-
挥发性有机物 (volatile organic compounds,VOCs) 是PM2.5和O3的重要前体物,因此,成为影响大气环境的主要污染物及防控防治的重点[1-2]。焦化行业是重要的VOCs排放源,其排放呈现点位多、成分复杂、浓度不一的特征,且往往混杂多种类型污染物,治理较为困难。以焦化废水VOCs排放为代表,其来源覆盖焦化生产所有用水环节,通过无组织形式逸散的VOCs废气浓度低、含湿量高、成分复杂,往往存在含硫的硫醇、硫醚等小分子VOCs组分[3]。针对焦化行业复杂的VOCs排放体系,吸附浓缩+后处理的组合工艺逐渐成为主流技术之一。在常见吸附剂中,分子筛具备比表面积大、孔道结构均一、孔容高、热稳定性好等优点,已成为现阶段工业VOCs吸附浓缩处理领域的研究热点[4-7]。
目前,有关分子筛吸附VOCs的报道集中于合成方法、吸附机理和控制吸附过程的关键因素等方面。现有研究表明,分子筛孔道尺寸与VOCs分子大小接近时具有较好的吸附性能[8],Y型分子筛的孔隙结构适合苯系物的吸附净化[9],但Y型分子筛硅铝比低,亲水性强,在废气湿度较高时水分子具有竞争吸附作用,对有机物的吸附能力较低[10-12]。而常规高硅分子筛 (如USY分子筛) 抗水性能强,但由于孔道尺寸大,吸附脱除小分子含硫VOCs效率不高。因此,从工业适用性出发,含湿条件下分子筛对小分子含硫VOCs (如硫醇、硫醚等) 的吸附性能仍有待提高。
对分子筛进行离子交换改性后,通过金属离子与含硫VOCs中S原子的相互作用,可提高吸附材料对含硫VOCs的吸附性能。改性分子筛常见应用于石油化工生产的燃料油和重烃液相中含硫化合物的脱除[13-15]。交换离子可通过π络合吸附或S-M机理作用吸附硫化物分子[16-18],从而对含硫化合物进行脱除。而对分子筛在管道天然气吸附脱硫的应用研究表明,不同交换离子对分子筛脱硫性能的影响不同,部分离子交换分子筛能显著提升气相有机硫的脱除性能[19-22]。但目前对于分子筛吸附脱除气相含硫VOCs的研究相对较少,且水分对于气相含硫VOCs吸附的影响尚无报道。而实际上焦化VOCs废气往往含有一定湿度,且组分复杂,主要含有苯、甲苯、二甲苯等苯系物和硫醇、硫醚等含硫有机物。
基于此,本研究选取不同金属离子 (Ag、Cu、Mg、Zn、Ce、Ca等) ,采用液相离子交换法对NaY和USY-3分子筛进行改性,并以二甲基硫醚 (DMS) 和对二甲苯 (PX) 分别作为小分子含硫VOCs和普通VOCs模型物,考察改性分子筛在对含硫VOCs的吸脱附性能及循环再生性能,并研究多组份VOCs的竞争吸附,以探究其在含湿条件下吸附含硫VOCs的应用可能性。
离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升
Improvement of the adsorption performance of sulfur-containing VOCs by NaY zeolite modified by ion exchange method
-
摘要: 为解决分子筛在含湿条件下对小分子含硫VOCs吸附性能差的问题,并实现高效捕集,采用液相离子交换法选取不同金属离子 (Ag、Cu、Mg、Zn、Ce、Ca等) 对NaY和USY-3分子筛进行改性,以二甲基硫醚 (DMS) 作为模型物,考察2种改性分子筛对高湿度含硫VOCs脱除效果,进而优选性能优异的改性分子筛,再通过多组分VOCs竞争吸附实验来模拟实际应用效果。结果表明,NaY和USY-3分子筛改性后均可保持结构稳定,NaY型分子筛较USY-3分子筛具有更高的离子交换容量,改性后吸附性能提升更明显,CuY、AgY分子筛的DMS吸附性能优异 (CuY的穿透吸附量为203 mg·g−1,AgY的穿透吸附量为132 mg·g−1) 。然而,仅有Ag离子交换可提高NaY分子筛的抗水性,在1.5%水蒸气存在时,DMS穿透吸附量最高可达99 mg·g−1,且5次循环再生后吸附容量仍在90%。在对二甲苯 (PX) 存在时,分子筛对2种VOCs的吸附量均高于80 mg·g−1,且DMS具有绝对的竞争吸附优势。本研究表明AgY分子筛具有优异的抗水性和吸附选择性,可为其在含湿条件下对VOCs中小分子硫化物的吸附净化应用提供参考。
-
关键词:
- 挥发性有机物(VOCs) /
- Y型分子筛 /
- 吸脱附 /
- 离子交换
Abstract: In order to solve the problem of poor adsorption performance of zeolites for small sulfur-containing VOCs under wet conditions and achieve efficient capture , different metal ions (Ag, Cu, Mg, Zn, Ce, Ca, etc.) were selected to modify NaY and USY-3 zeolites by liquid phase ion exchange method. The sulfur-containing VOCs adsorption performance of modified zeolites under aqueous conditions was investigated by using Dimethyl sulfide (DMS) as a model. Furthermore, the ion-modified molecular sieves with excellent performance were used in multi-component VOCs competitive adsorption experiments to test their performance under actual industrial conditions. The results showed that both NaY and USY-3 molecular sieves could maintain structural stability after modification. Compared with USY-3 zeolites , NaY zeolites had higher ion exchange capacity, and the adsorption performance was improved significantly after ion exchange modification. CuY and AgY molecular sieves had excellent DMS adsorption performance ( the penetration adsorption of CuY was 203 mg·g -1 , and that of AgY was 132 mg·g -1 ). However, only Ag ion exchange improved the water-resistance of NaY molecular sieves. The maximum DMS penetration adsorption capacity of AgY zeolites was 99 mg·g -1 in the presence of 1.5% water vapor, and the adsorption capacity decreased by no more than 10% after 5 cycles of regeneration. In the presence of para-xylene (PX), the adsorption capacity of PX and DMS was higher than 80 mg·g -1 , and DMS had an absolute competitive adsorption advantage. The experimental data showed that AgY molecular sieves had excellent water resistance and adsorption selectivity, and could provide reference to for its application in the adsorption and purification of small molecular sulfides in VOCs under wet conditions.-
Key words:
- volatile organic compounds(VOCs) /
- Y zeolite /
- adsorption and desorption /
- ion-exchanged
-
表 1 离子交换改性前后分子筛结构参数
Table 1. Textural parameters for the zeolite before and after ion exchange modification
分子筛样品种类 Stotal/(m2·g−1) Smicro/(m2·g−1) Smeso/(m2·g−1) Vpore/(cm3·g−1) Vmicro/(cm3·g−1) Vmeso/(cm3·g−1) Si/Al比 XRF ICP NaY 856.6 806.1 50.5 0.41 0.32 0.09 3.4 2.7 CuY 851.7 802.8 48.9 0.36 0.27 0.09 3.4 2.7 AgY 603.4 550.8 52.6 0.31 0.20 0.11 3.7 2.7 MgY 754.3 703.2 51.1 0.37 0.27 0.10 3.5 2.8 ZnY 719.9 674.2 45.7 0.33 0.25 0.08 3.4 2.8 CaY 745.8 702.4 43.4 0.37 0.29 0.08 3.1 2.7 CeY 718.2 669.6 48.6 0.35 0.27 0.08 3.3 2.7 USY-3 879.3 731.6 147.7 0.61 0.34 0.27 25.5 20.5 CuUSY-3 807.8 652.8 155.9 0.52 0.24 0.28 25.4 20.0 AgUSY-3 767.4 611.7 155.7 0.51 0.24 0.27 26.2 20.8 MgUSY-3 678.8 494.6 183.9 0.51 0.18 0.33 25.8 20.6 ZnUSY-3 809.2 660.7 148.5 0.51 0.24 0.27 24.9 20.6 CaUSY-3 794.1 643.4 150.7 0.52 0.24 0.28 25.4 20.0 CeUSY-3 766.2 599.6 166.6 0.57 0.23 0.34 25.7 21.2 表 2 离子交换改性前后分子筛结构组成
Table 2. Structual composition of molecular sieves before and after ion-exchanged modification
分子筛
样品种类化学组成 离子
交换量/%离子
交换度/%USY-3 Na0.004Al0.116Si2.404O7.476 — — CuUSY-3 Na0.053Cu0.036Al0.175Si2.498O7.239 0.36 41.4 AgUSY-3 Na0.001Ag0.105Al0.159Si2.690O7.045 1.05 66.1 NaY Na0.652Al0.825Si2.175O6.348 — — CuY Na0.293Cu0.269Al1.035Si2.375O6.028 2.69 51.9 AgY Na0.070Ag0.889Al1.013Si2.366O5.661 8.89 87.8 表 3 离子交换改性分子筛对PX和DMS的穿透吸附量
Table 3. Penetration adsorption capacity of PX and DMS on ion-exchange modified molecular sieves
分子筛 水蒸气
含量VOCs穿透
吸附量/(mg·g−1)DMS穿透
吸附量/(mg·g−1)PX穿透
吸附量/(mg·g−1)NaY 0 241 59 182 AgY 0 169 88 81 NaY 1.5% 0 0 0 AgY 1.5% 96 81 15 -
[1] 荀志萌, 李照海, 何娇, 等. 大风量低浓度VOCs气体二次吸附浓缩净化技术开发[J]. 环境工程学报, 2016, 10(1): 283-288. doi: 10.12030/j.cjee.20160146 [2] 党小庆, 王琪, 曹利, 等. 吸附法净化工业VOCs的研究进展[J]. 环境工程学报, 2021, 15(11): 3479-3492. doi: 10.12030/j.cjee.202011052 [3] 李晓宁. 煤化工企业污水处理站异味治理工艺方案设计 [D]. 济南: 山东大学, 2018. [4] 刘星园, 张永锋, 肖凯, 等. 分子筛材料在VOCs吸附中的研究进展[J]. 化工进展, 2021, 41(5): 2504-2510. doi: 10.16085/j.issn.1000-6613.2021-0958 [5] LI X, ZHANG L, YANG Z, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213. doi: 10.1016/j.seppur.2019.116213 [6] 李照海, 羌宁, 刘涛, 等. 活性炭和沸石分子筛处理非稳定排放VOCs气体的性能比较[J]. 环境工程学报, 2017, 11(5): 2933-2939. doi: 10.12030/j.cjee.201611026 [7] 梁欣欣, 卜龙利, 刘嘉栋, 等. 分子筛负载型吸附剂对典型VOCs的吸附行为特性[J]. 环境工程学报, 2016, 10(6): 3152-3160. doi: 10.12030/j.cjee.201501108 [8] SHEN X, DU X, YANG D, et al. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729. doi: 10.1016/j.jece.2021.106729 [9] 李智, 王建英, 王勇, 等. NaY沸石分子筛在VOCs处理中的应用[J]. 环境工程学报, 2020, 14(8): 2211-2221. doi: 10.12030/j.cjee.201910071 [10] 吴琼, 栾志强, 崔振, 等. Y型蜂窝分子筛疏水改性及对二甲苯吸附性能研究[J]. 应用化工, 2021, 50(06): 1495-1498. doi: 10.3969/j.issn.1671-3206.2021.06.009 [11] 周瑛, 卢晗锋, 王稚真, 等. VOCs和水在Y型分子筛表面的竞争吸附[J]. 环境工程学报, 2012, 6(5): 1653-1657. [12] 姚露露, 周燕芳, 郭珊珊, 等. Y型与ZSM-5型分子筛吸附VOCs性能的对比[J]. 环境工程学报, 2022, 16(1): 182-189. doi: 10.12030/j.cjee.202104061 [13] 赵亚伟, 沈本贤, 孙辉, 等. 过渡金属改性Y型分子筛吸附脱除低碳烃中二甲基二硫醚[J]. 化工进展, 2017, 36(6): 2190-2196. doi: 10.16085/j.issn.1000-6613.2017.06.032 [14] 周广林, 蒋晓阳, 周红军. 吸附法脱除液化石油气中的二甲基二硫醚[J]. 现代化工, 2014, 34(1): 72-74. doi: 10.16606/j.cnki.issn0253-4320.2014.01.027 [15] 吕梦颖, 李芹, 王晓胜, 等. 改性ZSM-5分子筛吸附脱除甲基叔丁基醚中的二甲基二硫醚[J]. 天然气化工(C1化学与化工), 2018, 43(3): 15-19. [16] SONG H, CUI X H, SONG H L, et al. Characteristic and adsorption desulfurization performance of Ag–Ce bimetal ion-exchanged Y zeolite[J]. Industrial & Engineering Chemistry Research, 2014, 53(37): 14552-14557. [17] RUI J, LIU F, WANG R, et al. Adsorptive desulfurization of model gasoline by using different Zn sources exchanged NaY zeolites[J]. Molecules, 2017, 22(2): 305. doi: 10.3390/molecules22020305 [18] 陈晓陆, 张朋, 高爽, 等. 改性Y型分子筛对硫化物吸附脱除规律的研究进展[J]. 山东化工, 2018, 47(18): 45-47. doi: 10.3969/j.issn.1008-021X.2018.18.020 [19] SATOKAWA S, KOBAYASHI Y, FUJIKI H. Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions[J]. Applied Catalysis B Environmental, 2005, 56(1-2): 51-56. doi: 10.1016/j.apcatb.2004.06.022 [20] DEZHI Y, HUAN H, XUAN M, et al. Adsorption–desorption behavior and mechanism of dimethyl disulfide in liquid hydrocarbon streams on modified Y zeolites[J]. Applied Catalysis B:Environmental, 2014, 148-149: 377-386. doi: 10.1016/j.apcatb.2013.11.027 [21] LIDAN L, JIE Z, CHONGPIN H, et al. Adsorptive separation of dimethyl disulfide from liquefied petroleum gas by different zeolites and selectivity study via FT-IR[J]. Separation and Purification Technology, 2014, 125: 247-255. doi: 10.1016/j.seppur.2014.02.002 [22] CHEN X, SHEN B, SUN H, et al. Ion-exchange modified zeolites X for selective adsorption desulfurization from Claus tail gas: Experimental and computational investigations[J]. Microporous and Mesoporous Materials, 2018, 261: 227-236. doi: 10.1016/j.micromeso.2017.11.014 [23] DEHGHANI M, TADJARODI A. Formation and characterization of zeolite Y-platinum nanoparticles by rapid method of ultrasonic irradiation and investigation of its electrochemical property[J]. Journal of Nanostructures, 2020, 10(3): 486-496. [24] MENG B, REN S, LI Z, et al. Intra-crystalline mesoporous zeolite [Al, Zr]-Y for catalytic cracking[J]. ACS Applied Nano Materials, 2020, 3(9): 9293-9302. doi: 10.1021/acsanm.0c01925 [25] MENG F, DING Y, MENG W, et al. Modification of molecular sieves USY and their application in the alkylation reaction of benzene with cyclohexene[J]. ChemistrySelect, 2020, 5(29): 8935-8941. doi: 10.1002/slct.202002320 [26] KAREN M G-R, BETHZAELY F-R, FéLIX R R, et al. A hierarchical porous carbon – Mn+ FAU (Mn+=Ni2+ or Cu2+) adsorbent: Synthesis, characterization and adsorption of salicylic acid from water[J]. Microporous and Mesoporous Materials, 2014, 200: 225-234. doi: 10.1016/j.micromeso.2014.08.055 [27] SONG H, CUI X H, SONG H L, et al. Characteristic and adsorption desulfurization performance of Ag-Ce bimetal ion-exchanged Y zeolite[J]. Industrial & Engineering Chemistry Research, 2015, 53(37): 14552-14557. [28] LEE D, KO E Y, LEE H C, et al. Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) using Na-Y and AgNa-Y zeolites for fuel cell applications[J]. Applied Catalysis A General, 2008, 334(1/2): 129-136.