能力不尽相同,其中由于污泥含有更高含量的亲氟矿物,其衍生的污泥生物炭对氟的吸附能力最强。但是,未经改性的污泥生物炭直接除氟效果并不理想,一般需要通过铝、铁等金属的负载以提高其吸附性能。近年来发现镧[15]、铈[16]、钇[17]等稀土金属有更好的亲氟性,可用于氟化物的去除,但是单独使用成本较高,如与铁或铝复合使用,有望发挥协同作用并降低成本。另外,我国污泥产量巨大,据统计2021年我国含水率80%的城市污泥产量已超过6 000×104 t[18]。当前污泥的主流处置方式包括干化焚烧、污泥堆肥和卫生填埋,都可能产生二次污染,对环境造成巨大的风险[19-20]。因此,研发基于污泥生物炭的复合改性除氟材料,拓展污泥资源化利用途径,实现以废治废,具有较好的开发前景。

    本研究以南通市政污泥为原料,通过缺氧热解-醋酸钾活化-铝铈改性工艺,制备了铝铈改性污泥生物炭(Al/Ce-CSBC),运用SEM、EDS、BET、XRD及XPS等技术对材料吸附前后的表面形态和结构特征进行了表征和分析,探究了Al/Ce-CSBC对模拟废水中氟离子的吸附行为和吸附机理,以期为污泥生物炭在除氟的资源化利用研究提供参考。

    干化污泥来自南通市某污水处理厂,在90 ℃鼓风干燥箱中干燥12 h后,粉碎过50目筛备用。所用试剂包括六水合氯化铝(AlCl3·6H2O)、七水合氯化铈(CeCl3·7H2O)、氟化钠(NaF)、醋酸钾(CH3COOK)、氢氧化钠(NaOH)等均为分析纯。准确称取2.21 g干燥的氟化钠粉末溶解在1 000 mL去离子水中,配置成氟离子质量浓度为1 g·L−1的储备液,移取适量储备液用去离子水稀释,配成一定初始氟离子质量浓度的含氟模拟废水。

    污泥的热解制备生物炭。称取5.00 g经干燥的污泥粉末置于坩埚中,用锡纸包裹,放入马弗炉中以10 ℃·min−1的速度升至650 ℃,并保持温度1 h。将热解后的污泥与醋酸钾按质量比1:2的比例混合,再次放入马弗炉中以10 ℃·min−1的速度升至650 ℃热解1 h,离心洗涤3次,并在80~90 ℃下干燥8 h。第1次热解污泥生物炭产物产量为3.21 g,记为SBC;与醋酸钾混合的第2次热解产物产量为4.29 g,记为CSBC。

    生物炭的金属改性。将事先称取的1.00 g CSBC加入体积总量为50 mL的氯化铝(0.10 mol·L−1)、氯化铈(0.05 mol·L−1)或两者的等体积混合溶液中,磁力搅拌2 h,用1.00 mol·L−1氢氧化钠溶液调节溶液pH至7.5,搅拌12 h。离心洗涤3次,最后在80~90 ℃下干燥8 h得到改性污泥生物炭材料。对铝、铈以及铝铈联合改性的污泥生物炭分别命名为Al-CSBC、Ce-CSBC以及Al/Ce-CSBC,其中Al/Ce-CSBC的产量为1.29 g。

    利用扫描电子显微镜(SEM)(Gemini SEM 300,德国)分析样品的表面形态;利用能谱仪(EDS)分析样品表面的元素;采用比表面积及孔径分析仪(ASAP2460,美国)分析样品的比表面积和孔容孔径;采用X射线粉末衍射仪(XRD)(Ultima IV,日本)分析样品的物相组成及结构;采用X射线光电子能谱仪(XPS)(K-Alpha+,美国)用于确定生物炭表面的成分和价态。

    准确称取0.04 g吸附剂(Al/Ce-CSBC)置于离心管中,加入40 mL 氟离子质量浓度为10 mg·L−1的模拟废水,立刻移至恒温振荡箱中以140 r·min−1的速度振荡20 h,过0.45 μm滤膜后,用氟离子选择电极(PXSJ-216F)测量滤液中氟离子的质量浓度,每次实验重复3次。pH影响实验只改变pH(3.0~10.0),其余参数不变。吸附等温线实验改变氟离子初始质量浓度(5~100 mg·L−1),采用Langmuir模型和Freundlich模型对实验数据进行拟合。

    吸附动力学实验在盛有2 000 mL氟离子初始质量浓度10 mg·L−1溶液的烧杯中进行,调节并保持溶液pH为6.0,将2.00 g吸附剂加入其中后开始磁力搅拌,至规定时间抽取20 mL混合液过滤,测量滤液中氟离子的质量浓度。采用Lagergren伪一阶、伪二阶模型以及Weber-Morris模型对实验数据进行拟合。

    图1为SBC、CSBC、Al/Ce-CSBC及吸附后的复合负载改性材料(F-Al/Ce-CSBC)的SEM图像。SBC表面呈现片状和层状结构,经醋酸钾活化后的CSBC表面呈现堆砌的颗粒状结构,经改性后的Al/Ce-CSBC表面呈块状且附着颗粒状结构,吸附后的F-Al/Ce-CSBC与Al/Ce-CSBC表面形态区别不大。图2为SBC和Al/Ce-CSBC的EDS图谱,SBC的表面元素主要为O、C、Ca及Fe,Al/Ce-CSBC的表面元素主要为C、O、Si和Ce。由表1可见,相对于SBC,Al/Ce-CSBC表面C和Ce的含量有所增加,O和Ca的含量有所降低。前者表明Ce的成功负载以及通过醋酸钾活化引入了大量的碳;后者与金属矿物组分的溶解损失有关,其中Ca的损失最严重,其含量从SBC的16.4%降至改性后的0.2%,几乎完全消失。

    图 1  SBC、CSBC、Al/Ce-CSBC及F-Al/Ce-CSBC的SEM图像
    Figure 1.  SEM images of SBC, CSBC, Al/Ce-CSBC and F-Al/Ce-CSBC
    图 2  SBC及Al/Ce-CSBC的EDS图谱
    Figure 2.  EDS images of SBC and Al/Ce-CSBC
    表 1  样品元素含量变化
    Table 1.  Changes in the element content of the samples %
    样品OCCaFeAlSiPMgKCe
    SBC39.928.016.44.03.73.41.11.00.80
    Al/Ce-CSBC35.146.80.21.81.710.900.20.62.3
     | Show Table
    DownLoad: CSV

    图3(a)、图3(c)和图3(e)的N2吸附/脱附等温线可以看出,3种样品等温线都属于IV类,且具H3型回滞环特征,表明样品内部存在丰富狭缝形介孔。图3((b)、图3(d)和图3(f))的孔径分布结果表明,经醋酸钾活化和复合负载改性后的CSBC及Al/Ce-CSBC材料孔径分布更呈多样化,但尖锐峰向更小孔径方向移动,其平均孔径应减小,这在表2中得到验证。由表2可见,SBC经活化和改性后,平均孔径变小,但孔容和比表面积有所增大。比表面积由原来的25.59 m2·g−1增至活化后的69.78 m2·g−1及改性后的176.36 m2·g−1,平均孔径则相应由13.4 nm降至11.4 nm和6.6 nm。活化和改性均能显著增加比表面积,可能是由于醋酸钾在活化过程中分解产生大量的CO2,以及改性溶液中酸溶解样品中大量的CaCO3,使得生物炭片层开裂,暴露出更多更小孔径的介孔。

    图 3  吸附材料的N2吸附/脱附等温线与孔径分布
    Figure 3.  N2 adsorption and desorption isotherms and pore distribution of adsorbents
    表 2  样品的孔隙结构
    Table 2.  Pore structure of the studied samples
    样品BET比表面积/(m2·g−1)总孔体积/(cm3·g−1)平均孔径/nm
    SBC25.590.114 413.454
    CSBC69.780.144 011.395
    Al/Ce-CSBC176.360.174 86.610
     | Show Table
    DownLoad: CSV

    图4(a)为SBC、CSBC、Al/Ce-CSBC和F-Al/Ce-CSBC的XRD图谱。其中SBC中含有明显的SiO2和CaCO3的衍射峰,CSBC中SiO2和CaCO3的峰强明显下降,表明该矿物组分的部分消溶,可能是醋酸钾活化促进了SiO2和CaCO3在高温的消溶/蚀刻反应,进而形成较小的孔隙和较大的比表面积。改性后的Al/Ce-CSBC中CaCO3的衍射峰则完全消失,可能是改性过程引入的金属盐水解产生强酸,使得残留的CaCO3被进一步完全溶解,形成更小的孔隙和更大的比表面积,这与前述关于Ca元素及孔隙的变化相一致。相对于SBC,CSBC和Al/Ce-CSBC中的SiO2的峰强均有不同程度的降低,表明活化和改性对SiO2也有一定的消溶作用。由Al/Ce-CSBC的XRD图谱可知,改性污泥生物炭有SiO2及少量的Al2SiO5晶体,前者是污泥自有残留,后者应为溶出的硅与改性引入的铝反应的产物,此外并没有出现铝和铈的其他晶体结构,表明改性金属主要以无定形负载于污泥生物炭的表面。除了二氧化硅晶体峰强度有略微降低,吸附氟后材料(F-Al/Ce-CSBC)的XRD图谱与吸附前基本一致,表明材料中的晶体结构稳定,推测其不参与对氟的吸附过程,无定形双金属羟基/氧化物应是主要吸附活性组分。由XPS图谱(图4(b))可知,SBC在346.89 eV处有较强的Ca2p信号,在CSBC相对减少,在Al/Ce-CSBC及F-Al/Ce-CSBC则完全消失,趋势与XRD一致,再次验证了碳酸钙的逐步溶解至完全消失的过程。Al/Ce-CSBC的XPS图谱中74.97 eV和885.72 eV处的峰分别对应Al2p和Ce3d,表明铝和铈的成功负载,这与EDS和XRD的结果一致。

    图 4  SBC、CSBC、Al/Ce-CSBC及F-Al/Ce-CSBC的XRD和XPS图谱
    Figure 4.  XRD and XPS patterns of SBC, CSBC, Al/Ce-CSBC and F-Al/Ce-CSBC

    图5较直观地显示了上述活化和改性过程的物性变化,即活化过程促进污泥生物炭中二氧化硅和碳酸钙晶体部分消溶,同时醋酸钾发生气化反应,产生造孔作用[21],使得CSBC的比表面积增大(表2);改性过程铝铈被成功负载,碳酸钙完全消失,形成更多的细小孔径,造孔作用更明显,比表面积增加更显著,而少量二氧化硅溶解后与铝(Ⅲ)形成硅酸铝晶体。

    图 5  污泥生物炭活化改性示意图
    Figure 5.  Schematic diagram of activation and modification process of sludge biochar

    不同合成阶段和金属改性的材料对F的吸附容量如图6所示,原始污泥生物炭SBC的吸附容量为5.42 mg·g−1,经醋酸钾活化后得CSBC的吸附容量则下降至2.90 mg·g−1,可能是SBC经活化后,部分有利于除氟的矿物(主要是含Ca矿物)溶解流失所致。CSBC再经金属改性后的吸附容量均有提升,但不同金属/金属组合改性提升程度不同,单一的Ce和Al改性使材料吸附容量分别提升了44%和157%,而Al-Ce联合改性则提升了228%,高于2种单一金属改性材料提升量之和,这表明铝铈双金属改性发挥了协同作用。

    图 6  不同吸附材料对F-的吸附容量
    Figure 6.  Adsorption capacity of different adsorption materials

    pH对Al/Ce-CSBC材料的吸附影响如图7所示,在氟离子初始质量浓度为10 mg·L−1,在酸性范围内,吸附容量随着pH的增加逐渐升高,在pH=6.0时达到最高值9.43 mg·g−1,随后随着pH的增加而逐渐降低,pH升至9.0以上,则急剧下降,其除氟率也有类似规律。Al/Ce-CSBC在溶液pH=4.0~9.0内均有75%以上的除氟率,这是由于生物炭的分散作用,将更多的活性位点充分暴露,使得其有更宽的pH适用范围[22]。同时考察了该体系吸附前后的pH变化,其结果见图8(a)。当pH<6.0时,吸附平衡后的pH有所升高,反之则有所降低,表明Al/Ce-CSBC吸附材料具有一定的pH缓冲作用,FENG等[14]研究其他氧化铝材料也有类似结果,认为该缓冲作用由铝盐的两性性质引起,具体表现为固态金属氧化物表面水解羟基化和质子化作用,详见后文机理分析部分。图8(b)为不同pH下Al/Ce-CSBC的Zeta电位变化。由图可见,该材料的零电位点(pHPZC)高达9.5,表明吸附剂在一定的碱性范围仍带正电荷,可能是因为Al/Ce-CSBC的比表面积较大,具有较好分散性,使得其表面正电荷得到较好维持和保护[22]。在pH<7.0时溶液中含有大量的H+,使得吸附剂表面发生质子化,体系Zeta电位为正值,能够与溶液中的F发生静电吸附,但过低的pH可能造成吸附剂表面负载的金属氧化物溶解,并有HF的生成,使吸附剂的吸附容量下降。在pH>7.0时,溶液中的OH会与F竞争吸附位点,使吸附容量有所下降。在pH=10.0时,吸附容量和除氟率下降更明显,其原因除了前述的竞争吸附,还由于吸附剂表面此时逆转为荷负电,对溶液中的F产生强烈的静电排斥作用。

    图 7  pH对Al/Ce-CSBC材料吸附性能的影响
    Figure 7.  Effect of pH on adsorption performance of Al/Ce-CSBC
    图 8  吸附前后pH的变化及pH对Al/Ce-CSBC 吸附剂Zeta电位的影响
    Figure 8.  Change in pH before and after adsorption and the effect of pH on the zeta potential of Al/Ce-CSBC

    在氟离子初始质量浓度为10 mg·L−1时,Al/Ce-CSBC的吸附容量随吸附时间的变化情况如图9所示。在前期吸附速率较快,10 min内吸附容量达到了8.30 mg·g−1;随后缓慢增加,在5 h时接近平衡状态。

    图 9  吸附动力学拟合
    Figure 9.  Adsorption kinetics fitting

    对吸附动力学数据的拟合结果表明,伪二级模型(R2=0.94)比伪一级模型(R2=0.49)更适合描述Al/Ce-CSBC对氟离子的吸附,表明氟化物在Al/Ce-CSBC上的吸附以化学吸附为主。颗粒内扩散模型如图9(b)所示。吸附反应可分为2个阶段,第1阶段,F通过界面膜扩散从液相水体转移到Al/Ce-CSBC的表面,并与表面大量的吸附位点结合产生快速吸附,这一阶段膜扩散是控制吸附速率的限制步骤;第2阶段,由于大量的F占据了吸附剂表面的吸附位点,部分F将渗透到吸附剂内部的孔径中,因此又被称为孔扩散阶段,第2阶段速率有所降低,该图没有通过原点表明颗粒内扩散不是唯一限速步骤[23]

    在常温且pH=6.0的条件下,Al/Ce-CSBC的吸附容量随氟离子初始质量浓度变化情况如图10所示。2种模型均能较好描述吸附过程,但Freundlich模型(R2=0.97)较Langmuir模型(R2=0.92)拟合程度更好,表明氟化物在Al/Ce-CSBC上的吸附以多层吸附为主,且Al/Ce-CSBC表面上的活性位点不均匀,1/n =0.29 (0<1/n<1)也表明吸附等温线类型是理想类型[24]。Langmuir模型中最大吸附容量41.47 mg·g−1,其与实际最大吸附容量45.66 mg·g−1相近。

    图 10  吸附等温线拟合
    Figure 10.  Adsorption isotherm fitting

    图11(a)为Al/Ce-CSBC材料的XPS全谱图,通过吸附前后的比较发现,吸附后的F-Al/Ce-CSBC在684.15 eV处新增了F1s的峰,表明氟离子被成功吸附在Al/Ce-CSBC吸附剂表面。为了研究其吸附机理,进一步分析了Al/Ce-CSBC吸附氟前后的XPS精细光谱(图11(b)~(d))。由图11(b)的O1s图谱中可见,吸附前531.28 eV和532.54 eV处的特征峰分别对应M―O和―OH,吸附后分别移至530.01 eV和531.39 eV,其中羟基氧占总氧的相对比率由吸附前的55.24%降至41.52%,金属氧化物中M―O的含量由吸附前的44.76%升至58.48%,表明―OH参与了与氟离子的交换。这与其他研究[25-26]结果一致。由图11(c)的Al2p图谱可见,74.46和75.17 eV处峰分别对应Al―O和Al―OH,均归属于负载于材料表面的无定形铝氧化物结构,吸附后峰位置分别移至73.10 eV和73.69 eV。这表明铝羟基/氧化物参与了氟离子的吸附[27-28]。吸附前后Ce元素XPS结果如图11(d)所示。Al/Ce-CSBC的Ce3d5/2的4个代表性峰位于882.78、886.30、888.64及899.35 eV,Ce3d3/2的3个代表性峰位于902.32、905.56及917.10 eV,以上7个峰吸附后分别移至881.34、884.50、886.98、898.37、901.83、904.88及915.65 eV,可清楚地观察到向低能方向位移。经计算Ce4+丰度由吸附前的36.51%下降到22.28%,说明F―Ce络合物的形成及电子转移[16, 29]

    图 11  吸附前后Al/Ce-CSBC的XPS分析
    Figure 11.  XPS spectra of Al/Ce-CSBC before and after adsorption

    基于上述对氟化物吸附过程pH的变化、等温线模型、动力学模型以及XPS表征分析结果,认为Al/Ce-CSBC对氟化物的吸附为物理吸附和化学吸附,其中化学吸附包括离子交换和表面络合占主导作用。改性过程中形成大量带正电荷的金属羟基/氧化物,且以无定形形式非均匀分散于污泥生物炭的表面,产生大量有效吸附位点并处于相对受保护的高分散体系中,使其表现出较高的零电荷点[22]和酸碱缓冲特性[14]。在碱性条件下产生大量的表面羟基和O2,并带负电荷(式(1)~式(2));酸性条件下则质子化并带正电荷(式(3))。

    M++OH→≡MOH (1)
    MOH+OH→≡MO2+H2O (2)
    MOH+H+→≡MOH+2 (3)

    在酸性条件下吸附剂表面的Zeta电位较高,对溶液中氟离子产生较强静电吸引,进一步引起式(4)反应,产物以金属氟化络合物形式结合在吸附剂表面,表现很高的吸附量和吸附能力,但是酸性过低时,氟主要以氟化氢形式存在,兼吸附剂表面金属的溶出,使得吸附容量下降;随着溶液pH的增加,吸附剂表面的Zeta电位降低,静电吸引减弱,超过零电点后吸附剂表面荷负电产生静电排斥,此时吸附以离子交换为主(式(5))。

    MOH+2+F→≡MF+H2O (4)
    MOH+F→≡MF+OH (5)

    通过与其他文献报道的吸附剂除氟性能的比较(表3),本研究使用的Al/Ce-CSBC有明显的相对优势。Al/Ce-CSBC最大吸附容量为41.47 mg·g−1,高于其他材料的吸附量,包括传统活性氧化铝(16.30 mg·g−1)、双金属和三金属复合材料(27~32 mg·g−1)、其他改性生物炭材料(18~28 mg·g−1)以及铝铁改性污泥生物炭材料(30 mg·g−1)。就酸碱适用性而言,Al/Ce-CSBC在较广的范围(pH=4.0~9.0)内均有75%以上的去除率,其他材料(除了三元金属复合材料)则类似传统的活性氧化铝,只能在较窄的酸性范围才有较高的除氟率。因此,铝铈改性污泥生物炭在较广的酸碱范围有较好的强化除氟作用,并可实现污泥的低碳固定和以废治废,在实际废水处理中有潜在应用价值。

    表 3  不同吸附剂的氟离子吸附性能对比
    Table 3.  Comparison of fluorine ion adsorption performance of different adsorbents
    吸附剂最适pHqm/(mg·g−1)文献
    活性氧化铝5.0~7.016.30[30]
    氢氧化铝基吸附剂7.725.80[31]
    Fe-La复合材料3.8~7.127.42[32]
    Y-Zr-Al复合材料7.031.00[17]
    Mg-Al-La三金属氧化物4.0~10.031.72[15]
    Tea-Al-Fe茶渣4.0~8.018.52[33]
    La改性柚子皮生物炭6.519.86[34]
    ALCS-Fe-Al磁性复合材料3.0~6.030.49[14]
    Al/Ce-CSBC4.0~9.041.47本文
     | Show Table
    DownLoad: CSV

    1)以市政污泥为原料,通过热解-活化-双金属改性成功制备了铝铈负载污泥生物炭Al/Ce-CSBC,活化和改性均可通过造孔和促消溶作用增加材料比表面积和分散性,使负载的无定形金属羟基/氧化物保持吸附活性,材料具较高的等电点和酸碱缓冲性;

    2) Al/Ce-CSBC对氟的最大吸附容量达到41.74 mg·g−1,在pH=4.0~9.0内均有较高的除氟率。其吸附动力学符合伪二级模型,吸附等温线符合Freundlich模型,为多层不均质吸附和化学吸附,其吸附机制包括静电吸附、表面络合和离子交换。

    3) Al/Ce-CSBC可发挥铝铈双金属协同吸附作用,且在较广的酸碱范围有较好的强化除氟作用。该吸附材料制备简单、廉价,有望实现以废治废和污泥的低碳固定,有潜在的应用价值。

  • 图 1  CTS、NaBent和NaBent-CTS的FT-IR

    Figure 1.  FT-IR spectra of CTS, NaBent and Nabent-CTS

    图 2  NaBent和NaBent-CTS的XRD

    Figure 2.  XRD patterns of NaBent and Nabent-CTS

    图 3  NaBent和NaBent-CTS的SEM

    Figure 3.  SEM images of NaBent and Nabent-CTS

    图 4  3种稳定剂对Cu2+的稳定效果

    Figure 4.  Stabilization effect of three kinds of stabilizer on Cu2+

    图 5  3种稳定剂对Zn2+的稳定效果

    Figure 5.  Stabilization effect of three kinds of stabilizer on Zn2+

    图 6  3种稳定剂对Cd2+的稳定效果

    Figure 6.  Stabilization effect of three kinds of stabilizer on Cd2+

    图 7  稳定剂投加量对实验底泥中单一重金属稳定化率的影响

    Figure 7.  Effects of dosage of stabilizer on stabilization rate of single heavy metal in sediment

    图 8  pH对实验底泥中单一重金属稳定化率的影响

    Figure 8.  Effect of pH on stabilization rate of single heavy metal in sediment

    图 9  液固比对实验底泥中单一重金属稳定化率的影响

    Figure 9.  Effects of liquid to solid ratio on stabilization of single heavy metal in sediment

    图 10  稳定剂投加量对复合重金属稳定化率的影响

    Figure 10.  Effect of stabilizer dosage on stabilization rate of composite heavy metals

    图 11  底泥pH对复合重金属稳定化率的影响

    Figure 11.  Effect of pH of sediment on stabilization rate of composite heavy metals

    图 12  底泥液固比对复合重金属稳定化率的影响

    Figure 12.  Effects of liquid to solid ratio in sediment on stabilization of composite heavy metals

    图 13  NaBent-CTS处理底泥前后各重金属存在形态变化

    Figure 13.  Changes of each heavy metal forms in sediment before and after NaBent-CTS treatment

    图 14  NaBent-CTS稳定后底泥重金属形态占比

    Figure 14.  Proportion of heavy metal forms in sediment after NaBent-CTS stabilization

    图 15  稳定化处理单一重金属前后的XPS

    Figure 15.  XPS spectra before and after stabilization treatment of a single heavy metal

    图 16  稳定化处理单一重金属前后的FT-IR

    Figure 16.  FT-IR spectra before and after stabilization of a single heavy metal

    表 1  实验药剂信息

    Table 1.  Information of experimental agents

    序号名称种类化学式纯度稳定机理厂家
    1CTS有机(C6H11NO4)N化学纯羟基、氨基等高分子基团与重金属离子螯合配位Adamas
    2NaBent无机Nax(H2O)4(Al2-xMg0.83) (Si4O10) (OH)2分析纯Na+、Al2+、Mg2+等离子与重金属离子发生离子交换反应Adamas
    序号名称种类化学式纯度稳定机理厂家
    1CTS有机(C6H11NO4)N化学纯羟基、氨基等高分子基团与重金属离子螯合配位Adamas
    2NaBent无机Nax(H2O)4(Al2-xMg0.83) (Si4O10) (OH)2分析纯Na+、Al2+、Mg2+等离子与重金属离子发生离子交换反应Adamas
    下载: 导出CSV
  • [1] PENG J, SONG Y, YUAN P, et al. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 2009, 161(2/3): 633-640.
    [2] SUNDARAY S K, NAYAK B B, LIN S, et al. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments: A case study: Mahanadi basin, India[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1837-1846.
    [3] WANG Y, YANG L, KONG L, et al. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China[J]. Catena, 2015, 125: 200-205. doi: 10.1016/j.catena.2014.10.023
    [4] CHIANG Y W, SANTOS R M, GHYSELBRECHT K, et al. Strategic selection of an optimal sorbent mixture for in-situ remediation of heavy metal contaminated sediments: framework and case study[J]. Journal of Environmental Management, 2012, 105: 1-11.
    [5] SONG Z, GAO H, ZHANG W, et al. Influence of flocculation conditioning on environmental risk of heavy metals in dredged sediment[J]. Journal of Environmental Management, 2021, 297: 113-313.
    [6] AKCIL A, ERUST C, OZDEMIROGLU S, et al. A review of approaches and techniques used in aquatic contaminated sediments: Metal removal and stabilization by chemical and biotechnological processes[J]. Journal of Cleaner Production, 2015, 86: 24-36. doi: 10.1016/j.jclepro.2014.08.009
    [7] BAO J, WANG L, XIAO M. Changes in speciation and leaching behaviors of heavy metals in dredged sediment solidified/stabilized with various materials[J]. Environmental Science and Pollution Research, 2016, 23(9): 8294-8301. doi: 10.1007/s11356-016-6184-5
    [8] 王锋, 张顺力, 王宏杰, 等. 河道污染底泥重金属稳定化药剂研究进展[J]. 净水技术, 2020, 39(7): 92-100. doi: 10.15890/j.cnki.jsjs.2020.07.016
    [9] JOTHIRAMALINGAM R, LO S L, PHANTHI L A. Chitosan-type bioadditive-modified electronic industry waste sludge for heavy metal stabilization with assistance of microwave heating[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 2557-2561.
    [10] 宋俊颖, 何绪文, 黄占斌. 壳聚糖及其衍生物对土壤重金属的稳定化效应[J]. 化工进展, 2019, 38(9): 4308-4319. doi: 10.16085/j.issn.1000-6613.2018-2296
    [11] YAN H, LIN G. Usage of chitosan on the complexation of heavy metal contents and vertical distribution of Hg(II) and Cr(VI) in different textural artificially contaminated soils[J]. Environmental Earth Sciences, 2015, 73(5): 2483-2488. doi: 10.1007/s12665-014-3599-5
    [12] 姚乐. 改性膨润土吸附处理含砷废水实验研究[J]. 科学技术与工程, 2010(16): 4093-4095. doi: 10.3969/j.issn.1671-1815.2010.16.070
    [13] 杨秀敏, 胡振琪, 李宁, 等. 钠基膨润土对重金属离子Cu2+、Zn2+、Cd2+的吸附实验[J]. 煤炭学报, 2009, 34(6): 819-822. doi: 10.3321/j.issn:0253-9993.2009.06.021
    [14] 张海军, 于颖, 倪余文, 等. 采用巯基捕收剂稳定化处理垃圾焚烧飞灰中的重金属[J]. 环境科学, 2007, 28(8): 1899-1904. doi: 10.3321/j.issn:0250-3301.2007.08.044
    [15] YANG K, WANG G, LIU F, et al. Removal of multiple heavy metal ions using a macromolecule chelating flocculant xanthated chitosan[J]. Water Science and Technology, 2019, 79(12): 2289-2297. doi: 10.2166/wst.2019.230
    [16] 杨秀敏, 钟子楠, 潘宇, 等. 重金属离子在钠基膨润土中的吸附特征与机理[J]. 环境工程学报, 2013, 7(7): 2775-2780.
    [17] SAVITRI E, BUDHYANTORO A. The effect of ratio chitosan-bentonite and processing time on the characterization of chitosan-bentonite composite[J]. Materials Science and Engineering, 2017, 223(1): 161-172.
    [18] 黄春桃, 刘国光, 姚琨, 等. 壳聚糖-膨润土复合材料的研究进展[J]. 广东农业科学, 2012, 39(8): 161-164. doi: 10.3969/j.issn.1004-874X.2012.08.050
    [19] KUMARARAJA P, MANIAIAH K M, DATTA S C, et al. Chitosan-g-poly (acrylic acid)-bentonite composite: A potential immobilizing agent of heavy metals in soil[J]. Cellulose, 2018, 25(7): 3985-3999. doi: 10.1007/s10570-018-1828-x
    [20] 苗远, 张超, 李本高. 利用螯合剂脱除生化剩余污泥重金属研究[J]. 工业用水与废水, 2018, 49(6): 84-88. doi: 10.3969/j.issn.1009-2455.2018.06.021
    [21] 蒋玉广, 袁珊珊, 杨伟, 等. ES稳定重金属污染底泥效果[J]. 环境工程学报, 2015, 9(9): 4376-4384. doi: 10.12030/j.cjee.20150945
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.0 %DOWNLOAD: 4.0 %HTML全文: 86.9 %HTML全文: 86.9 %摘要: 9.2 %摘要: 9.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.5 %其他: 94.5 %XX: 3.2 %XX: 3.2 %乌海: 0.0 %乌海: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.4 %北京: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %太原: 0.0 %太原: 0.0 %孝感: 0.0 %孝感: 0.0 %宁波: 0.0 %宁波: 0.0 %宜春: 0.1 %宜春: 0.1 %宿迁: 0.0 %宿迁: 0.0 %常德: 0.0 %常德: 0.0 %广州: 0.1 %广州: 0.1 %昌吉: 0.0 %昌吉: 0.0 %杭州: 0.0 %杭州: 0.0 %武汉: 0.0 %武汉: 0.0 %沈阳: 0.0 %沈阳: 0.0 %泉州: 0.0 %泉州: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.0 %济南: 0.0 %海口: 0.0 %海口: 0.0 %深圳: 0.1 %深圳: 0.1 %漯河: 0.0 %漯河: 0.0 %玉溪: 0.0 %玉溪: 0.0 %石家庄: 0.0 %石家庄: 0.0 %衡阳: 0.0 %衡阳: 0.0 %西宁: 0.0 %西宁: 0.0 %贵港: 0.0 %贵港: 0.0 %运城: 0.1 %运城: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.0 %重庆: 0.0 %钦州: 0.0 %钦州: 0.0 %锦州: 0.0 %锦州: 0.0 %长沙: 0.1 %长沙: 0.1 %防城港: 0.0 %防城港: 0.0 %阳泉: 0.0 %阳泉: 0.0 %其他XX乌海内网IP北京呼和浩特太原孝感宁波宜春宿迁常德广州昌吉杭州武汉沈阳泉州洛阳济南海口深圳漯河玉溪石家庄衡阳西宁贵港运城郑州重庆钦州锦州长沙防城港阳泉Highcharts.com
图( 16) 表( 1)
计量
  • 文章访问数:  3083
  • HTML全文浏览数:  3083
  • PDF下载数:  34
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-08-10
  • 录用日期:  2022-11-05
  • 刊出日期:  2022-12-31
刘丁玮, 王春荣, 赵明川, 韩璐瑞, 韩善萌, 柯述, 韩港胜, 董滨, 李攀. 壳聚糖改性钠基膨润土稳定剂对重金属污染底泥的处理[J]. 环境工程学报, 2022, 16(12): 3906-3915. doi: 10.12030/j.cjee.202208068
引用本文: 刘丁玮, 王春荣, 赵明川, 韩璐瑞, 韩善萌, 柯述, 韩港胜, 董滨, 李攀. 壳聚糖改性钠基膨润土稳定剂对重金属污染底泥的处理[J]. 环境工程学报, 2022, 16(12): 3906-3915. doi: 10.12030/j.cjee.202208068
LIU Dingwei, WANG Chunrong, ZHAO Mingchuan, HAN Lurui, HAN Shanmeng, KE Shu, HAN Gangsheng, DONG Bin, LI Pan. Treatment of heavy metal polluted sediment with chitosan modified Na-bentonite stabilizer[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3906-3915. doi: 10.12030/j.cjee.202208068
Citation: LIU Dingwei, WANG Chunrong, ZHAO Mingchuan, HAN Lurui, HAN Shanmeng, KE Shu, HAN Gangsheng, DONG Bin, LI Pan. Treatment of heavy metal polluted sediment with chitosan modified Na-bentonite stabilizer[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3906-3915. doi: 10.12030/j.cjee.202208068

壳聚糖改性钠基膨润土稳定剂对重金属污染底泥的处理

    通讯作者: 李攀(1980—),女,博士,副教授,ipan@tongji.edu.cn
    作者简介: 刘丁玮 (1996—) ,男,硕士研究生,1277162257@qq.com
  • 1. 中国矿业大学 (北京) 化学与环境工程学院,北京 100083
  • 2. 同济大学环境科学与工程学院,上海 200082
基金项目:
国家重点研发计划项目 (2020YFC1908703-02)

摘要: 为有效处理重金属污染的疏浚底泥并验证重金属稳定剂的稳定性,采用重金属稳定化的方法,以Cu2+、Zn2+、Cd2+单一和复合重金属污染的疏浚底泥为研究对象,以壳聚糖改性后的钠基膨润土为稳定剂,在不同稳定剂投加量、pH和液固比的条件下,对污染底泥进行稳定化处理,并采用毒性特征沥滤方法 (TCLP) 和BCR连续提取法对稳定化效果进行分析与评价。结果表明:经过壳聚糖改性后的钠基膨润土稳定重金属的能力显著提高,在投加量为5%时,对Cu2+、Zn2+、Cd2+单一重金属污染底泥便可达到较高的稳定化率;聚糖改性钠基膨润土稳定剂 (NaBent-CTS) 处理Cu2+、Zn2+、Cd2+单一重金属污染底泥的最佳投加量为5%~7%,pH为6~7,液固比为1.3:1~1.7:1;NaBent-CTS处理Cu2+、Zn2+、Cd2+复合重金属污染底泥的最佳投加量为5%、pH为7、液固比为1.5:1,稳定化率分别达到75.95%、73.71%和59.00%;NaBent-CTS处理复合重金属污染底泥时重金属存在竞争吸附,由强到弱排列顺序为Cu2+>Zn2+>Cd2+;经NaBent-CTS稳定化处理14 d后,可氧化态和残渣态占比显著提高,稳定性能佳。NaBent-CTS对Cu2+、Zn2+、Cd2+单一和复合重金属污染底泥具有较好的稳定效果。该研究结果可为重金属污染疏浚底泥的稳定化处理提供相关参考。

English Abstract

  • 河流上覆水中的重金属可以通过沉淀、吸附、络合等作用,在河床表层底泥中富集[1-2]。当水体条件发生改变时,底泥中的重金属会通过氧化还原、溶解、解吸等作用,从河床表层底泥中释放,造成上覆水体的污染[3-4]。国内外普遍使用疏浚治理河湖底泥,但是疏浚工程会产生大量含有重金属的疏浚底泥,疏浚底泥含水率高、热值低,不适合传统焚烧方法处理[5-6]。近年来,稳定化技术被用于重金属废水、污染土壤等治理工作,通过加入药剂使沉积物中重金属发生物理化学反应,从而降低重金属的溶解性和迁移性,以达到良好的稳定化效果[7]。传统的稳定化药剂采用水泥、磷灰石等化学药剂,但存在处理后土壤板结、增容等缺点[8]。因此,本研究拟采用壳聚糖、膨润土、生物炭等天然材料,开发处理效果好、价廉易得的重金属稳定剂。

    壳聚糖 (CTS) 是第二大天然线性化合物,具有无毒、无害、生物可降解性以及能通过自身丰富的基团络合重金属等特性,是一种良好的吸附重金属的材料[9]。宋俊颖等[10]利用CTS处理重金属污染土壤,当CTS投加量为7%时,铜离子的稳定化率达到92.36%。YAN等[11]利用CTS处理Cr和Hg复合型重金属污染的土壤,7 d后,土壤中有效态重金属的含量降低明显且残渣态含量升高。我国膨润土矿产资源丰富,价格低廉,具有较大的表面积、良好的吸附性、离子交换性和黏结性等优势,在底泥重金属稳定化技术中广泛应用[12]。杨秀敏等[13]通过等温吸附实验,研究了钠基膨润土对Cu2+、Zn2+、Cd2+的吸附情况,发现钠基膨润土 (NaBent) 对3种金属具有良好的吸附能力,能够降低土壤中有效型重金属的含量。这2种材料在我国产量大且易得,因此,可以使用CTS对NaBent进行改性,得到一种处理底泥重金属能力更高的复合型稳定剂。

    本研究采用壳聚糖改性钠基膨润土稳定剂 (NaBent-CTS) 对底泥中的Cu2+、Zn2+、Cd2+进行单一和复合的重金属稳定化实验,通过改变稳定剂投加量、底泥pH和底泥液固比寻求稳定重金属的最佳工况点;通过毒性特征沥滤方法 (TCLP) 进行重金属浸取,以重金属稳定化率作为处理效果的重要指标,探究实验条件的改变对重金属稳定化效果的影响以及重金属之间存在的竞争吸附关系,旨在为温瑞塘河底泥重金属稳定化处理提供相关的研究基础。

    • 实验疏浚底泥取自温州市温瑞塘河,使用环保绞吸式挖泥船采集底泥样品。将采集到的样品灌入洁净的聚乙烯桶中,密封后运回实验室自然风干,研磨,过100目筛,分析其各理化指标。疏浚底泥含水率为55.43%,溶解性有机碳 (DOC) 质量分数为265.63 mg·kg−1,pH为7.68,总磷质量分数为1.22 g·kg−1,氨氮质量分数为30.57 mg·kg−1,重金属Cu、Zn、Cd的质量分数分别为188.62、386.89和161.28 mg·kg−1。对疏浚底泥采用TCLP法进行重金属浸取,浸取后重金属Cu2+、Zn2+和Cd2+的质量浓度分别为0.793、0.960 和1.421 mg·L−1

      由测试结果可知,疏浚底泥中的Zn、Cu和Cd的含量均超出《围填海工程填充物质成分限值》 (GB 30736-2014) 的要求,因此将Zn、Cu和Cd3种重金属作为研究对象。

      以未受重金属污染的温瑞塘河底泥为母质,分别添加锌、铜和镉的标准储备液进行实验底泥的配制。保持实验底泥含水率为50%左右,灌入洁净的聚乙烯桶中,在密封、室温的条件下放置14周后,室内自然风干,研磨,过100目筛备用。Cu2+、Zn2+和Cd2+实验底泥重金属浸取液质量浓度分别为1.598、1.714和1.701 mg·L−1

    • 本实验以无毒无害、价廉易得为标准,选取CTS和NaBent作为稳定药剂的制作材料,实验药剂信息如表1所示。

    • 取6 g CTS (90%+) 溶于150 mL的5%醋酸溶液中,使用折叶式搅拌器将其缓慢充分溶解。向壳聚糖溶液中,缓慢加入30 g NaBent充分浸润3 h,在46 ℃恒温水浴锅中,连续搅拌4 h成糊状,加入一定量的氢氧化钠溶液,调节pH至9,缓慢搅拌10 min,沉淀壳聚糖2 h,用蒸馏水冲洗沉淀至pH为7~8,在转速为3 500 r·min−1的条件下离心分离15 min,取下层沉淀,放入烘箱在85 ℃下烘干,研磨,过100目筛,制得壳聚糖负载率为9.22%的NaBent-CTS。

    • 称取风干过筛的底泥样品60 g,保持底泥pH为7,底泥液固比为1.5∶1,以稳定剂投加量 (稳定剂与干底泥的质量之比) 为1%、3%、5%、7%、10%进行单一重金属和复合重金属稳定化实验;保持稳定剂投加量为5%,底泥液固比为1.5∶1,以底泥pH为5、6、7、8、9进行单一重金属和复合重金属稳定化实验。保持稳定剂投加量为5%,底泥pH为7,以底泥液固比 (液体体积与干底泥质量之比,单位为mL∶g) 为1∶1、1.3∶1、1.5∶1、1.7∶1、2∶1进行单一重金属和复合重金属稳定化实验,每个样品充分混匀8 h,室温下密封放置7 d,进行稳定化处理,稳定后的底泥放置在实验室,自然风干,研磨,过100目筛,每组实验均设置3个平行,均以未经处理的底泥作为对照。

      稳定化后的底泥采用TCLP法和我国固体废物标准浸取程序 (水平振荡法,HVM法) 进行重金属的浸取[14]。由于各实验底泥pH均大于5,因此选用2号浸取剂 (将5.7 mL冰醋酸溶入去离子水中,定容至1 L,保持溶液pH为2.88±0.05) 。称取12 g实验底泥,置于500 mL锥形振荡瓶中,按照液固比=20∶1加入浸取剂,在25 ℃条件下,恒温水浴水平往复振荡20 h,用稀硝酸淋洗抽滤器,用0.45 μm的滤膜过滤收集浸取液,4 ℃下密封保存,待测。稳定化率计算方法见式 (1) 。

      式中:η为重金属的稳定化率;c0为加稳定剂前底泥样品的重金属浸取液质量浓度;c1为加稳定剂后底泥样品中重金属浸取液质量浓度。

    • 针对稳定化14 d后和未经处理的疏浚底泥,采用BCR连续提取法对其中的重金属进行连续提取。测定不同阶段提取的重金属质量分数,计算疏浚底泥中酸可提取态、可氧化态、可还原态和残渣态的重金属占比,稳定性由大到小为残渣态、可还原态、可氧化态、酸可提取态。

    • 使用XRD、SEM、FT-IR、XPS、BET表征手段,观察NaBent-CTS微观结构及形貌特征,分析其晶相组成、晶面取向和基团结构等表面特性。

    • 1) FT-IR分析。图1为CTS、NaBent和NaBent-CTS的红外光谱。在CTS红外光谱中,3 438 cm−1处的吸收峰为氨基N—H和羟基O—H的伸缩振动吸收峰,2 926 cm−1处的吸收峰为C—H伸缩振动吸收峰,1 657 cm−1处的吸收峰为酰胺Ⅰ谱带吸收峰,1 593 cm−1处的吸收峰为酰胺Ⅱ谱带吸收峰,1 420 cm−1处的吸收峰为羟基O—H面内弯曲振动吸收峰,1 161 cm−1处为伯羟基O—H的吸收峰,1 072 cm−1处为仲羟基O—H的吸收峰[15]。在NaBent红外光谱中,3 618 cm−1处为NaBent层间Si—Al—OH中羟基O—H伸缩振动峰,3 476 cm−1处为层间水分子的O—H羟基伸缩振动峰,1 632 cm−1处为NaBent层间水分子O—H弯曲振动峰,990 cm−1处为Si—O—Si不对称伸缩振动峰,515 cm−1处为Si—O—Al弯曲振动峰[16]。由NaBent-CTS与CTS和NaBent的红外光谱比较结果可知:3 624 cm−1处的吸收峰显著增强,峰面积变大,说明壳聚糖进入钠基膨润土层间,使层间的O—H羟基基团增多;1 428 cm−1处羟基弯曲振动吸收峰增强,在1 113 cm−1处出现羟基弯曲振动吸收峰,说明壳聚糖成功负载在钠基膨润土上;3 434 cm−1处为钠基膨润土层间水分子O—H羟基伸缩振动峰与壳聚糖中氨基N—H弯曲振动峰的合并峰;507 cm−1处Si—O—Al吸收峰面积和强度增大,表明在Si—O—Al处发生了化学吸附,1 657 cm−1与1 593 cm−1处的酰胺谱带吸收峰消失,因此,壳聚糖上的酰胺与Si—O—Al之间可能发生了化学吸附;994 cm−1处为Si—O—Si与羟基O—H振动峰的合并峰。

      2) XRD分析。由图2可知,NaBent与NaBent-CTS衍射峰首峰的位置θ分别为3.58°和3.567 5°。层间距可根据Bragg方程[17]计算得出。计算方法见式 (2) 。

      式中:d为层间距;θ为入射线与反射晶面之间的夹角;λ为波长,Cu靶Ka射线 (λ=0.154 06 nm) ;n为反射级数,n=1。

      由式 (2) 可知,NaBent的层间距为1.233 6 nm,NaBent-CTS的层间距为1.237 9 nm,NaBent层间距在负载CTS前后未发生明显改变,由红外光谱分析结果可知,存在部分CTS进入NaBent层间。

      3) SEM与BET分析。由图3可知,NaBent的外貌发生了明显的变化,NaBent颗粒表面结构较平整,NaBent-CTS颗粒表面更加粗糙。经BET分析,NaBent与NaBent-CTS的比表面积分别为21.036 m2·g−1和14.609 m2·g−1,NaBent改性后比表面积减少,这是因为CTS负载在NaBent表面,堵塞了孔隙,导致比表面积降低[18]

    • 1) 复合前后稳定效果的比较。由图4~图6可知,在pH为7、液固比为1.5:1时,随着3种重金属稳定剂投加量的递增,Cu2+、Zn2+和Cd2+的稳定化率也逐渐递增,达到一定投加量后,NaBent-CTS对Cu2+、Zn2+和Cd2+的稳定化率趋于稳定。对比3种稳定剂效果,NaBent-CTS对Cu2+、Zn2+和Cd2+的稳定效果最佳,且在较低的投加量下可达到较好的稳定效果。投加量为5%时,Cu2+的稳定化率达到稳定,浸取液质量浓度由1.714 mg·L−1降至0.213 mg·L−1,稳定化率为87.56%;投加量为7%时,Zn2+的稳定化率达到稳定,浸取液质量浓度由1.598 mg·L−1降至0.226 mg·L−1,稳定化率为85.85%;投加量为7%时,Cd2+的稳定化率达到稳定,浸取液质量浓度由1.701 mg·L−1降至0.277 mg·L−1,稳定化率为83.71%。与NaBent-CTS相比,CTS稳定重金属效果较差,NaBent稳定效果最差,均在投加量为10%时,稳定化率达到最大。

      由此可知,CTS改性NaBent后,NaBent-CTS稳定重金属的能力得到提升,并且在较低投加量的情况下达到较好的稳定效果。虽然NaBent改性后比表面积有一定程度的降低,但NaBent中的CTS中含有大量的羟基和氨基,这2类基团对重金属有极强的螯合能力,通过CTS表面的内扩散作用,重金属离子更易进入NaBent中,与Na+、Al3+等金属离子发生离子交换作用,使NaBent表现出较高的吸附性能[19]

      2) NaBent-CTS投加量对单一重金属稳定化率的影响。图7表明了在pH为7与实验底泥液固比为1.5∶1时,稳定剂投加量的变化对Cu2+、Zn2+和Cd2+稳定化率的影响。随着稳定剂投加量的增加,Cu2+、Zn2+和Cd2+的稳定化率也随之升高,达到一定程度后稳定化率基本保持稳定。Cu2+、Zn2+和Cd2+的稳定化率分别在药剂投加量为5%、7%和7%时达到稳定,稳定化率为87.56%、85.85%和83.71%。

      NaBent-CTS中存在氨基官能团与羟基官能团,具有与重金属离子形成配位键的能力,从而螯合重金属,并且稳定剂中含有众多Na+、Al3+离子,可通过离子交换作用来吸附重金属。随着稳定剂投加量的增大,能够提供的配位键的数量与吸附比表面积不断增多,能够吸附更多的重金属离子,使3种重金属离子的稳定化率不断提高;稳定剂投加量继续增大,稳定剂颗粒之间相互黏结,比表面积减少,导致稳定化率增幅变小。

      3) 底泥pH对单一重金属稳定化率的影响。图8表明了在稳定剂投加量为5%与实验底泥液固比为1.5:1时,底泥pH对Cu2+、Zn2+和Cd2+稳定化率的影响。3种重金属稳定化率均随pH的上升呈先升高后降低的趋势,Cu2+、Zn2+和Cd2+稳定化率分别在pH为7、6和7时达到稳定,Cu2+浸取液质量浓度由1.714 mg·L−1降至0.283 mg·L−1,Zn2+浸取液质量浓度由1.598 mg·L−1降至0.346 mg·L−1,Cd2+浸取液质量浓度由1.701 mg·L−1降至0.433 mg·L−1,稳定化率分别为83.47%、78.35%和74.57%。出现上述现象的原因如下:当pH小于7时,H+的质量浓度较高,占据了稳定剂的吸附位,与重金属离子形成竞争吸附关系,导致重金属稳定化率较低;当pH大于7时,部分OH会与重金属离子形成沉淀,难以被稳定剂吸附,经过TCLP浸取实验,氢氧化物沉淀溶于酸性浸取剂中,导致稳定化率下降。

      4) 底泥液固比对单一重金属稳定化率的影响。图9表明了在pH为7与稳定剂投加量为5%时,实验底泥液固比的变化对Cu2+、Zn2+和Cd2+稳定化率的影响。液固比对3种重金属稳定化率影响不明显,Cu2+、Zn2+和Cd2+稳定化率分别在液固比为1.3∶1、1.7∶1和1.5∶1时达到稳定,Cu2+浸取液质量浓度由1.714 mg·L−1降至0.260 mg·L−1,Zn2+浸取液质量浓度由1.598 mg·L−1降至0.251 mg·L−1,Cd2+浸取液质量浓度由1.701 mg·L−1降至0.338 mg·L−1,稳定化率分别为84.82%、84.32%和80.13%。出现上述趋势的原因如下,在液固比较小的条件下,溶剂中的重金属质量浓度与底泥孔隙水中的重金属质量浓度在较短的时间内达到平衡,抑制了底泥孔隙水中的重金属向溶剂中扩散的趋势[20]。随着液固比逐渐升高,溶剂与底泥孔隙水中的重金属质量浓度需要在较长的时间内达到平衡,使得扩散作用能够在较长时间内持续进行,释放到溶剂中的重金属也增多,使稳定化率增加。并且含水率不同的实验底泥在7 d稳定化期中内部成分的变化也不同,会间接影响底泥中矿物颗粒与胶体颗粒之间的相互作用,从而改变实验底泥中重金属的存在形态和活性[21]

    • 图10可知,在pH为7与疏浚底泥液固比为1.5∶1时,稳定剂投加量对复合重金属的稳定化率存在较大的影响。随着稳定剂投加量的不断增大,Cu2+、Zn2+和Cd2+稳定化率也逐渐升高。在稳定剂投加量为5%时,稳定化率达到了最佳值,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.211 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.278 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.591 mg·L−1,稳定化率分别为73.36%、71.00%、58.38%。

      在稳定剂投加量超过5%时,Zn2+和Cd2+稳定化率呈现下降的趋势。这可能是稳定剂颗粒之间相互黏结,比表面积减少,导致重金属离子之间竞争吸附作用增强。而竞争力较弱的Zn2+和Cd2+脱离吸附位点,导致稳定化率下降。

      图11可知,在稳定剂投加量为5%与疏浚底泥液固比为1.5:1时,底泥pH的变化对复合重金属稳定化率的影响非常明显。在pH为7时,复合重金属稳定化率达到了最大值,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.180 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.239 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.549 mg·L−1,稳定化率分别为77.24%、75.03%、61.33%。

      图12可知,在pH为7与稳定剂投加量为5%时,随着底泥液固比的增大,Cu2+、Zn2+和Cd2+的稳定化率逐渐上升。在液固比为1.5:1时逐渐稳定,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.180 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.239 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.592 mg·L−1,稳定化率分别为77.26%、75.11%、58.32%。

      Cd2+的稳定化率随着底泥液固比增大出现降低的趋势。原因可能是,随着液固比的增大,含水率升高,释放到溶剂中的重金属也增多,但稳定剂表面的吸附位点数量一定,使竞争能力较差的Cd2+脱离吸附位点,导致稳定化率下降。

      综上所述,在稳定剂投加量为5%、底泥pH为7、底泥液固比为1.5:1时,NaBent-CTS对复合重金属的稳定化率最好,稳定化率分别达到75.95%、73.71%和59.00%。3种重金属离子之间的竞争吸附关系为Cu2+>Zn2+>Cd2+

    • 图13图14所示,在稳定化处理底泥前,Cu2+、Zn2+、Cd2+的存在形态以酸可提取态和可还原态这两种不稳定形态占比较大,可氧化态和残渣态这两种稳定形态占比较小。经NaBent-CTS稳定化处理14 d后,可氧化态和残渣态这两种形态占比显著提高,表明NaBent-CTS具有良好的稳定重金属的效果。

      重金属离子与NaBent-CTS结合后,与稳定剂中的羟基和氨基发生螯合配位作用,并且稳定剂中含有Na+、Al3+等可交换离子,将以酸可提取态和可还原态存在的重金属变成了可氧化态与残渣态的存在形态,从而降低底泥中重金属污染生态环境的风险。

    • 图15为NaBent-CTS在室温条件下,稳定化处理相同质量浓度Cu2+、Zn2+、Cd2+溶液后的XPS全谱图。可以看出,稳定化处理Cu2+、Zn2+和Cd2+后,XPS图谱中出现Cu2p、Zn2p和Cd3d的轨道峰,充分证明Cu2+、Zn2+和Cd2+已吸附在NaBent-CTS上。NaBent-CTS稳定化处理重金属后,XPS图谱中的Na1s谱峰几乎消失,说明稳定化过程中Cu2+、Zn2+、Cd2+与Na+发生离子交换反应,导致稳定剂中Na+含量骤减。

      图16为NaBent-CTS在室温条件下,稳定化处理相同质量浓度Cu2+、Zn2+、Cd2+溶液后的FT-IR光谱图。可以看出,NaBent-CTS稳定Cu2+、Zn2+、Cd2+后没有新的峰出现,3 624、3 405、1 636、1 428、1 113、987 cm−1处的羟基与氨基特征峰发生偏移并且峰强度降低,这是由于重金属与基团之间发生了螯合反应;507 cm−1处Si—O—Al特征峰出现波数偏移与强度降低,这是由于重金属与稳定剂中Al3+离子发生了离子交换反应。稳定化处理Cu2+、Zn2+和Cd2+后,特征峰削弱强度不同,说明NaBent-CTS对Cu2+、Zn2+和Cd2+之间出现选择性吸附。由特征峰削弱强度可知,NaBent-CTS对重金属稳定能力由强到弱为Cu2+>Zn2+>Cd2+,这符合稳定剂处理复合重金属污染底泥的实验结果。

      综上所述,NaBent-CTS稳定重金属过程中存在螯合反应与离子交换反应,重金属离子的螯合配位可能是由CTS中的氨基和羟基、Si—Al—OH和层间水分子O—H的互相作用,这样生成的螯合物可能是高交联的结构,稳定性极强。

    • 1) 由NaBent-CTS表面特性分析结果可知,NaBent和CTS之间存在化学吸附,大量CTS吸附在NaBent表面,稳定剂表面粗糙但比表面积降低。

      2) 经过CTS改性后的NaBent稳定重金属的能力显著提高,在投加量为5%时,可达到较好的稳定效果。在投加量为5%、pH为7、液固比为1.3∶1时,NaBent-CTS对Cu2+重金属污染底泥的处理效果最好。在投加量为7%、pH为6、液固比为1.7∶1时,NaBent-CTS对Zn2+重金属污染底泥的处理效果最好。在投加量为7%、pH为7、液固比为1.5∶1时,NaBent-CTS对Cd2+重金属污染底泥的处理效果最好。

      3) NaBent-CTS投加量为5%、pH为7、液固比为1.5∶1时,NaBent-CTS对复合重金属污染底泥的重金属稳定化效果最好,Cu2+、Zn2+、Cd2+稳定化率分别达到75.95%、73.71%和59.00%;NaBent-CTS稳定化处理复合重金属污染底泥时,Cu2+、Zn2+、Cd2+之间存在竞争吸附作用,竞争力由强到弱为Cu2+>Zn2+>Cd2+

      4) 采用BCR法分析稳定化处理14 d后底泥中Cu2+、Zn2+、Cd2+的存在形态,可以看出,在NaBent-CTS处理后,底泥中Cu2+、Zn2+、Cd2+的存在形态更加稳定,可氧化态与残渣态比例大幅上升。

    参考文献 (21)

返回顶部

目录

/

返回文章
返回