-
近年来,我国污水排放总量不断增加,大量的污染物排放到水环境中将给水环境造成严重影响,城市污水处理是关系国计民生的重要问题。城市污水处理厂作为城市重要的基础设施之一,在水环境污染防治和生态文明建设方面发挥重要作用。活性污泥法因其高效、经济、环保等优点,成为我国乃至世界上大部分城市污水处理厂普遍采用的工艺[1]。活性污泥作为活性污泥工艺的主体,含有高度复杂的微生物群落,构成一种独特的微生物生态系统,并依靠这些微生物降解有机物、营养物质等,从而实现活性污泥系统稳定运行和良好处理性能[2-3]。马切切等[4]对活性污泥微生物群落结构及与环境因素响应关系研究发现,温度与Nitrospira、Aquihabitans、Terrimonas和Dechloromona等多种关键的脱氮微生物呈负相关,当温度低于15 ℃时,污水处理厂对TN和NH4+-N的去除率仅有49.67%和63.19%;Zoogloea、Arcobacter、Acidovorax和Acinetobacter等优势功能性菌属相对丰度越高,污染物的去除率也越高。因此,污水处理厂的稳定运行在很大程度上依赖于系统微生物群落的特征,特别是一些功能菌的多样性、丰度。深入分析、研究污水处理厂系统中微生物群落组成、功能菌的生理特性,从而选择性调控微生物群落,对于提高污水处理厂活性污泥处理能力具有至关重要的意义。
群体感应(quorum sensing,QS)是微生物间通过自发产生、释放并接收特定化学信号而建立起来的一种通讯机制,所依赖的化学信号分子就是他们的“通讯语言”[5]。近年来,群体感应在有机物降解、生物脱氮等废水生物处理过程中的调控作用受到越来越多的关注[6-8]。LI等[6]在不同乙酸/油酸比条件下对序批式反应器(sequencing batch reactor,SBR)进行了研究,发现N酰化高丝氨酸内脂(N-acyl homoserine lactones,AHLs)介导的群体感应对化学需氧量(COD)和总氮(TN)去除、污泥沉降性等均具有显著的调控作用。WANG等[8]总结了AHLs介导的群体感应在废水生物反应器氮代谢效率、颗粒聚集和生物膜的形成等方面的调控作用。大量研究[9-10]表明,群体感应在废水生物处理中发挥重要作用。因此,本研究对天津市某城市污水处理厂进行了为期1 a的监测研究,重点分析了其微生物群落结构特征和群体感应信号分子变化以探索污水处理厂活性污泥系统的群体感应调控作用,以期为提升污水处理厂处理能力及稳定性提供参考。
城市污水处理厂微生物群落特征与群体感应调控
Microbial community characteristics and their quorum sensing regulation in municipal wastewater treatment plants
-
摘要: 微生物群落在活性污泥中发挥有重要作用,为了解采用活性污泥法的城市污水处理厂微生物群落特征和群体感应调控作用,采集天津市某城市污水处理厂活性污泥样品,采用高通量测序对其微生物群落特征进行解析,并分析其群体感应调控作用。结果表明,该污水处理厂一年间活性污泥样品的微生物多样性和微生物群落结构存在一定差异性,主要是由于冬春季节发生了污泥膨胀。Ferruginibacter、f_Saprospiraceae_unclassified、Terrimonas、f_Blastocatellaceae_unclassified和metagenome等是该污水处理厂中主要优势菌属,冬春季节引发污泥膨胀的主要菌属是Candidatus Microthrix。群体感应调控作用分析表明C6-HSL能够抑制污泥膨胀,3OC12-HSL能够调控促进多糖的产生,f_Saprospiraceae_unclassified、f_Caldilineaceae_unclassified、SWB02、OLB12是主要的C6-HSL产生菌,f_Bacteroidetes_vadinHA17_unclassified是3OC12-HSL的群体淬灭菌。基于高通量测序的Tax4fun功能预测分析表明5月份污水处理厂的脱氮除磷性能均略逊于其他月份。Abstract: Microbial community plays an important role in activated sludge. To understand the microbial community characteristics and quorum sensing regulation in municipal wastewater treatment plant (WWTP) using the activated sludge process, the activated sludge samples from a municipal WWTP in Tianjin were collected, the microbial community characteristics were analysed by high-throughput sequencing, and their quorum sensing regulation was also analysed. The results showed that there were some differences in the microbial diversity and community structure of activated sludge samples during the year, which was mainly caused by sludge bulking in winter and spring. Ferruginibacter, f_Saprospiraceae_unclassified, Terrimonas, f_Blastocatellaceae_unclassified and metagenome were the dominant genera in the municipal WWTP, and Candidatus Microthrix was the main bacterium causing sludge bulking in winter and spring. Analysis of quorum sensing regulation showed that C6-HSL could inhibit sludge bulking, and 3OC12-HSL could promote the production of polysaccharides. f_Saprospiraceae_unclassified, f_Caldilineaceae_unclassified, SWB02 and OLB12 were the main C6-HSL producing bacteria, and f_Bacteroidetes_vadinHA17_unclassified was a quorum quenching bacterium of 3OC12-HSL. The functional prediction analysis by Tax4fun based on high-throughput sequencing showed that the nitrogen and phosphorus removal performance of WWTP in May was slightly inferior to that of other months.
-
表 1 样品中微生物多样性指数
Table 1. Microbial diversity index in samples
样品 ACE Chao1 Shannon Simpson 覆盖率/% S1 613.16 613.50 7.015 0.983 99.8 S3 588.12 600.84 6.920 0.983 99.8 S5 576.22 577.28 7.009 0.978 99.9 S7 646.34 644.04 7.167 0.982 99.8 S9 643.03 644.96 6.826 0.974 99.8 S11 647.57 650.17 7.118 0.982 99.9 表 2 功能菌属相对丰度
Table 2. Relative abundance of functional bacteria %
功能菌分类 功能菌属 相对丰度 参考文献 S1 S3 S5 S7 S9 S11 GAO Candidatus Competibacter 0.17 0.32 0.5 0.47 0.48 1.50 [3] PAO Tetrasphaera 0.87 1.32 0.48 0.19 0.03 0.02 [3, 23] Candidatus_Accumulibacter 0.02 0.04 0.29 0.11 0.05 0.11 [3] DPB f_Saprospiraceae_unclassified 3.73 5.99 4.9 10.56 7.23 5.82 [19] Paracoccus 1.35 2.39 0.57 0.58 0.15 0.27 [24] AOB Nitrosomonas 0.18 0.03 0.04 0.95 0.93 0.61 [3] NOB Nitrospira 0.76 0.1 0.04 1.42 0.63 1.25 [3] DNB Ferruginibacter 9.26 8.22 13.36 9.99 10.81 5.19 [25] Terrimonas 5.35 8.01 7.48 3.60 4.69 2.79 [26] f_Blastocatellaceae_unclassified 3.27 0.97 0.96 6.39 10.47 8.74 [18] Amphiplicatus 1.36 3.13 5.46 1.61 0.71 0.48 [27] Ottowia 1.38 3.41 1.19 0.59 0.49 0.46 [28] Defluviimonas 1.40 2.22 0.87 1.07 0.60 0.91 [29] Thauera 0.48 0.37 0.39 1.84 1.95 2.03 [3] Dokdonella 0.24 0.79 1.2 0.76 1.03 0.33 [11] Hyphomicrobium 0.86 0.56 0.79 0.54 0.61 0.99 [30] f_Rhodobacteraceae_unclassified 0.87 2.07 0.68 0.33 0.14 0.19 [30] Rhodobacter 0.84 1.85 0.61 0.20 0.09 0.06 [3] Novosphingobium 0.36 0.7 0.51 0.22 0.16 0.18 [30] Devosia 0.62 0.72 0.28 0.17 0.1 0.12 [30] Thiobacillus 1.28 0.28 0.29 0.03 0.01 0.02 [31] EPS分泌菌 Terrimonas 5.35 8.01 7.48 3.60 4.69 2.79 [32] Thauera 0.48 0.37 0.39 1.84 1.95 2.03 [30] Devosia 0.62 0.72 0.28 0.17 0.1 0.12 [30] 水解菌 Ferruginibacter 9.26 8.22 13.36 9.99 10.81 5.19 [17] f_Saprospiraceae_unclassified 3.73 5.99 4.9 10.56 7.23 5.82 [33] Ottowia 1.38 3.41 1.19 0.59 0.49 0.46 [28] 表 3 功能基因相对丰度
Table 3. Relative abundance of functional gene %
代谢功能 基因相对丰度 S1 S3 S5 S7 S9 S11 氨基酸代谢 13.94 13.88 12.82 13.63 12.96 13.52 碳水化合物代谢 12.58 12.66 11.77 12.33 11.87 12.26 膜转运 12.42 12.04 11.07 12.01 11.58 11.79 辅酶因子和维生素代谢 7.37 7.35 7.19 7.33 7.27 7.34 能量代谢 7.35 7.30 7.32 7.37 7.43 7.45 信号转导 6.62 6.74 7.47 6.94 7.38 7.05 核苷酸代谢 5.44 5.45 5.64 5.54 5.62 5.61 转译 4.34 4.45 4.69 4.44 4.57 4.52 外来生物的生物降解和代谢 4.68 4.61 4.33 4.56 4.34 4.45 复制和修复 3.80 3.88 4.48 4.01 4.33 4.10 脂质代谢 3.69 3.69 3.72 3.67 3.63 3.61 其他氨基酸代谢 2.98 2.97 2.95 2.95 2.90 2.89 萜类和多酮类化合物代谢 2.57 2.57 2.40 2.50 2.38 2.44 折叠、分类和降解 2.24 2.26 2.34 2.28 2.33 2.31 细胞运动 2.03 2.00 2.64 2.21 2.58 2.29 聚糖的生物合成和代谢 2.02 2.11 2.55 2.15 2.41 2.23 细胞生长和死亡 1.66 1.62 1.92 1.74 1.93 1.79 其他次生代谢物生物合成 0.91 0.92 0.90 0.89 0.87 0.88 运输和分解代谢 0.35 0.36 0.36 0.35 0.34 0.34 细胞群落—原核生物 0.32 0.32 0.36 0.32 0.35 0.33 转录 0.19 0.19 0.26 0.21 0.24 0.21 信号分子和相互作用 0.002 0.001 0.02 0.007 0.016 0.009 -
[1] SHEIK A R, MULLER E E L, WILMES P. A hundred years of activated sludge: time for a rethink[J]. Frontiers in Microbiology, 2014, 5: 47. [2] WU L, NING D, ZHANG B, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants[J]. Nature Microbiology, 2019, 4(7): 1183-1195. doi: 10.1038/s41564-019-0426-5 [3] 鞠峰, 张彤. 活性污泥微生物群落宏组学研究进展[J]. 微生物学通报, 2019, 46(8): 2038-2052. [4] 马切切, 袁林江, 牛泽栋, 等. 活性污泥微生物群落结构及与环境因素响应关系分析[J]. 环境科学, 2021, 42(8): 3886-3893. [5] 程珂珂, 曾艳华, 蔡中华, 等. 微生物的交流信号[J]. 生物化学与生物物理进展, 2022, 49(6): 960-974. [6] LI S, FEI X, CHI Y, et al. Impact of the acetate/oleic acid ratio on the performance, quorum sensing, and microbial community of sequencing batch reactor system[J]. Bioresource Technology, 2020, 296: 122279. doi: 10.1016/j.biortech.2019.122279 [7] HU H, LIU Y, LUO F, et al. Stable and rapid partial nitrification achieved by boron stimulating autoinducer-2 mediated quorum sensing at room & low temperature[J]. Chemosphere, 2022, 304: 135327. doi: 10.1016/j.chemosphere.2022.135327 [8] WANG N, GAO J, LIU Y, et al. Realizing the role of N-acyl-homoserine lactone-mediated quorum sensing in nitrification and denitrification: A review[J]. Chemosphere, 2021, 274: 129970. doi: 10.1016/j.chemosphere.2021.129970 [9] LIU Q, FENG X, SHENG Z, et al. Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing[J]. Bioresource Technology, 2022, 354: 127161. doi: 10.1016/j.biortech.2022.127161 [10] MADDELA N R, SHENG B, YUAN S, et al. Roles of quorum sensing in biological wastewater treatment: A critical review[J]. Chemosphere, 2019, 221: 616-629. doi: 10.1016/j.chemosphere.2019.01.064 [11] LI S, FEI X, CAO L, et al. Insights into the effects of carbon source on sequencing batch reactors: Performance, quorum sensing and microbial community[J]. Science of the Total Environment, 2019, 691: 799-809. doi: 10.1016/j.scitotenv.2019.07.191 [12] AßHAUER K P, WEMHEUER B, DANIEL R, et al. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data[J]. Bioinformatics, 2015, 31(17): 2882-2884. doi: 10.1093/bioinformatics/btv287 [13] CHU H, LIU X, MA J, et al. Two-stage anoxic-oxic (A/O) system for the treatment of coking wastewater: Full-scale performance and microbial community analysis[J]. Chemical Engineering Journal, 2021, 417: 129204. doi: 10.1016/j.cej.2021.129204 [14] FENG Z, LI T, LIN Y, et al. Microbial communities and interactions in full-scale A2/O and MBR wastewater treatment plants[J]. Journal of Water Process Engineering, 2022, 46: 102660. doi: 10.1016/j.jwpe.2022.102660 [15] WANG P, YU Z, QI R, et al. Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant[J]. Water Research, 2016, 105: 157-166. doi: 10.1016/j.watres.2016.08.050 [16] 贺赟, 李魁晓, 王佳伟, 等. 不同季节城市污水处理厂微生物群落特性[J]. 环境科学, 2021, 42(3): 1488-1495. doi: 10.13227/j.hjkx.202007015 [17] 黎镛, 袁辉洲, 柯水洲, 等. 微生物载体对MBBR工艺性能及微生物群落结构的影响[J]. 环境工程, 2021, 39(12): 100-106. doi: 10.13205/j.hjgc.202112015 [18] ZHANG L, HAO S, WANG Y, et al. Rapid start-up strategy of partial denitrification and microbially driven mechanism of nitrite accumulation mediated by dissolved organic matter[J]. Bioresource Technology, 2021, 340: 125663. doi: 10.1016/j.biortech.2021.125663 [19] 顾晓丹, 黄勇, 丁永伟, 等. 改良型UNITANK工艺冬季运行特性及微生物群落分析[J]. 环境工程学报, 2021, 15(7): 2480-2487. doi: 10.12030/j.cjee.202102134 [20] 尚越飞, 王申, 宗倪, 等. 污水生物处理工艺低温下微生物种群结构[J]. 环境科学, 2020, 41(10): 4636-4643. doi: 10.13227/j.hjkx.202004116 [21] FAN N, QI R, HUANG B, et al. Factors influencing Candidatus Microthrix parvicella growth and specific filamentous bulking control: A review[J]. Chemosphere, 2020, 244: 125371. doi: 10.1016/j.chemosphere.2019.125371 [22] WANG J, QI R, LIU M, et al. The potential role of ‘Candidatus Microthrix parvicella’ in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants[J]. Water Science and Technology, 2014, 70(2): 367-375. doi: 10.2166/wst.2014.216 [23] LIU H, ZENG W, MENG Q, et al. Phosphorus removal performance, intracellular metabolites and clade-level community structure of Tetrasphaera-dominated polyphosphate accumulating organisms at different temperatures[J]. Science of the Total Environment, 2022, 842: 156913. doi: 10.1016/j.scitotenv.2022.156913 [24] 叶丽红, 李冬, 张杰, 等. 亚硝化-反硝化除磷技术研究进展[J]. 北京工业大学学报, 2016, 42(4): 585-593. doi: 10.11936/bjutxb2015070009 [25] 赖永恒, 刘敏. A/O-MBBR工艺处理生活污水性能及菌群结构[J]. 中国环境科学, 2022, 42(5): 2120-2128. doi: 10.3969/j.issn.1000-6923.2022.05.016 [26] CHEN X, XU P, YANG C, et al. Study of enhanced nitrogen removal efficiency and microbial characteristics of an improved two-stage A/O process[J]. Environmental Technology, 2021, 42(27): 4306-4316. doi: 10.1080/09593330.2020.1754924 [27] 张晶晶, 杨翠春, 丁鹏霖, 等. MBBR工艺用于唐山某污水厂提标改造效能分析[J]. 中国给水排水, 2020, 36(15): 78-85. [28] LI J, DU Q, PENG H, et al. Optimization of biochemical oxygen demand to total nitrogen ratio for treating landfill leachate in a single-stage partial nitrification-denitrification system[J]. Journal of Cleaner Production, 2020, 266: 121809. doi: 10.1016/j.jclepro.2020.121809 [29] WANG L, ZHAN H, WU G, et al. Effect of operational strategies on the rapid start-up of nitrogen removal aerobic granular system with dewatered sludge as inoculant[J]. Bioresource Technology, 2020, 315: 123816. doi: 10.1016/j.biortech.2020.123816 [30] HE Q, CHEN L, ZHANG S, et al. Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N) municipal wastewater treatment[J]. Bioresource Technology, 2019, 271: 48-58. doi: 10.1016/j.biortech.2018.09.102 [31] ZHANG R, CHEN C, XU X, et al. The interaction between Pseudomonas C27 and Thiobacillus denitrificans in the integrated autotrophic and heterotrophic denitrification process[J]. Science of the Total Environment, 2022, 811: 152360. doi: 10.1016/j.scitotenv.2021.152360 [32] ZHAO Y, JIANG B, TANG X, et al. Metagenomic insights into functional traits variation and coupling effects on the anammox community during reactor start-up[J]. Science of the Total Environment, 2019, 687: 50-60. doi: 10.1016/j.scitotenv.2019.05.491 [33] 郑向阳, 罗晓, 袁立霞, 等. AO工艺处理淀粉污水效能及微生物群落解析[J]. 环境工程学报, 2018, 12(3): 804-814. doi: 10.12030/j.cjee.201708047 [34] 王萍, 余志晟. 污水处理厂污泥膨胀和污泥发泡的比较分析[J]. 微生物学通报, 2019, 46(8): 1971-1981. [35] HUANG J, SHI Y, ZENG G, et al. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview[J]. Chemosphere, 2016, 157: 137-151. doi: 10.1016/j.chemosphere.2016.05.032 [36] 罗景阳, 张乐, 张腾, 等. 不同工艺对污水处理效能及细菌代谢功能的影响[J]. 中国给水排水, 2021, 37(23): 61-67. doi: 10.19853/j.zgjsps.1000-4602.2021.23.011 [37] FANG D, ZHAO G, XU X, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684-693. doi: 10.1016/j.biortech.2017.10.063