-
近年来,随着湖泊富营养化程度的加剧,大量蓝藻在水体季节性增殖,导致水华蓝藻频发,对生态环境造成了危害[1-2]。目前常用的藻水分离的方法有化学分离[3-4]和物理分离[5-6]。
与沉降技术相比,过滤技术由于藻水分离效果好、出水质量高和易于规模化放大应用等优势在物理分离方法中的应用日益受到关注[7-8]。然而,利用过滤技术分离水华蓝藻时易出现严重过滤堵塞,难以保持持续较高的分离效率[9]。藻细胞及其分泌物极易粘附在过滤介质表面或形成致密的藻饼层造成膜污染,进而影响膜过滤性能[10-12]。近年来,有研究表明,利用混凝预处理可以使胶体和微粒物失稳并聚集在一起,改变其在过滤过程中的藻饼堆积形态,进而减缓膜污染,提高过滤性能[13-16]。例如,RACAR等 [13]单独使用氯化铁作为预处理混凝剂,混凝-过滤处理化工废水,结果发现混凝预处理可以有效缓解过滤通量下降,使其通量下降率降低4.2~19.2倍。而ZHANG等[17]用不同铝系混凝剂对含藻水混凝-过滤,结果表明,水样经混凝预处理后,膜通量均有提高,并且不同混凝剂的提高效果存在明显差异。因此混凝预处理不仅可以提高过滤通量,而且不同混凝剂对于过滤效果的提高存在显著差异。
混凝剂种类是影响混凝-过滤性能的重要因素[18]。聚丙烯酰胺(PAM),粘土/改性粘土,聚合铁盐等均是使用较广泛的水处理剂,与一般的无机絮凝剂相比,PAM具有较大的分子质量,能够通过网捕和吸附架桥作用聚合废水中的胶体颗粒及悬浮物,并且所生成的絮团沉降性能优异,但其存在投加成本高、药剂溶解性差等缺点[19],且PAM在水中也有残留风险。据王瑞等[20]研究发现,相对于PACl,PAM会增加出水的化学需氧量(COD)和氨氮含量,影响水质。邱丽霞等[21]通过改性粘土对球形棕囊藻的消除研究,发现在所有实验浓度下使用粘土/改性粘土均会导致部分藻细胞死亡,使胞内有机物释放到水体中,在短时间内,导致水体DOC含量明显升高。雷国元等[22]的研究表明,使用高浓度铁盐处理含藻水时,出水会出现色度问题。聚合氯化铝(polyaluminum chloride,PACl)因其低廉的价格,良好的处理性能常被用作水华爆发后应急处理的混凝剂[23]。WANG等[24]用硫酸铝和聚合氯化铝处理富藻水体,结果发现使用聚合氯化铝的处理成本更低且混凝后的絮体更紧实,然而其在生物质中的残留也影响到微藻生物质的资源化利用。
近年来,壳聚糖(chitosan,CTS)因其良好的生物降解性并且无毒无残留的优点,使其在微藻收获中的应用也日益受到关注[25]。冯辰辰等[19]利用硫酸铝、氯化铁、氢氧化钠和壳聚糖对小球藻进行混凝沉降,结果发现壳聚糖较其他混凝剂在更少用量下有更好的混凝效果。且NAYAK等[26]对比了硫酸铝、硫酸铁和壳聚糖等混凝剂对小球藻生物质高效收获的影响,结果发现壳聚糖有更优的处理效果。然而,PACl和CTS混凝预处理如何影响水华微囊藻的过滤去除尚不明晰。
本研究探究了PACl和CTS对水华微囊藻混凝-过滤分离特性的影响,研究了2种混凝剂对絮体特性、过滤通量、出水水质和生物质品质的影响,并对2种混凝剂在优化剂量下的药剂成本进行了分析,以期为混凝-过滤去除水华蓝藻时混凝剂的选择以及混凝-过滤机制的探索提供参考。
-
实验试剂主要有盐酸(1 mol·L−1;分析纯)、氢氧化钠(1 mol·L−1;分析纯)、聚合氯化铝(98%;麦克林)和壳聚糖(BR 500;国药集团化学试剂有限公司)。
实验仪器包括pH计(FE, METTLER TOLEDO, Switzerland)、六联搅拌仪(MY3000-2N/4N, MEIYU, China),分析天平(Mettler-Toledo analytical balbnce)、死端过滤装置(HP4750, Sterlitech, USA)、四通道精密微流体控制压力泵(FC-3P3-1V1-AS,介观生物,中国)。
-
本研究中使用的水华蓝藻于2020年7月在中国科学院地理与湖泊研究所太湖实验站附近水域采集,利用干重法测得藻细胞浓度为0.72g·L−1。镜检结果显示,野外采集的水华蓝藻中90%以上的藻种均为水华微囊藻(Microcystis flos-aquae)。
-
1)混凝实验。混凝实验在梅宇六联搅拌仪上进行,取300 ml水样于搅拌仪中,投加混凝剂,先快速搅拌(200 r·min−1)1min,使混凝剂与藻液快速混合均匀。调节体系pH至6.5±0.2后,继续慢速搅拌(50 r·min−1)5 min,使藻细胞在混凝剂的作用下碰撞絮凝,增大絮体。其中,混凝剂PACl的投加梯度设为0、65、100、136、172 mg·g−1(以Al+计)生物质;混凝剂CTS的投加梯度设为0、4.6、6.9、9.2、12、14 mg·g−1(以CTS计)生物质。
2)过滤实验。实验室过滤分离系统主要由程控仪(跨膜压差设置为34.5 kPa)、死端过滤器(有效过滤面积为14.6 cm2)、电子天平和电脑构成。过滤材料为5 μm孔径的尼龙膜。
过滤通量是指示过滤性能的重要指标,高的过滤通量意味着高的过滤分离性能。根据式(1)计算过滤通量。过滤通量下降率可以直观地反应过滤通量的变化,可根据式(2)计算。通过对饼层阻力的测量,研究藻类沉积对通量下降的影响。滤饼阻力根据式(3)计算。饼层比阻力系数(Rcs, m·g−1)是滤饼的一种固有特性,根据式(4)计算。
式中: J为膜通量,L·(m2·h)−1;V为t时间内透过膜的滤液体积,L;A为过滤有效膜面积,m2;t为过滤时间,h。
式中:D为通量下降率,%;Ji和Jf分别是初始时和结束时的过滤通量,L·(m2·h)−1。
式中:Rc和Rm分别为饼层阻力和膜阻力,m−1;TMP为跨膜压差,Pa;μ为藻液粘度系数,Pa·s。
式中:Rcs为比阻力系数,m·g−1; m为膜上生物质的打捞质量,g。
-
本实验采用分形维数和粒径分布来指示混凝后藻絮体的形态特征。根据分形几何理论,絮团颗粒的投影面积和最大长度之间存在如下关系:
式中:Df为分形维数,A为絮体的投影面积,d为投影的最大长度,β为比例常数。Df与絮体的紧实性有关,Df值越大,絮体结构越紧实[27]。
-
滤液中的铝含量利用电感耦合等离子体质谱仪(ICP MS, PE NexlON300X, PekinElmer, USA)测定,检测限为0.10 μg·L−1。生物质中的铝含量利用电感耦合等离子体-发射光谱仪(ICP-OES, OPTIMA 8000DV, PekinElmer, USA)测定,检测限为0.10 mg·L−1。
-
图1 (a)、图1 (b)分别反映了水华微囊藻在不同PACl剂量下的混凝-过滤通量变化曲线以及通量下降率。如图1 (a)所示,过滤通量随过滤体积增加逐渐降低,不同PACl剂量下,通量下降趋势有所不同。适量的PACl剂量(100 mg·g−1,136 mg·g−1)可以明显减缓过滤通量下降。由图1 (b)可见,当不投加PACl时,通量下降率达到65.9%;经PACl预处理后,通量下降率先上升到90.8%,然后下降到23.2%,最后一直上升至87.8%。所以,当PACl剂量为100~136 mg·g−1时,通量下降率得到了明显的减缓。由此可知,在本实验条件下,PACl最佳投加量为100 mg·g−1。
电中和在混凝过程中起到重要作用,当PACl投加量(65 mg·g−1)较少时,混凝效果较差,因此,未参与混凝的藻细胞和藻源型有机物(AOM)在过滤过程中可能造成膜堵塞,导致其过滤通量低于未投加药剂时的过滤通量;而PACl投加量较多时(172 mg·g−1),过多的正电荷使藻细胞间斥力增加,无法聚集,导致体系中胶体颗粒物复稳[28],混凝效果较差,且在过滤过程中,过多的PACl形成的铝胶体可能进一步增加膜堵塞,导致其过滤通量下降。CLARK等[29]也报道了在利用微滤或超滤进行水处理时,与不混凝直接过滤相比,过低或过高剂量的PACl易导致更大程度的膜污染。
图1 (c)和图1 (d)分别反映了水华微囊藻在不同CTS剂量下的混凝-过滤通量变化曲线以及通量下降率。由图1 (c)可见,采用CTS预混凝可以有效缓解过滤通量的下降,且CTS剂量越高,通量下降趋势逐渐变缓。与原液相比, CTS的投加量为6.9 mg·g−1时,过滤通量有了显著提高,但在过滤中后期过滤通量有一定幅度的下降,推测原因是,此时药剂量仍不足,不能完全凝聚所有藻细胞,在提高药剂用量后,过滤通量基本维持在一个相对较高的水平。图1 (d)可以看出,使用CTS作为混凝剂进行过滤预处理时,当CTS剂量为6.9 mg·g−1,通量下降率从63.7%下降到了18.9%。继续增加CTS剂量至9.2 mg·g−1时,通量下降率降至最低值13.8%。继续增加CTS剂量至12 mg·g−1和14 mg·g−1时,通量下降率依旧在20%以下,和无CTS相比,降低了50.3%。以上结果表明,与PACL相比,CTS的加入能够更显著地降低通量下降。
图2 (a)、图2 (b)分别反映了PACl和CTS不同投加量对混凝-过滤过程中平均过滤通量的影响。如图2所示,当PACl和CTS投加量均为0 mg·g−1时,平均过滤通量为1 647 L·(m2·h)−1。当采用PACl进行预混凝时,平均通量呈现先升高后下降的趋势,当PACl投加量为100 mg·g−1时,有最大的平均过滤通量为2 020 L·(m2·h)−1。当采用CTS进行预混凝时,随着CTS剂量增加至14 mg·g−1,平均通量先增加后保持不变,当CTS的剂量为9.2 mg·g−1时,平均过滤通量达到了最高值(5 816 L·(m2·h)−1)。与投加PACl相比,CTS作为预混凝剂会显著提高平均过滤通量,当两者在最优投加剂量下,CTS混凝预处理的藻液平均过滤通量为PACl的近3倍,且CTS的药剂需求量明显低于PACl。WANG等[15]利用混凝-过滤技术处理腐殖酸溶液,结果发现混凝后絮体特性的变化包括絮体大小、松散程度、粒径分布等对过滤性能的提高具有重要影响,而不同种类的混凝剂形成的絮体特性不同,所以絮体结构的差异可能导致了平均通量的不同。
WEI等[30-32]利用微滤/超滤(MF/UF)对微藻进行过滤分离,其通量为50~150 L·(m2·h)−1。与此相比,本研究采用混凝-过滤分离水华蓝藻,平均通量在401~6 011 L·(m2·h)−1。其通量提升的原因,除了藻种本身的过滤特性的差异外,采用5 µm的尼龙膜在无混凝剂条件下比WEI等的MF/UF的通量提升了8倍,混凝预处理后的通量进一步提升了3.5倍。结果表明,混凝预处理结合微孔过滤有可能解决水华藻类过滤通量低的技术瓶颈。
-
为了进一步揭示CTS、PACl混凝预处理后过滤通量的影响,本研究进一步分析了过滤滤饼的比阻力系数Rcs。Rcs是滤饼的一种固有特性,其数值越大,单位质量滤饼的阻力越大,相应的过滤通量也越低。如图3所示,在无混凝剂时,微囊藻的Rcs为4.49×108 m·g−1。投加CTS时,随着剂量的增加,Rcs在逐渐降低,这说明过滤所形成滤饼的通透性在逐渐增加;投加PACl时,Rcs先降低后增加,这说明过滤所形成滤饼的通透性先增加然后又逐渐降低。当CTS剂量为9.2 mg·g−1,PACl剂量为100 mg·g−1时,二者的Rcs比无混凝剂时的4.5×108 m·g−1分别降低了95%和24%,达到2.23×107 m·g−1和3.4×108 m·g−1。不同剂量下CTS预混凝的Rcs的变化范围要小于PACl,意味着投加CTS形成的滤饼的通透性更稳定。WICAKSANA等人[33]曾报道过堆积的小球藻细胞在被压缩时过滤阻力会增加。由此可见,投加PACl产生的滤饼阻力会有较大的波动,且更容易产生较大的过滤阻力,影响过滤的稳定性。
SRIPUI等[34]在研究米酒微滤过程中粒径及其分布对比阻力系数的影响时,发现比阻力系数随着悬浮物粒径的增加而降低,尤其是悬浮物粒径大于45 µm时,滤饼比阻力系数降低的更加明显。LEE等[35]的研究也发现在滤饼中40 µm的絮体比10 µm的絮体的比阻力系数更低,因为更小的絮体形成的滤饼更紧密,阻力更大。而微藻粒径在0.22~20 µm,所以可以通过混凝形成较大的絮体,减小比阻力系数,提高过滤效率。
-
絮体特性是影响过滤性能的关键参数之一,为了进一步探讨不同混凝剂对水华微囊藻过滤饼层比阻力系数的影响,比较了最佳CTS投加量(9.2 mg·g−1)和最佳PACl投加量(100 mg·g−1)下形成的絮体粒径分布、絮体分形维数、饼层形貌特征及饼层面积。由图4 (a)可知,CTS形成的絮体平均粒径为224 μm,PACl形成的絮体平均粒径为133 μm。图4 (b)和图4 (c)为过滤等体积(50 mL)的藻液时CTS预混凝及PACl预混凝形成的絮体饼层形貌和混凝过滤示意图,由图4 (b)和图4 (c)可知,CTS形成的絮体较大,在过滤时絮体呈单个状稀疏地分布于膜表面,因而具有较大的过滤通量。而PACl形成的絮体较小,过滤时均匀的分布于膜表面,导致过滤过程中饼层阻力随着藻液堆积量的增加而增加,由此导致PACl用作混凝剂时,饼层阻力高,平均通量低。使用Image-Pro Plus(IPP)处理图4 (b)中膜上絮体饼层得到图4 (d),其中深色部分为较厚实的絮体饼层面积,而浅色部分为未被饼层占据的过滤面积。由IPP处理计算可得,CTS和PACl饼层面积分别占了总面积的77%和95%。由此可见,CTS具有相对较大的未被饼层占据的过滤面积也是其通量更高的一个原因。
-
铝是一种人体非必需的金属元素,研究发现铝对人体的发育和认知有毒性作用[36],而PACl是一种以铝离子为作用中心的无机高分子混凝剂,其在使用后会残留在滤液和生物质中。同时蓝藻生物质资源化利用有巨大前景,我国水华蓝藻的资源化主要聚焦在四个方面:作为生物质能源,生物肥料、饲料,微生物培养原料以及提取其生物活性物质[37],其中后3种对生物质品质要求较高,对铝含量有严格的要求,因此有必要对混凝-过滤后滤液和生物质中的铝含量进行检测。
在最佳PACl和CTS用量下滤液中铝残留质量浓度分别为(0.021 7±0.02) mg·L−1和(0.013 5±0.000 4) mg·L−1;生物质中的铝离子残留质量浓度分别为(10.9±0.003) mg·g−1和(0.13±0.032) mg·g−1。因此,无论是投加PACl或是CTS,滤液中铝离子残留均处于较低水平(小于0.05 mg·L−1),达到了《中国饮用水水质标准》(GB 5749-2006)中规定的铝含量小于等于0.2 mg·L−1的最低标准。由混凝-过滤后的生物质中铝残留测定结果发现,PACl中的铝离子绝大多数残留在生物质中,其含量(10.9 mg·g−1)约为CTS形成生物质中铝离子含量(0.13 mg·g−1)的84倍。结果表明,含有PACl的生物质会降低蓝藻生物质资源化利用的价值,因此,当蓝藻生物质进行资源化利用时,需对生物质中的残留铝离子进行回收,或选择像CTS这种不造成生物质污染的混凝剂。
-
在水华蓝藻处理过程中的成本很大一部分来自于药剂成本。为进一步评估CTS用于混凝-过滤去除水华蓝藻的经济性,对CTS和PACl混凝-过滤过程中的药剂成本进行了分析和评估。在PACl和CTS最佳剂量下所需的药剂成本如表1所示。由表1可见,在PACl剂量为100 mg·g−1,CTS为9.2 mg·g−1时,混凝药剂成本分别为380 元·t−1和1 488 元·t−1干藻。虽然CTS的药剂成本比PACl高出近4倍,但使用CTS预混凝可以显著提高过滤通量,提高设备处理效率,从而有望进一步降低能耗成本[38]。
此外,由2.4节结果可见,投加PACL混凝-过滤后的生物质中铝离子残留较多,不利于蓝藻生物质的资源化利用,需将残留的铝进一步回收。前期的研究结果表明,采用酸洗法可使铝在酸性条件下以铝离子形式溶出,达到净化生物质的目的,微藻生物质的净化成本约为1 150元·t−1 [39]。与使用CTS总成本(1 488 元·t−1)相比,PACl的成本会稍高(1 530 元t−1),且PACl的回收会增加工艺的复杂性。因此,从水华蓝藻控制及资源化利用的角度考虑,选用无毒无害的壳聚糖,可降低水华蓝藻混凝-过滤分离成本,推动混凝-过滤技术在水华蓝藻控制中的应用。
CTS的价格是其作为混凝-过滤预处理剂在藻水分离中应用的一个瓶颈[40]。开发环境友好型的有机混凝剂,如正电淀粉、生物混凝剂等是高效、低成本水华蓝藻去除的重要方向[41-42]。另外,还可将CTS打捞的蓝藻进行高值化资源化再利用,获得更高的收益以补偿CTS成本。例如在水华生物质鱼饲料原料加工技术中,采用品质分级控制的方式,将无毒素的新鲜水华蓝藻生物质通过CTS混凝收获,微波干燥后可作为鱼饲料原料。作为鱼饲料里的活性成分[43],CTS的添加有助于提升水华藻类生物质的饲料原料价格,从而有效克服CTS价格高用不起的瓶颈。除此之外,藻水分离工艺中使用有机、无机复配混凝剂也是一种解决方案[44]。据梁韩英等[45]的研究发现CTS和PACl联合使用所需的药剂成本比单独使用CTS混凝时要低。ZHANG等[46]将高碱度、高粘度壳聚糖与聚合氯化铝联合使用,混凝沉淀低温低浊度水,结果表明联合使用对浊度、DOC和UV254的去除率达到87%、63%和82%,在取得较好混凝去除效果的同时也有利于铝残留量的控制。
-
1) PACl、CTS混凝预处理明显减缓了水华微囊藻过滤分离过程中通量下降的趋势。使用100 mg·g−1 的PACl和9.2 mg·g−1 的CTS混凝预处理时,通量下降率从无预处理时的65.9%分别降低到23.2%和13.8%;平均通量从1 647 L·(m2·h)−1,分别提升到2 020 L·(m2·h)−1和5 816 L·(m2·h)−1。
2) 相比PACl,CTS的过滤通量的提升更为显著,其原因是CTS混凝形成的絮体更大,从而形成了比阻力系数较小的疏松饼层。在最优投加剂量下,CTS预处理的饼层比阻力系数为2.2×107 m·g−1,是PACl预处理的1/15。
3) PACl的药剂成本虽然低于CTS,但使用PACl会造成藻类生物质中铝残留。在优化剂量下,PACl预处理混凝-过滤分离得到的蓝藻生物质中Al含量达到了10.9 mg·g−1,是CTS预处理条件下的84倍。因此,考虑到生物质的资源化利用以及残余铝离子的回收成本,CTS(1 488 元·t−1)比PACl(1 530 元·t−1)略有优势。CTS的成本有望通过水华生物质的高值化利用、CTS-PACl复合型混凝剂等方式进一步降低。
PACl和CTS对水华微囊藻混凝-过滤的影响
Influence of PACl and CTS on the removal of Microcystis flos-aquae using coagulation-filtration
-
摘要: 过滤去除水华蓝藻时易出现过滤材料堵塞,混凝预处理可以改变水华蓝藻在过滤过程中的藻饼过滤特性,从而提高过滤通量。混凝剂种类是影响混凝-过滤分离性能的重要因素。本研究利用聚合氯化铝(PACl)和壳聚糖(CTS)进行预混凝,研究了2种混凝剂对絮体特性及过滤通量、出水水质和生物质品质的影响,并进行了2种混凝剂优化剂量添加条件下的药剂成本分析。结果表明,采用PACl和CTS在优化剂量下,过滤通量从无预处理时的1 647 L·(m2·h)−1分别提升到2 020 L·(m2·h)−1和5 816 L·(m2·h)−1,通量下降率由65.9%分别降低到23.2%和13.8%。两种不同混凝剂过滤性能的差异主要是由混凝形成的絮体大小和饼层阻力不同造成的。CTS、PACl混凝预处理减小了饼层的过滤比阻力系数。在优化剂量条件下,CTS、PACl混凝形成的饼层比阻力系数Rcs从无混凝剂时的4.49×108 m·g−1分别降低了95%和24%,达到了2.23×107 m·g−1和3.4×108 m·g−1。且CTS预处理形成饼层的比阻力系数是PACl预处理的1/15,因此,CTS更有利于提高混凝效率。虽然PACl的成本低于CTS,但使用PACl会造成藻类生物质中铝残留,因此考虑到生物质的资源化利用以及残余铝离子的回收成本,CTS比PACl略有优势,干生物质当量的药剂成本及残余铝离子的回收成本之和分别达到1 488元·t−1和1 530元·t−1。
-
关键词:
- 水华微囊藻(Microcystis flos-aquae) /
- 聚合氯化铝(PACL) /
- 壳聚糖(CTS) /
- 混凝 /
- 过滤
Abstract: Filter block occurs easily when cyanobacteria bloom is removed by filtration. Coagulation pretreatment changes the characteristics of algae cake during filtration separation process, and thus improves the filtration flux. The type of coagulant is an important factor affecting the performance of coagulation filtration separation. In this study, polyaluminum chloride (PACl) and chitosan (CTS) were used for pre-coagulation. The effects of two coagulants on floc characteristics, filtration flux, effluent quality and biomass quality were studied. The cost analysis of reagents at the optimum dosages of these two coagulants was performed. The results showed that coagulation pretreatment could significantly reduce the flux declining in the process of filtration separation of Microcystis flos-aquae. At the optimal dosages of PACl and CTS, the filtration flux increased from 1 647 L·(m2·h)−1 to 2 020 L·(m2·h)−1 and 5 816 L ·(m2·h)−1, respectively, and the flux reduction rate decreased from 65.9% to 23.2% and 13.8%, respectively. The difference in filtration performance of these two coagulants were caused by the differences of flocs size and cake resistance after coagulation. CTS and PACl coagulation reduced the specific cake resistance dramatically. At the optimized dosages of CTS and PACl, the specific cake resistance(Rcs) reached 2.23×107 m·g−1and 3.4×108 m·g−1, respectively, which were 95% and 24% lower than that without coagulant. The Rcs of cake formed after CST pre-coagulation was 1/15 that after PACl pre-coagulation, thus CST was more favorable for the improvement of coagulation efficency. Although the cost of PACl was lower than that of CTS, PACl will cause the aluminum residues in the collected algal biomass. Therefore, considering the resource utilization of biomass and the recovery cost of residual aluminum, the total cost of CTS was still lower than PACl. The sum of chemical cost of dry biomass equivalent and recovery cost of residual aluminum ions reached 1 488 yuan ·t−1 and 1 530 yuan ·t−1, respectively.-
Key words:
- Microcystis flos-aqua /
- polyaluminum chloride (PACl) /
- chitosan (CTS) /
- coagulation /
- filtration
-
再生水正日益成为城市第二水源[1]。2020年北京市供水量为40.6×109 m3,其中再生水为12.0×109 m3,占总量的29.6%[2]。为实现城市水体富营养化防治目标,污水处理出水水质标准相应不断提升[3]。因此,学界与业界提出极限技术 (limit of technology, LOT) ,目标为实现出水总氮 (TN) <3 mg·L−1,总磷 (TP) <0.1 mg·L−1[4]。目前,国内虽有诸多满足LOT目标要求的处理工艺,但由于各类工艺处于不同研发或应用阶段,其技术完整性、稳定性和应用前景尚缺乏系统性的定量比较与评价。满足城市再生水利用要求的LOT技术及政策选择,仍需科学决策方法的支撑。
技术成熟度 (technology readiness level, TRL) 评价法被用以衡量各项技术对目标工程项目的满足程度[5]。2009年,我国实施《科学技术研究项目评价通则》 (GB/T22900-2009) ,强化了量化管理科学研究和技术成熟度评价的重要性[6-7]。2010年,国防科工局在基础科研“十二五”重大项目立项论证过程中提出:凡是未通过技术成熟度评价或评价等级不达标的项目不得参与立项论证[8]。2017年,《国家技术转移体系建设方案的通知》 (国发〔2017〕44号) 指出“推广技术成熟度评价,促进技术成果规模化应用”[9]。因此,技术成熟度法逐渐在包括环境工程在内的各类科技领域得到应用,并支持了国家水体污染控制与治理科技重大专项 (以下简称“水专项”) 综合技术分析[10]、气浮技术分析[11]、污水处理智控技术分析[12]、洱海入湖河流修复技术分析[13]等相关课题的科学决策。
为兼顾技术在我国研发的前沿性与应用推广前景,本研究从“十一五”、“十二五”和“十三五”水专项已验证项目中,筛选出水水质可基本满足LOT要求的代表性技术组合作为研究对象,进行综合评判的技术成熟度评价,并利用集成成熟度 (integration readiness level, IRL) 对单项技术定性评估结果进行集成系统定量化改良,构建IRL矩阵法改良的系统成熟度 (system readiness level, SRL) ,提升系统技术评价的综合性与全面性,为评估及优选符合减污降碳协同增效的政策背景的,可实现极限脱氮除磷要求的低碳低耗LOT技术提供参考。
1. 矩阵法改良SRL评估方法构建
1.1 TRL等级评估
水处理技术TRL评价准则的建立,通常仿照航天领域TRL细化准则的内涵,按照从立项、研发到应用的顺序构建框架,参考技术原理研究程度、技术市场需求、应用项目数量及尺度级别等特征,最终依据技术发展过程中的原理发现、技术方案、可行性论证、小试至示范工程实验及推广应用等阶段划分,并确定TRL等级值[14]。因此,水处理技术9个TRL等级的评估细则表述如表1所示[15]。TRL等级评估主要是针对离散技术元素的定性赋值评价,即仅限于评估单个系统的关键技术要素 (critical technical elements,CTE) 或某特定系统,而无法致力于多个单项技术的连结与集成[14]。首先,当TRL应用于技术组合的综合定量判别时,难以对技术 (或分系统) 集成到实际运行系统的难度进行精准评判,故使对技术成熟化过程 (由低级TRL向高级TRL演进) 的不确定性做出指导的难度增大。其次,TRL不支持对可能由人为或技术因素引起不确定性的分析,造成其用于定位组合技术成熟水平时误差加剧[16]。同时,因在选择TRL级别时没有引入对比分析法,故当涉及多个技术评估时无法进行比较分析。鉴于TRL本身存在的局限,尽管传统TRL等级评估已广泛应用于单一技术检测且日趋成熟,但单独使用TRL在技术系统层面仍存在不确定和不成熟因素,其单独很难全面描述技术组合的综合成熟水平[17]。
表 1 水处理技术TRL等级评估细则[15]Table 1. Current definitions of TRL for wastewater treatmentTRL等级 等级描述 等级评价标准 成果形式 1 发现基本原理或有基本原理的报告 发现并报告技术的基本原理 需求分析及技术基本原理报告 2 形成技术方案 明确介绍技术概念,提出应用设想,详细说明设计研发的技术路线、确定研究内容、开发策略 技术方案实施方案 3 技术方案通过可行性论证 技术路线、结构设计、关键功能通过可行性验证 论证意见或可行性论证报告等 4 通过小试验证 在实验室环境下验证关键技术、功能 小试研究报告 5 通过中试验证 以小试为基础,在逼真环境下验证关键技术、功能 中试研究报告 6 通过技术示范/工程示范 在示范工程中关键技术、功能得以示范,达到预期目标 技术示范/示范工程报告、专利等 7 通过第三方评估或用户验证认可 通过第三方评估或经用户试用,证明可行,为小批量生产做准备 第三方评估报告,示范工程依托单位应用效益证明 8 通过专业技术评估和成果鉴定 通过专业技术评估和成果鉴定,形成技术指南、规范,建立预生产模型 成果鉴定报告、技术指南、规范 9 得到推广应用 技术体系明确,在其他污染企业或其他流域得到广泛应用 推广应用证明 1.2 改良SRL等级评估
目前,TRL等级评估在单项技术成熟度评估应用中较为成熟。但随着技术体系逐渐丰富,TRL无法体现技术组合中各个单项技术间相互作用对整体系统效果的影响。TRL的这一局限性催生了许多成熟度指标的后续开发,其中包含集成成熟度 (integration readiness level,IRL) 及系统成熟度 (system readiness level,SRL) 。为更加细致、全面及系统地评价技术组合的成熟度及推广特性[18],研究者们基于TRL的相关分析,从数学上将组件TRL值与集成IRL结合起来,创建出针对系统技术进展评估的专门度量方法,即SRL。SRL的精确分析建立在TRL充分、准确的分析结果上,由此可见,TRL体系的成熟与完善为SRL的开发与应用提供了理论可行性与技术基础性。目前,常用的SRL计算方法中加权法应用较多,但权重确定受人为主观影响较大,且难以考虑技术间的复合集成关系[19];模板对比法对系统真实成熟度反映较为客观,但计算过程较为复杂[20];因子法可表示所研究技术与成熟技术的差距,但难以表现技术目前成熟情况[21]。然而,IRL矩阵法兼顾考虑单项技术本身的TRL与不同单项技术间的集成程度,且计算过程简易、结果客观性高,已在航天、卫星和雷达等领域获得成熟应用[18]。因此,本研究选择IRL矩阵法进行改良SRL计算。
1.2.1 IRL等级评估
IRL体现了不同技术兼容交互接口的系统分析,也体现了集成点 (即TRL) 间一致比较性的系统分析。此外,IRL可描述两项技术之间的集成程度,其中一项为开发中技术,另一项为正在开发或成熟技术。因此,对于精确评价技术的集成准备程度,IRL具有广阔的发展前景[22]。水处理技术中IRL等级的定性赋值评判依据如表2所示[10]。
表 2 IRL等级表[10]Table 2. Current definitions of IRLIRL等级 名称 描述 对应TRL 1 基础技术研究 开展新技术的实验,分析提炼基础原理及应用构想 TRL1,TRL2 2 概念定义 定义初始概念,制定开发策略 TRL2,TRL3,TRL4 3 技术开发 确定合适的技术组合 TRL4,TRL5 4 系统开发、验证 开发系统能力,降低集成技术风险;确保经济可行性;验证系统可靠性、可操作性、安全性与实用性 TRL5,TRL6,TRL7 5 生产 达到满足任务需求的生产能力 TRL7,TRL8 6 使用与保障 日常使用与保障中,具有最优效益 TRL8,TRL9 1.2.2 IRL矩阵法改良SRL计算
基于IRL等级的矩阵法改良SRL计算具体过程如下。首先评估单项技术的TRL,形成TRL组合向量 (式 (1) ) ,再构建IRL矩阵 (式 (2) ) ,由IRL表示任意2项技术的交互集成程度。水处理集成技术的处理效果往往取决于发展程度较低的技术,因此IRL矩阵元素取值时取对应位置TRL较低技术的数值。SRL矩阵计算式见式 (3) ,其中计算添加权重因子的SRL见式 (4) 。
TRL=[TRL1TRL2⋮TRLn] (1) IRL=[IRL11IRL12⋯IRL1nIRL21IRL22⋯IRL2n⋮⋮⋱⋮IRLn1IRLn2⋯IRLnn] (2) SRL=[SRL1SRL2⋮SRLn]=19(IRL)×19(TRL)=181[IRL11TRL1+IRL12TRL2+⋯+IRL1nTRLnIRL21TRL1+IRL22TRL2+⋯+IRL2nTRLn⋮IRLn1TRL1+IRLn2TRL2+⋯+IRLnnTRLn] (3) SRL=(SRL1n1+SRL2n2+⋯+SRLini)n (4) 式中:
为与技术i具有集成关系的技术数量;n为所有技术个数,最终算得添加权重因子的SRL为不大于1的正数[23]。基于IRL矩阵法计算的改良SRL取值,可与不同TRL取值所代表的技术成熟程度形成对应关系,相关具体定义如表3所示[23]。ni 表 3 SRL等级表[23]Table 3. Current definitions of SRLSRL取值范围 成熟阶段 定义 0.90~1.00 操作和维护 在系统生命周期内以应用效益最佳方式运行 0.80~0.89 生产 系统达到预期目标,并成功执行 0.60~0.79 系统发展验证 验证系统的协同性、安全性、有效性 0.40~0.59 技术发展 降低技术风险,确定集成技术的合理性 0.1~0.39 理论凝练 明确技术概念,构建应用设想和开发策略 1.3 水专项相关LOT备选技术的筛选
通过调研“十一五”、“十二五”和“十三五”期间水专项相关课题及近年来再生水品质污水脱氮除磷的主流技术,综合考虑国内各地再生水标准取值、相关技术的应用程度及发展前景,在现有氮磷去除率高、出水基本满足LOT要求的技术组合中,筛选出12种工作原理、流程组合方式及应用规模不尽相同的LOT备选技术组合,作为主要研究与分析评估对象。表4汇总了各个备选技术组合的技术细节与基本特征。各备选技术组合至少包含2项以上单项技术,且单个组合内单项技术数量不超过4项,均有水专项针对性相关课题的研究内容进行示范支撑,保证了评估的合理性。由于TRL为针对离散技术元素的定性赋值评价,用于评估单个系统的关键技术要素 (CTE) 或某特定系统,展现单项技术的具体成熟度。SRL分析基于TRL的分析结果进行,以全面细致的对组合技术进行评判。因此,通过TRL对技术组合的单项技术成熟度进行定性评价,并基于此通过改良SRL方法来分析技术组合本身的系统集成状况以期对系统成熟度进行评价。进水水质根据示范工程所在点位示范运行期间的年平均值确定,出水水质、各单项技术的TRL取值及其运行成本根据调研课题研究报告及相关发表论文的数据波动范围综合确定,并基于此计算各项技术组合的TN、TP单位质量去除运行成本。整体而言,各个LOT单项技术的TRL值均在5以上,最高TRL值可达到9。
表 4 水专项相关LOT备选技术组合Table 4. Summary of representative LOT systems in China序号 备选技术组合 技术缩写 进水水质 出水水质 依托课题 TRL 单项技术成本/(元·m-3) TN单位去除运行成本/(元·g-1) TP单位去除运行成本/(元·g-1) 1 A2O -悬浮填料-混凝沉淀极限脱氮除磷技术 TN=24.60 mg·L-1,TP=2.42 mg·L-1, TN=1.915 mg·L-1,TP=0.05 mg·L-1,[24] 地下污水厂建设模式创新与生态综合体示范2017ZX07107-003 0.06 0.61 1.1 A2O技术 A2O 9 0.81[25] 1.2 悬浮填料脱氮技术 MBBR (moving-bed biofilm reactor) 9 0.35[24] 1.3 混凝沉淀技术 Coagulation 9 0.29[26] 2 A2O-反硝化深床滤池极限脱氮除磷技术 TN=39.25 mg·L-1,,TP=3.81 mg·L-1,[25] TN=1.38 mg·L-1,,TP=0.089 mg·L-1,[27] 天津城市污水超高标准处理与再生利用技术研究与示范2017ZX07106-005 0.04 0.38 2.1 A2O技术 A2O 9 0.482[25] 2.2 反硝化深床滤池 DBDF (deep-bed denite filters) 9 0.92[28] 3 Phoredox-反硝化深床滤池极限脱氮除磷技术 TN=31.70 mg/L,TP=1.99 mg·L-1[25] TN=2.37 mg·L-1,,TP=0.06 mg·L-1,[29] 白洋淀与大清河流域 (雄安新区) 水生态环境整治与水安全保障关键技术研究与示范2018ZX07110-002 0.04 0.65 3.1 Phoredox技术 Phoredox 9 0.343[30] 3.2 反硝化深床滤池技术 DBDF (deep-bed denite filters) 9 0.92[28] 4 A2O-SDA+BAF极限脱氮除磷技术 TN=35.4 mg·L-1,TP=5.38 mg·L-1[25] TN=3.00 mg·L-1,TP≤0.10 mg·L-1[31] 城区水污染过程控制与水环境综合改善技术集成与示范2012zx07301-001 0.03 0.20 4.1 A2O技术 A2O 9 0.45[25] 4.2 活性自持深度脱氮技术 SADeN (self-active denitrification) 9 0.086[32] 4.3 曝气生物滤池 BAF 9 0.50[33] 5 A2O-复合介质人工快渗系统极限脱氮除磷技术 TN=89.20 mg·L-1,TP=5.79 mg·L-1[25] TN≈3 mg·L-1,TP=0.071 mg·L-1[34] 永定河 (北京段) 河流廊道生态修复技术与示范2018ZX07101-005 0.01 0.15 5.1 A2O技术 A2O 9 0.482[25] 5.2 复合介质人工快渗系统 CRI (constructed rapid infiltration) 7 0.35[34] 6 氧化沟-轻质填料人工湿地-反硝化除磷滤池极限脱氮除磷技术 TN=32.6 mg·L-1,TP=6.31 mg·L-1[25] TN=1.73 mg·L-1TP=0.1 mg·L-1[35-36] 重庆主城重污染河流水污染控制与水质改善技术研究与示范2012ZX07307-002 0.02 0.09 6.1 氧化沟 OD (oxidation ditch) 9 0.3[37] 6.2 轻质填料人工湿地 CW (Constructed Wetland) 6 0.27[38]] 6.3 反硝化除磷滤池 DPRF (denitrifying P removal filter) 6 7 A2O-复合填料生物滞留池极限脱氮除磷技术 TN=31.6 mg·L-1,TP=3.17 mg·L-1[25] TN<1 mg·L-1,TP<0.1 mg·L-1[39] 0.02 0.21 7.1 A2O技术 A2O 9 0.55[25] 7.2 复合填料生物滞留池 BT (bioretention tank) 6 0.1[40] 8 BNR-多级复合流人工湿地极限脱氮除磷技术 TN=50.2 mg·L-1,TP=4.59 mg·L-1[25] TN<1.5 mg·L-1TP<0.1 mg·L-1[41] 天津中心城区景观水体功能恢复与水质改善的技术集成与示范2008ZX07314-004 0.02 0.21 8.1 BNR技术 BNR (biological nutrient removal) 9 0.89[25] 8.2 混凝沉淀技术 Coagulation 9 8.3 人工湿地技术 CW 9 0.05[42] 8.4 人工浮/沉床技术 EFB/ESB (Ecological floating/submerged bed) 8 9 A2O-复合人工湿地-稳定塘极限脱氮除磷技术 TN=48.8 mg·L-1,TP=4.94 mg·L-1[25] TN<1.5 mg·L-1,TP≈0.05 mg·L-1[41] 天津中心城区景观水体功能恢复与水质改善的技术集成与示范2008ZX07314-004 0.01 0.14 9.1 A2O技术 A2O 9 0.64[25] 9.2 复合人工湿地技术 CCW (combined constructed wetland) 6 0.06[41] 9.3 稳定塘技术 SP (stabilization pond) 9 10 A2O-梯级人工湿地系统极限脱氮除磷技术 TN=35.05 mg·L-1,TP=2.22 mg·L-1[25] TN≈0.45 mg·L-1,TP≈0.10 mg·L-1[43] 入淀湿地复合生态系统构建技术研究和工程示范2018ZX07110-004 0.02 0.36 10.1 A2O技术 A2O 9 0.53[25] 10.2 植物沉淀塘技术 PSP (plants sedimentation pond) 6 0.16[44] 10.3 水平潜流人工湿地技术 HCW (horizontal constructed wetland) 9 10.4 生态稳定塘技术 ESP (eco-stabilization pond) 7 0.08[45] 11 Phoredox-植物净化系统极限脱氮除磷技术 TN=68.20 mg·L-1,TP=1.30 mg·L-1[25] TN≈1.94 mg·L-1,TP≈0.078 mg·L-1[46] 白洋淀与大清河流域 (雄安新区) 水生态环境整治与水安全保障关键技术研究与示范项目2018ZX07110-005 0.01 0.35 11.1 Phoredox技术 Phoredox 9 0.343[30] 11.2 植物净化系统 PPS (phyto-purification system) 7 0.1[46] 12 氧化沟-太阳能混合充电-生态浮岛极限脱氮除磷技术 TN=31.6 mg·L-1,TP=2.91 mg·L-1[25] TN=1.24 mg·L-1,TP=0.04 mg·L-1[47] 0.01 0.11 12.1 氧化沟 OD 9 0.33[25] 12.2 太阳能混合充氧-生态浮岛 SO-EFI 6 0[48]] 2. LOT备选技术组合改良SRL评估分析
由于TRL评价方法的局限性,选用通过基于TRL等级分析以构建IRL矩阵评估的改良SRL评价方法来评估“十一五”、“十二五”和“十三五”期间水专项相关课题及近年来再生水品质污水脱氮除磷筛选出来的12项LOT备选技术,以TRL分析来定性评价技术组合中单项技术的技术成熟度等级及分布情况,并基于此构建SRL对12项技术组合的集成情况和系统成熟度进行定量评估,以为污水处理中的先进技术组合发展评估及优化提供新思路。
2.1 单项技术TRL等级评估分析
根据LOT备选技术组合的不同技术阶段和主功能技术类型,对12种LOT备选技术组合的各个单项技术进行系统归纳分类梳理,结果如图1所示。整体而言,LOT备选技术组合的工艺流程可归纳为污水原水-污水厂二级处理-深度处理3个主控功能阶段。污水原水经污水处理厂二级处理系统净化后,出水辅以深度处理的主功能技术而达到LOT的标准要求。而主功能技术以生物类技术为主,表明满足LOT要求的技术组合仍需重点关注污水处理厂人工处理系统与自然处理系统功能的耦合、强化与优化。LOT备选技术组合中,污水厂二级处理阶段的人工处理系统主要使用A2O技术、Phoredox技术、氧化沟技术及BNR技术此4类传统生化强化技术,技术成熟度高且发展时间较长。深度处理阶段是LOT备选技术组合实现极限脱氮除磷关键功能的核心阶段,现有的主功能技术中除混凝沉淀技术为化学手段外,其余均属于生物手段。按照主要技术功能实施方式的不同,主功能技术可进一步归类为反应器类、人工湿地类和混合系统类3大类;而根据主要处理对象的区别,三大类工艺还可更细致地梳理为单独除磷、单独脱氮和同步脱氮除磷3类。反应器类技术和混合系统类技术的TRL值主要分布在7~9,这表明技术水平多数已达到第三方评估认可至推广应用阶段,面向快速应用的前景可观;人工湿地类技术的TRL值以6为主,主要还停留在进一步完善示范工程市场接受度的阶段,需要第三方的鉴定和验证以评估技术的可靠性及稳定性。
对不同TRL等级单项技术在各LOT备选技术组合中的使用频次和同等级值出现频次进行细化梳理,以获得单项技术TRL值分布的详细信息,结果如图2所示。A2O技术在各技术组合中共出现了7次,是出现频次最高的技术,已被证明技术成熟度以及推广应用程度较高。出现频次第二多的单项技术为氧化沟技术、混凝沉淀技术和Phoredox技术,出现频次均为2次。以上均为污水厂二级处理技术,处于人工处理系统阶段。其余单项技术的出现频次均为1次,且涵盖了所有的LOT主功能技术,这说明LOT的主功能技术尚处于行业发展初期的多方技术竞争市场阶段。对不同TRL等级值的单项技术出现频次进行统计发现,TRL值为8的单项技术有1项,TRL值为6的单项技术共7项,TRL值为7的单项技术共3项,TRL值为9的单项技术共7项。其中,除4项为单独脱氮或除磷的单项技术外,其余单项技术均可实现整体脱氮除磷。整体而言,技术发展水平达到工程示范及以上的单项技术总数可达到22项 (TRL≥6) 。其中,TRL值在6~7的单项技术共10项,大多为新兴的生态/生物类工艺,以生物作用 (植物吸收和微生物利用) 和生态调控作用为脱氮除磷的主要机制;而TRL值≥8的单项技术共12项,已经过第三方评估或用户验证,主要为发展时间较长、应用较为广泛的人工水处理技术和部分生态强化的混合系统类技术。由此可见,这些备选LOT技术组合基本实现了成本优化和低碳低耗的技术运营模式,可满足污水的资源化及生态环境的优化需求。这也表明,以生物脱氮除磷为主的技术已在LOT技术组合中占据重要地位,这也符合减污降碳协同增效的政策背景,具有较高的市场推广及应用价值。
2.2 技术组合中单项技术TRL值分布比较分析
对各个LOT备选技术组合内部不同单项技术成熟度等级值的数据分布进行统计分析,结果如图3所示。所有技术组合的单项技术TRL值均在6及6以上,其中技术组合1、2、3、4中的各单项技术TRL值均为9。具体来看,技术组合1、2、3、4、8在采用传统A2O或BNR处理技术的基础上,复合了MBBR、反硝化深床滤池、曝气生物滤池、混凝沉淀、传统人工湿地等整体成熟度较高的技术,TRL值为8~9,平均值与中位值接近或等于9,在天津等地有较成熟的的示范工程[41],技术规范也较为成熟,已有推广应用基础。技术组合1、3、5、9、10、11通过将悬浮填料、强化深床滤池等反应器强化脱氮技术或具有蓄积、调控功能的生态技术,运用在A2O技术或Phoredox技术的出水深度处理中,借助植物净化[46]、生态浮床[49]、复合强化人工湿地[50]等技术,可充分发挥植物和湿地的功能特点,以实现水体的强化脱氮除磷。这些技术系统平均TRL值接近8,整体较为成熟,在北京[51]、重庆[34]、天津[41]、河北[43, 46]等地都有相关示范工程和第三方效果评估,并具备初步的技术规范。技术组合6、7、12采用了轻质填料人工湿地、复合填料式生物滞留池、太阳能充氧生态浮岛等较为新颖的技术,故平均TRL值约为7,技术成熟度等级达到第三方评估应用认可的水平,在江苏[52]、安徽[36, 53]、西安[47]等地已建成相关课题的示范工程。
对各项LOT备选技术组合中不同主功能类型单项技术的TRL等级数量占比进行分析,结果如图4所示。在污水处理厂出水阶段,采用的各单项技术TRL值均为9,占比达到100%。污水厂处理工艺主要采用传统的水处理工艺 (A2O、BNR、氧化沟、Phoredox) ,由于其工艺发展时间较长,技术发展成熟,因而基本实现了市场性应用和推广。污水处理厂二级出水后,反应器类主功能技术中单项技术总数共6个,其中66.7%的单项技术TRL值达到9。而TRL值为7的单项技术占16.7%,TRL值为6的单项技术占剩余16.7%。人工湿地类主功能技术的单项技术总数为4个,TRL值为6的单项技术占比最大达50%,TRL值为9的单项技术占比50%。混合系统类主功能技术中,TRL值为6的单项技术总数为4个,占比50%,TRL值为9和8的单项技术各1个,占比均为12.5%,而TRL值为7的单项技术为1个,占比25%。故整体而言反应器类主功能技术大多发展时间较长,单项技术成熟度较高;混合系统类和人工湿地类单项技术具有较多耦合创新,技术成熟度略低。
2.3 SRL计算结果评估及系统运行成本分析
LOT备选技术组合经评估矩阵计算后的系统成熟度SRL分析结果如图5所示。各项备选技术组合的SRL值较高,大多技术组合的SRL值为0.6~0.8,处于系统发展验证阶段,相关技术组合正在为真正的市场推广进行产品稳定性提升。技术组合1、2、3、4、8的SRL值为0.8~1.0及0.9~1.0,达到了生产、操作和维护阶段,具备直接生产并面向市场产生较高的应用效益的能力,可在未来的推广应用中占据重要地位。
技术经济性作为衡量推广应用可行性的重要指标,也纳入本研究的成熟度评价中。LOT备选技术组合中单项技术的处理运行成本依据《城市污水处理工程项目建设标准》 (建标[2001]77号) 核算,主要考量技术的动力费、药剂费、材料费、修理费、管理费、折旧费、人工工资等。经调研,我国污水平均处理运行成本为0.50~1.22元·m−3[54] (污水处理全运营成本减去污泥处理成本) 。根据全国平均进出水水质[55]及平均运行成本计算可知:全国平均TN单位质量去除运行成本为0.03元·g−1,TP单位质量去除运行成本为0.19元·g−1。通过整合各单项技术的运行成本及技术组合的进出水水质,计算得出LOT备选技术组合的TN单位质量去除运行成本和TP单位质量去除运行成本,具体结果如表1所示,而各技术组合系统运行成本的对比分析结果如图5所示。
TN单位质量去除运行成本 (0.01~0.06元·g−1) 较TP单位质量去除运行成本 (0.09~0.65元·g−1) 低,且其技术组合的相应脱氮、除磷的单位质量去除运行成本大致趋势相同,除技术组合11外,由于其进水总磷浓度较低导致TP单位质量去除运行成本较高 (0.35元·g−1) 。12项技术组合的TN单位质量去除运行成本和全国平均TN单位质量去除运行成本基本持平,除技术组合1、2、3、4 (分别为0.06元·g−1、0.04元·g−1、0.03元·g−1、0.03元·g−1) 外TN单位质量去除成本均低于全国平均TN单位质量去除运行成本 (0.03元·g−1) 。由于LOT技术出水水质标准高于全国平均污水厂出水水质,说明LOT技术在单位质量去除TN上更具有市场优势,且更符合人们对再生水水质提高的日益需求。12项技术组合的TP单位质量去除运行成本和全国平均TP单位质量去除运行成本相比,除了技术1、2、3、10、11 (分别为0.61元·g−1、0.38元·g−1、0.65元·g−1、0.36元·g−1、0.35元·g−1) 外,各项技术组合的其单位质量去除运行成本相近或低于全国平均值 (0.19元·g−1) 。而LOT出水水质标准高于全国平均污水厂出水水质,说明LOT技术在单位质量去除TP上更具有市场优势,同样更符合人们对再生水水质提高的日益需求。进一步分析,技术组合1、2、3、4的TN、TP单位质量去除运行成本较高,主要受其技术组合中的污水厂二级处理技术和深度处理主功能技术大多为传统的反应器类技术,其系统运行和维护成本较高,但其改良SRL等级值较高,达到了操作和维护阶段,可直接生产并面向市场实现系统生命周期运行的最大效益。而技术组合5、6、7、8、9、10、11、12因各LOT备选技术组合的深度处理主功能技术类型主要通过生物法 (植物、生态系统耦合) 为核心关键工艺,其系统维护和运营成本较低且去除氮、磷能力较强使其TN、TP单位质量去除运行成本较低,但SRL系数等级大多分布在0.6~0.79,处于系统发展验证阶段。相关技术组合正在为真正的市场推广进行产品稳定性提升,有待进一步优化的潜力空间。以上技术组合将同步脱氮除磷的混合系统类技术或具有蓄积、调控功能的生态技术运用在二级出水深度处理工艺中,借助植物净化、生态浮床、复合强化人工湿地、曝气生物滞留池、太阳能混合充氧生态浮岛等一系列生态技术,充分利用植物和湿地等生态技术的特点,既实现了高效的同步脱氮除磷,又降低了工艺本身的运行和维护成本,并挖掘了污水资源化的景观价值,在其运行生命周期中进一步实现了低碳低耗运营模式的优化与发展。各项技术组合中相关生态类单项技术的TRL等级大多处于示范工程或第三方检验阶段,具备技术革新的潜力,更利于整体系统的优化和提升,市场前景可观。
3. 结论
1) 对水专项相关课题进行相关调研和实时跟进并对其和国内外基本满足LOT要求的技术进行梳理,筛选出12项LOT备选技术组合,均为污水厂二级处理技术辅以主功能深度处理技术进而达到LOT要求。主功能深度处理技术以生物类技术为主,可分为反应器类技术、人工湿地类技术和混合系统类技术三类,大部分单项技术TRL等级在7以上,具有较强的应用前景。整体而言,反应器类技术的单项技术成熟度较高,混合系统类和人工湿地类单项技术具有较多耦合创新,技术成熟度略低。
2) LOT备选技术组合的改良SRL值为0.6~0.8,处于系统发展验证阶段,相关技术组合正在为真正的市场推广进行产品稳定性提升。大部分备选技术组合的TN、TP单位质量去除运行成本均低于我国污水处理厂的相应污染物平均单位质量去除运行成本,具有较大市场优势。技术组合1、2、3、4的TN、TP单位质量去除运行成本较高,但其改良SRL等级值较高,达到了操作和维护阶段,可直接生产并面向市场实现系统生命周期运行的最大效益。技术组合5、6、7、9、10、11、12的系统充分利用植物和湿地等生态技术的特点,运行成本相对较低,具有推广潜力。由此可见,这些备选LOT技术组合基本实现了成本优化和低碳低耗的技术运营模式,可满足污水的资源化及生态环境的优化需求。同时,LOT单项技术还应加强物理-化学脱氮除磷、生态处理技术的研发,推进植被搭配优化,使其在运行生命周期中进一步实现低碳低耗运营模式的不断优化和发展。
-
表 1 混凝剂成本的比较
Table 1. Comparison of coagulant costs
混凝剂 混凝剂单价/(元·t−1) 混凝剂用量/(t·t−1) 混凝剂成本/(元·t−1) 生物质净化成本/(元·t−1) 总成本/(元·t−1) PACl 3 800 0.100 380 1 150 1 530 CTS 160 000 0.009 1 488 0 1 488 -
[1] 董静, 李根保. 微囊藻群体形成影响因子及机理[J]. 水生生物学报, 2016, 40(2): 378-387. [2] CARMICHAEL W, BOYER G. Health imPACLts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes[J]. Harmful Algae, 2016, 54: 194-212. doi: 10.1016/j.hal.2016.02.002 [3] KONG Y, PENG Y, ZHANG Z, et al. Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter[J]. Ultrasonics Sonochemistry, 2019, 56: 447-457. doi: 10.1016/j.ultsonch.2019.04.017 [4] 徐祥云, 彭君, 和智坤. 改性原位粘土去除滇池蓝藻[J]. 安徽农业科学, 2013, 41(10): 4576-4577. doi: 10.3969/j.issn.0517-6611.2013.10.122 [5] UMMALYMA S B, GNANSOUNOU E, SUKUMARAN R K, et al. Bioflocculation: An alternative strategy for harvesting of microalgae – An overview[J]. Bioresource Technology, 2017, 242: 227-235. doi: 10.1016/j.biortech.2017.02.097 [6] BARROS A I, GONCALVES A L, SIMOES M, et al. Harvesting techniques applied to microalgae: A review[J]. Renewable & Sustainable Energy Reviews, 2015, 41: 1489-1500. [7] TRUTTMANN L, SU Y, LEE S, et al. Gravity-driven membrane (GDM) filtration of algae-polluted surface water[J]. Journal of Water Process Engineering, 2020, 36: 101257. doi: 10.1016/j.jwpe.2020.101257 [8] ZHAO F, CHU H, YU Z, et al. The filtration and fouling performance of membranes with different pore sizes in algae harvesting[J]. Science of the Total Environment, 2017, 587: 87-93. [9] ZANG X, WANG L, XIAO J, et al. Harvesting colonial Microcystis flos-aquae using two-stage filtration: Influence of pre-filtration on harvesting performance[J]. Separation and Purification Technology, 2020, 245: 116736. doi: 10.1016/j.seppur.2020.116736 [10] 吴晓甜, 陶益, 周灿炜, 等. 陶瓷膜过滤收获微藻的效能与膜污染特征[J]. 应用化工, 2017, 46(06): 1027-1032. doi: 10.3969/j.issn.1671-3206.2017.06.001 [11] ZHAO F, SU Y, TAN X, et al. Effect of temperature on extracellular organic matter (EOM) of Chlorella pyrenoidosa and effect of EOM on irreversible membrane fouling[J]. Colloids and Surfaces B:Biointerfaces, 2015, 136: 431-439. doi: 10.1016/j.colsurfb.2015.09.031 [12] RICKMAN M, PELLEGRINO J, DAVIS R. Fouling phenomena during membrane filtration of microalgae[J]. Journal of Membrane ence, 2012, 423: 33-42. [13] RACAR M, DOLAR D, ŠPEHAR A, et al. Optimization of coagulation with ferric chloride as a pretreatment for fouling reduction during nanofiltration of rendering plant secondary effluent[J]. Chemosphere, 2017, 181: 485-491. doi: 10.1016/j.chemosphere.2017.04.108 [14] DENG L J, NGO H, GUO W S, et al. Pre-coagulation coupled with sponge-membrane filtration for organic matter removal and membrane fouling control during drinking water treatment[J]. Water Research, 2019, 157: 155-156. doi: 10.1016/j.watres.2019.03.052 [15] WANG W Y, YUE Q Y, LI R H, et al. Optimization of coagulation pre-treatment for alleviating ultrafiltration membrane fouling: The role of floc properties on Al species[J]. Chemosphere, 2018, 200: 86-92. doi: 10.1016/j.chemosphere.2018.02.114 [16] XU W, CHEN Y, LIANG H, et al. A comparison study of in-situ coagulation and magnetic ion exchange (MIEX) as pre-treatments for ultrafiltration: Evaluating effectiveness of organic matters removals and fouling mitigation[J]. Chemosphere, 2019, 214: 633-641. doi: 10.1016/j.chemosphere.2018.09.136 [17] ZHANG D, XU H, WANG X, et al. Influence of coagulation process on the ultrafiltration performance-The roles of Al species and characteristics of algae-laden water[J]. Separation & Purification Technology, 2017, 183: 32-42. [18] YANG R, LI H, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95: 59-89. doi: 10.1016/j.watres.2016.02.068 [19] 冯辰辰, 闫谨, 唐娜, 等. 五种絮凝剂采收小球藻的研究[J]. 应用化工, 2020, 49(4): 904-908. doi: 10.3969/j.issn.1671-3206.2020.04.025 [20] 王瑞, 杨福兴, 曲广淼. 絮凝剂对活性污泥降解有机物及除磷的影响[J]. 水处理技术, 2021, 47(2): 54-58. doi: 10.16796/j.cnki.1000-3770.2021.02.011 [21] 邱丽霞, 俞志明, 宋秀贤, 等. 改性粘土对球形棕囊藻的消除研究[J]. 海洋与湖沼, 2019, 50(1): 100-105. doi: 10.11693/hyhz20180800201 [22] 雷国元, 邹有红, 耿志毅, 等. 铁盐类混凝剂去除水中藻类生物的研究[J]. 武汉科技大学学报, 2003, 26(1): 35-38. [23] 陈思莉, 邴永鑫, 常莎, 等. 除藻剂应急治理湖水蓝藻水华案例分析[J]. 中国农村水利水电, 2019, 000(3): 20-23. doi: 10.3969/j.issn.1007-2284.2019.03.005 [24] WANG Y, ZHUO S, LI N, et al. Influences of various aluminum coagulants on algae floc structure, strength and flotation effect[J]. Procedia Environmental ences, 2011, 8(1): 75-80. [25] Zemmouri H, Drouiche M, Sayeh A, et al. Coagulation flocculation test of Keddara's Water Dam using chitosan and sulfate aluminium[J]. Procedia Engineering, 2012, 33: 254-260. doi: 10.1016/j.proeng.2012.01.1202 [26] NAYAK M, RASHID N, SUH W I, et al. Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their imPACLt on water reusability[J]. Renewable Energy, 2019, 136: 819-827. doi: 10.1016/j.renene.2019.01.050 [27] YAO M, NAN J, CHEN T, et al. Influence of flocs breakage process on membrane fouling in coagulation/ultrafiltration process-Effect of additional coagulant of poly-aluminum chloride and polyacrylamide[J]. Journal of Membrane Science, 2015, 491: 63-72. doi: 10.1016/j.memsci.2015.05.018 [28] 邵延林, 陈国木, 潘明熙, 等. 聚合氯化铝去除浸出液中单宁酸的影响因素及机理[J]. 有色金属工程, 2021, 11(6): 49-58. doi: 10.3969/j.issn.2095-1744.2021.06.009 [29] HOWE K J, CLARK M M. Effect of coagulation pretreatment on membrane filtration performance[J]. American Water Works Association, 2006, 98(4): 133-146. doi: 10.1002/j.1551-8833.2006.tb07641.x [30] VILLACORTE L O, EKOWATIY, WINTERS H. MF/UF rejection and fouling potential of algal organic matter from bloom-forming marine and freshwater algae[J]. Desalination, 2015, 367: 1-10. doi: 10.1016/j.desal.2015.03.027 [31] MO W, SOH L, WERBER J R, et al. Application of membrane dewatering for algal biofuel[J]. Algal Research, 2015, 11: 1-12. doi: 10.1016/j.algal.2015.05.018 [32] WEI Z, WEN Z, ZHANG X, et al. Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting[J]. Algal Research, 2013, 2(3): 223-229. doi: 10.1016/j.algal.2013.05.002 [33] WICAKSANA F, FANE A G, PONGPAIROJ P, et al. Microfiltration of algae (Chlorella sorokiniana): critical flux, fouling and transmission[J]. Journal of Membrane Science, 2012, 387: 83-92. [34] SRIPUI J, PRADISTSUWANA C, KERR W L, et al. Effects of particle size and its distribution on specific cake resistance during rice wine microfiltration[J]. Journal of Food Engineering, 2011, 105(1): 73-78. doi: 10.1016/j.jfoodeng.2011.01.033 [35] LEE S A, FANE A G, AMAL R, et al. The effect of floc size and structure on specific cake rresistance and compressibility in dead-end microfiltration[J]. Separation Science and Technology, 2003, 38(4): 869-887. doi: 10.1081/SS-120017631 [36] WALTON J R. Evidence for participation of aluminum in neurofibrillary tangle formation and growth in Alzheimer's disease[J]. Journal of Alzhmers Disease, 2010, 22(1): 65-72. doi: 10.3233/JAD-2010-100486 [37] 胡碧洋, 赵蕾, 周文静, 等. 我国水华蓝藻资源化研究现状、问题与对策[J]. 水生态学杂志, 2012, 33: 138-143. doi: 10.15928/j.1674-3075.2012.03.015 [38] 缺少内容 [39] WANG L, PAN B, GAO Y, et al. Efficient membrane microalgal harvesting: Pilot-scale performance and techno-economic analysis[J]. Journal of Cleaner Production, 2019, 218: 83-95. [39] YANG L, WANG L, ZHANG H, et al. A novel low cost microalgal harvesting technique with coagulant recovery and recycling[J]. Bioresource Technology, 2018, 266: 343-348. [40] ZHU L D, LI Z H, ERKKI H, et al. Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction[J]. Biotechnology for Biofuels, 2018, 11(01): 183. doi: 10.1186/s13068-018-1183-z [41] NAZARI M T, RIGUETO C V T, REMPEL A, et al. Harvesting of Spirulina platensis using an eco-friendly fungal bioflocculant produced from agro-industrial by-products[J]. Bioresource Technology, 2021, 322: 124525. doi: 10.1016/j.biortech.2020.124525 [42] YANG Z, WU H, YUAN B, et al. Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water[J]. Chemical Engineering Journal, 2014, 244: 209-217. doi: 10.1016/j.cej.2014.01.083 [43] 李丽鹃, 龚全, 权可艳, 等. 壳聚糖对黄颡鱼生长及非特异性免疫机能的影响[J]. 西南农业学报, 2013, 26(6): 2614-2619. doi: 10.16213/j.cnki.scjas.2013.06.092 [44] MA C, HU W, PEIA H, et al. Enhancing integrated removal of Microcystis aeruginosa and adsorption of microcystins using chitosan-aluminum chloride combined coagulants: Effect of chemical dosing orders and coagulation mechanisms[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 490: 258-267. [45] 梁韩英, 程晓薇, 李俊鹏, 等. 壳聚糖联合聚合氯化铝强化混凝除藻的参数优化[J]. 中国环境科学, 2019, 39(6): 2568-2576. doi: 10.3969/j.issn.1000-6923.2019.06.040 [46] ZHANG Z, JING R, HE S, et al. Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid[J]. Separation and Purification Technology, 2018, 206: 131-139. doi: 10.1016/j.seppur.2018.05.051 期刊类型引用(1)
1. 王圣杰,赵可心,郝泽林,赵帅明,李晓刚. 湿地生态修复和废水处理的协同作用与优化研究. 环境科学与管理. 2024(11): 155-159 . 百度学术
其他类型引用(0)
-