-
四环素(tetracycline,TC)是最常见的一种广谱抗生素[1]。其化学结构稳定,不易被人体和动物消化吸收,大多通过粪便和尿液排出体外[2]。常规的污水处理方式对四环素的去除效果有限,因此,近年来在沉积物、地表水和地下水中经常检测到残留的四环素[3]。除了四环素本身的毒性,抗生素还会导致水体中产生抗性细菌和抗性基因,可危害生态系统和人体健康[4]。
近年来,芬顿氧化体系在水体污染物去除中受到广泛关注[5],其通过H2O2产生的羟基自由基(·OH)来降解有机污染物。但·OH的稳定性较差,从而限制对污染物的降解效果[6]。相比之下,半衰期更长、稳定性更好的硫酸根自由基(SO4·−)受到越来越多的探究。与液体H2O2相比,固体过硫酸盐在运输、使用和储存方面更安全。过一硫酸盐(PMS)是过硫酸盐的一种,在降解具有不饱和键和芳香族成分的有机污染物方面更具选择性[7]。PMS所产生的SO4·−在不同条件下被激发后还可以转化为·OH、SO5·−等多种活性物质[8]。目前较为常见的激活PMS的体系主要有2类,即均相反应体系和基于催化剂的非均相反应体系。其中,均相反应体系易受到水质等多方面因素影响,而基于催化剂的非均相体系催化效果相对更为稳定。因此,将PMS与基于催化剂的光催化技术相结合,具有更高的污染物去除效率和更广泛的应用前景。
目前,已有将PMS与TiO2[9]、ZnO[10]、g-C3N4[11]、CdS[12]等光催化剂相结合的研究。而在众多催化剂材料当中,含钴元素的材料被证明是激活PMS最有效的一类催化剂。JIANG等合成了多孔0D/3D NiCo2O4/g-C3N4 异质结,对卡马西平具有高效的去除效果[13]。JIN等合成了Z型异质结催化剂Co3O4/g-C3N4,在60 min内对四环素的去除率可以达到90.2%[14]。TIAN等制备出了蒲公英球状NiCo2O4催化剂,在120 min时可以去除90%的腐殖酸[15]。然而,钴元素的浸出可能会对水体环境造成二次污染。
铁酸镍(NiFe2O4)是一种常见的 p 型半导体,具有禁带宽度小、成本低、效益高、化学耐久性强和可磁性分离的优点[16]。然而,由于电荷载流子的快速复合和纳米粒子团聚效应引起的活性位点数量下降,导致NiFe2O4的催化活性较低[17]。钨酸铋(Bi2WO6)具有良好的可见光吸收能力和抗光腐蚀性[18]。将NiFe2O4和Bi2WO6复合构成p-n异质结结构,可促进电荷的分离且减弱NiFe2O4的团聚效应,提升污染物的去除率。
本研究利用静电自组装策略,在乙醇溶液中通过NiFe2O4和Bi2WO6合成得到复合催化剂NiFe-Bi-XY,并确定了NiFe2O4和Bi2WO6的最佳质量比,用于在太阳光/NiFe-Bi-XY/PMS体系中降解四环素。该催化剂NiFe-Bi-73含有双变价金属,可以很好地激发PMS,且所构建体系将光催化与非光催化体系相结合,大大提高了降解污染物的效率。此外,本研究将p-n异质结催化与PMS激活相结合,最大限度地发挥催化剂各组分的功能,进一步研究了在不同的反应条件下体系的降解效果,包括改变PMS浓度、溶液初始pH、催化剂剂量等影响因素。通过循环实验和一系列表征分析结果证明了所制备催化剂的稳定性。通过ESR、XPS价带谱和捕获实验等结果提出了多途径激活PMS以及基于自由基和非自由基的四环素降解途径。最后,通过HPLC-MS对降解产物进行检测,阐明了四环素可能的降解机制。
-
过一硫酸盐(K5H3S4O18,PMS)、四环素(tetracycline,TC)、五水合硝酸铋(Bi(NO3) 3·5H2O)、十六烷基三甲基溴化铵(CTAB)和二水合钨酸钠(Na2WO4·2H2O)购买于上海麦克林生化科技有限公司;六水合氯化镍(NiCl2·6H2O)购买于福晨(天津)化学试剂公司;六水合三氯化铁(FeCl3·6H2O)购买于阿拉丁试剂(上海)有限公司;氢氧化钠和硫酸购自国药集团化学试剂有限公司(上海)。所有化学品均未经进一步纯化,直接使用。
-
1) Bi2WO6的制备:以CTAB为模板,利用水热法制备Bi2WO6。称取165 mg Bi(NO3) 3·5H2O、485 mg Na2WO4·2H2O和25 mg CTAB加入35 mL去离子水中,剧烈搅拌30 min后,对混合溶液超声处理10 min。将溶液转移至100 mL反应釜中,置于120 ℃烘箱中加热24 h,自然冷却后通过离心获得沉淀,所得沉淀用去离子水洗涤两次,放入60 ℃烘箱中烘干待用。
2) NiFe2O4的制备:称取2 mmol FeCl3·6H2O和1 mmol NiCl2·6H2O加入100 mL去离子水中,搅拌30 min,然后逐滴加入5 mol·L−1的NaOH溶液直到pH调至13左右,搅拌1 h后通过离心获得沉淀,所得沉淀放入60℃烘箱中烘干,然后用马弗炉在500 ℃条件下烘干3 h,升温速度设置为5 ℃·min−1,自然冷却后待用。
3) NiFe-Bi-XY的制备:将Bi2WO6和NiFe2O4按照一定的质量比分别加入到100 mL无水乙醇中,两溶液均超声10 min后搅拌30 min,将Bi2WO6溶液逐滴加入NiFe2O4溶液中,搅拌2 h后离心得到沉淀,所得沉淀放入60℃烘箱中烘干待用。实验中Bi2WO6和NiFe2O4的质量比分别为5∶5、7∶3和9∶1,记为NiFe-Bi-55、NiFe-Bi-73和NiFe-Bi-91。
-
使用 Bruker D8衍射仪测试X射线衍射光谱(XRD)对晶体结构进行表征。为了测试样品的组成元素状态和价带谱,以Al-Ka射线作为激发源,使用EscaLab Xi+光谱仪测量X 射线光电子能谱(XPS)和价带位置。运用UV 3600 Plus分光光度计获得紫外-可见漫反射光谱(UV-Vis DRS)。以KBr为背景,运用ALPHA光谱仪(Bruker)对催化剂进行傅里叶变换红外光谱(FT-IR)检测。催化剂的形貌通过扫描电子显微镜(SEM, EM-30 Plus, COXEM)和透射电子显微镜(TEM, G2 F20, FEI)进行观察。用F7000光谱仪(HITACHI)测量光致发光光谱(PL)。用总有机碳(TOC)测定仪(multi N/C 3100, Analytik Jena AG)测定实验后溶液的矿化率。水样的化学需氧量(chemical oxygen demand,COD)通过分光光度计(DR3900, HACH)进行测定。利用电子顺磁共振仪(ESR, E500, BRUKER)对自由基和其他活性物质进行检测。以0.5 M的Na2SO4溶液为电解液,在配有碳棒对电极、饱和甘汞参比电极(SCE)和工作电极的标准三电极系统中测量光电流和电化学阻抗(EIS)。
-
光催化实验采用光化学反应器(CEL-PE300L-3A, 中教金源有限公司)作为反应装置来进行光催化反应。以300 W的氙灯作为模拟太阳光源,辐射通量确定为 30 mW·cm−2。在批量光降解实验中,将50 mg催化剂样品分散到100 mL浓度为20 mg·L−1的四环素溶液中,并在黑暗中搅拌溶液10 min以达到吸附和解吸平衡。PMS浓度为0.2 ~1.2 mmol·L−1,并且在辐照过程中每隔5 min取3 mL悬浮液。将样品离心并通过高效液相色谱(HPLC,LC-20A,岛津)测量四环素的浓度,根据式(1)计算光催化去除率。
式中:D为四环素去除率,%;A0为样品溶液初始吸光度;At为不同反应时间溶液的吸光度;C0为样品溶液初始浓度,mg·L−1;Ct为不同反应时间的浓度,mg·L−1。
此外,对NiFe-Bi-73的重复利用性能进行了测试。降解产物通过1290II-6460液相色谱-质谱联用(LC-MS,安捷伦)在正离子模式下鉴定。运用H2SO4和NaOH溶液(2 mol·L−1)调节四环素溶液的初始 pH。此外,将Cl−、HCO3−、NO3−和 H2PO4− 4种阴离子分别加入到四环素溶液中,对每种阴离子均设置1、5和10 mmol·L−1 3个浓度梯度,以测试NiFe-Bi-73的稳定性。本研究还测试了所合成催化剂对于二沉池出水和河水配制的四环素溶液中的污染物去除效率,以评估太阳光/NiFe-Bi-73/PMS体系的实际应用潜力。
-
为了判断在太阳光/NiFe-Bi-73 /PMS体系反应过程不同活性物种的作用,根据不同捕获剂与活性物种的反应速率,选用甲醇(MeOH,1.0 mmol·L−1)、叔丁醇(TBA,100.0 mmol·L−1)、对苯醌(BQ,1.0 mmol·L−1)、L-组氨酸(10.0 mmol·L−1)和甲酸(10.0 mmol·L−1)分别作为SO4·−和·OH、·OH、·O2−、1O2和h+的捕获剂。通过检测在加入捕获剂后对于四环素去除情况的影响,判断影响降解效果的主要活性物种。
-
通过X射线衍射仪对Bi2WO6,NiFe2O4 2种单体和3种NiFe-Bi-XY复合物的物相组成进行了测试,结果如图1(a)所示。由Bi2WO6的衍射图谱可见,衍射角位于28.28◦、32.71◦、47.05◦、55.84◦和58.57◦的特征峰,分别对应为(113)、(200)、(220)、(313)和(226)晶面(JCPDS 39-0256)[19]。NiFe2O4的特征峰位于30.29◦、35.66◦、37.35◦、43.31◦、53.80◦、57.36◦和62.98◦,分别对应于NiFe2O4图谱中的(220)、(311)、(222)、(400)、(442)、(511)和(440)晶面(JCPDS# 00-054-0964)[20]。此外,在NiFe-Bi-XY的XRD图谱清楚地可以看到Bi2WO6和NiFe2O4的出峰,说明催化剂在合成过程中保持着2种单体结构的完整性,并且不含有其它杂质。
Bi2WO6、NiFe2O4和NiFe-Bi-XY的FT-IR表征结果如图1(b)所示。在3种NiFe-Bi-XY中,均可以检测到2种单体的特征峰。位于3 404 cm−1和1 625 cm−1处的强宽峰分别源于水分子中羟基(—OH)基团的伸缩振动和弯曲振动[21]。Bi2WO6的吸收峰在400~1 000 cm−1,说明含有W−O、Bi−O键和W−O−W键[22]。对于NiFe2O4单体,在414.5~601 cm−1内观察到的2个特征峰分别对应于NiFe2O4的Ni—O和Fe—O键[23]。上述结果表明,合成的NiFe-Bi-XY有效地将Bi2WO6和NiFe2O4结合在一起。
XPS谱图用于研究所制备催化剂的元素组成和表面化学状态。由图2(a)可见,结合能为158.8 eV的峰对应于Bi4f7/2,164.1 eV处的峰对应于Bi4f5/2,其均为Bi3+的特征峰[24]。Fe2p的XPS谱图(图2(b))中有6个峰,分别是709.0、711.8、723.7和725.4 eV 4个主峰和2个卫星峰。其中,709.0 eV和711.8 eV处的峰对应Fe2p3/2,而725.4 eV和723.8 eV处的峰则对应Fe2p1/2[25]。由图2(c)可见,结合能为853.2 eV和872.4 eV的峰分别对应Ni2p3/2和Ni2p1/2[26]。此外,Ni2p3/2分别位于853.2 eV和855.8 eV,这说明同时存在Ni2+和Ni3+[27]。由图2(d)可以看出,O1s有3个峰,在529.4 eV处的峰为金属元素与氧原子成键,对应于Ni−Fe−O键[28];530.1 eV处的特征峰对应Ni−O−H键,532.4 eV处的峰则是水中氧元素的特征峰[29]。
在XPS图中可以看到,复合催化剂中各元素的出峰位置相较于单体的位置均有差异。对于异质结结构而言,两个半导体的费米能级平衡会产生内部电场,导致电荷向其中一侧扩散并改变相应半导体的能带位置[30]。由图2可以看出,相较于Bi2WO6,NiFe-Bi-73中Bi4f的数值整体向左移动0.1 eV,结合能减小。说明电子密度变大。铁、镍元素的结合能整体升高,证明电子密度变小[31]。由此推测,电子由NiFe2O4的导带流向了Bi2WO6的导带,形成了一个内部电场。
-
在图3(a)和图3(b)中呈现出NiFe2O4纳米粒子和片状的Bi2WO6,而由图3(c)可以观察到在复合催化剂中,NiFe2O4均匀分布在Bi2WO6表面。图3(d)则进一步证明2种单体之间产生了非常强的相互作用,交界面边界证明形成了异质结。在图3(e)~(f)中,高分辨率TEM图片中0.27 nm 的晶格条纹为Bi2WO6的(200)晶面[32],而0.25 nm和0.29 nm的间距分别对应了NiFe2O4中(311)和(220)的晶格平面[33]。
-
运用UV-Vis进一步检测了所合成催化剂的光学性质。如图4(a)所示,Bi2WO6在紫外波段具有很强的光吸收,光吸收波长接近464 nm;纯NiFe2O4在整个可见光和紫外光的范围内均有吸收。在复合材料中,随着NiFe2O4的增加,明显拓展了复合催化剂的光吸收范围。根据Kubelka-Munk(式(2)),如图4(b)和图4(c)所示,由于Bi2WO6和NiFe2O4是直接半导体,根据式(2)可计算得到禁带能量(Eg)分别为2.59 eV和2.63 eV。
一般来说,催化剂在PL谱图中的强度越弱,说明其抑制光生电子复合的能力越强。由图4(d)可以看出,3种NiFe-Bi-XY的强度均比Bi2WO6弱,说明光生电荷的分离效率更高且抑制光生载流子的能力更强。NiFe2O4的谱图强度在5个样品中是最弱的,是由于其团聚效应影响了对光的响应能力。光电流和阻抗被用来研究材料的光学和电化学性质。如图4(e)和图4(f)所示,在复合催化剂中,NiFe-Bi-73的光电流强度更高,阻抗也更小,表明光生电荷数量越多。相比较于NiFe2O4,复合物的光电流强度更高,这也间接说明异质结的形成改善了NiFe2O4的团聚效应。
-
如图5(a)所示,Bi2WO6在30 min内对四环素的去除率仅为70.0%,NiFe2O4对四环素的去除率为80.5%。将2种单体复合后,降解效果明显增强,其中NiFe-Bi-73的去除效果最好,最终对四环素的去除率可以达到91.1%。如图5(b)所示,各催化剂对应的一阶动力学常数顺序为NiFe-Bi-73>NiFe-Bi-91>NiFe-Bi-55> NiFe2O4 >Bi2WO6。由图5(c)可见,单纯的光照条件下无法去除四环素,单纯的PMS(42.9%)和催化剂(48.0%)对四环素去除效率较低。相比太阳光/PMS体系,太阳光/催化剂和催化剂/PMS体系去除四环素的效率更高,分别可以达到78%和83%。这说明催化剂可以很好地被光激发形成自由基,而太阳光对PMS的激发效果较差。显然,太阳光/催化剂/PMS体系的降解效果是最好的,对四环素的去除率可达91.1%。这说明有效去除四环素主要是多模式激发PMS和产生各种活性物质共同作用的结果。表1对单纯光催化、传统芬顿体系和光催化与PMS相结合3种体系降解四环素的性能进行了比较,可见,本研究所选用的光催化体系对四环素的降解效率较高。
对影响污染物去除的因素进行了探究,主要包括PMS浓度、初始溶液pH、催化剂用量和四环素初始浓度。由图6(a)可知,当加入PMS的初始浓度由0.3 mmol·L−1增加到1.2 mmol·L−1时,NiFe-Bi-73对四环素的去除率由74.2%迅速增加到91.1%,这是由于更多的PMS会产生更多SO4·−、·OH等活性成分,促进降解反应的进行。但是,当PMS的浓度继续增加到2.4 mmol·L−1时,催化剂对四环素的去除率反而降至84.1%。这可能是因为过多的SO4·−会自猝灭或者与PMS反应,生成氧化能力较弱的SO5·−自由基或者无氧化能力的离子基团,导致四环素降解效果降低(式(3)~式(4))[40]。
由图6(b)可见,该体系在所研究的pH范围内(3.01~11.13)均可保持较好的降解性能,中性条件对于四环素去除的抑制最为明显,但去除率依然可以达到77%。PMS的pKa1和pKa2分别是0和9.4,即当pH为3.0~9.0时,HSO5−是主要离子;当pH大于11时,PMS会形成SO52−。因此,当溶液是中性时,PMS产生的自由基数量有所下降,影响了降解效果[41]。此外,在pH为3、5、7、9时测得NiFe-Bi-73的Zeta电位分别−15.0、−23.4、−39.6和−36.3 mV,即NiFe-Bi-73在pH为7时,电位最负,四环素与催化剂之间产生静电排斥,不利于降解反应进行[42]。
如图6(c)所示,将催化剂的初始投加量从0.1 g·L−1增加到0.5 g·L−1,四环素的去除率由72%迅速增加到91%。这是因为催化剂提供的电子和空穴数量增加,使得更多的PMS被激活。当继续增加催化剂到0.7 g·L−1时,四环素的去除率反而降至86%。这可能是由于催化剂使得溶液对光的透射能力减弱,导致光利用率降低[43];也可能是过量催化剂之间发生团聚作用,导致催化剂的活性位点减少,进而降低催化效率[44]。如图6(d)所示,将四环素的初始质量浓度从10 mg·L−1逐渐增加到40 mg·L−1,去除率由91%降低到80%。这是因为当加入相同剂量的光催化剂和PMS时,活性基团和电子−空穴对的数量是固定的,四环素的浓度越高,降解效率越低。
如图7(a)~(d)所示,进一步研究了实际水体中可能含有的阴离子对太阳光/NiFe-Bi-73/PMS体系降解四环素的影响。在Cl−、HCO3−、H2PO4− 和 NO3− 4种离子中,只有H2PO4−对降解表现出明显的抑制作用。当H2PO4−的浓度由1 mmol·L−1增加到10 mmol·L−1,四环素的去除率由61.5%降低至53.7%,这是由于H2PO4−可以与SO4·−和·OH反应生成氧化能力较低的HPO4·−,从而影响了降解效率[45]。高浓度的HCO3−会与SO4·−和·OH反应生成反应活性较低的CO3·−,从而导致四环素的去除效率下降[46]。高浓度的Cl−同样会影响降解效率,这可能是由于Cl−和四环素之间争夺催化剂表面的位点所致[47]。NO3−对降解效果并没有明显的影响。
为了检测太阳光/NiFe-Bi-73/PMS体系对实际水体中四环素的降解效果,采集了某河水和某污水处理厂二沉池出水的水样(水质参数见表2)配制污染物溶液。在这2种溶液中,所构建的反应体系对四环素的去除率均可以达到90%(图8(a)),且对COD的去除率分别可以达到100%和90.3%。如图8(b),将催化剂多次重复利用测试降解效果,发现催化剂四次重复后,反应体系对四环素的去除率率仍可以保持在77.6%。测得4次重复利用的矿化率分别为56.3%、50.3%、46.2%和43.1%。如图8(c)和8(d),对重复利用后的催化剂进行了XRD和XPS分析,发现与未重复利用前的催化剂进行对比,催化剂在重复利用后依然保持了原有的结构,结构和催化性能都比较稳定。图8(e)和8(f)为重复利用前后的Fe和Ni的高分辨率XPS图,从图中可以发现使用前后两种元素的出峰位置发生明显偏移,且二价离子与三价离子的相对峰强度变化表明二者的相对含量较使用之前发生变化,证明复合催化剂中的金属元素参与激活PMS。
-
根据对降解中间产物的质谱分析,本文推导出四环素可能的降解机理。如图9所示,四环素分子具有双键、胺基和酚羟基,这使其易于与多种活性物质反应。在过程A中,四环素首先脱去氨基和二甲氨基生成TC1(m/z = 389)。之后TC1通过开环反应生成TC2(m/z = 365),后者经历脱甲基、羟基氧化、开环等一系列反应生成TC3(m/z = 300)。此外,TC1也可以通过类似的一系列反应生成TC4(m/z = 337)。在过程B中,四环素分子首先与水分子通过加成反应生成TC5(m/z = 459),TC5再通过开环反应、脱水、脱甲基、羟基氧化等反应生成TC6(m/z = 389),最终经过一系列的反应过程生成TC7(m/z = 337)。TC3、TC4和TC7 最终可以被进一步降解成一系列小分子物质,包括TC8(m/z = 223)、TC9(m/z = 152)、TC10(m/z = 149)、TC11(m/z = 135)、TC12(m/z = 116)、TC13(m/z = 114)和TC14(m/z = 60)。结合测得的TOC去除率,可以证明部分有机分子被彻底矿化,转化成H2O和CO2。
复合催化剂的能带位置与反应过程中电荷的转移和活性物质的生成具有密切联系。由图10(a)和图10(b)可以看出,Bi2WO6和NiFe2O4的价带值分别为1.88 eV和0.86 eV。结合禁带宽度和式(5)可以进一步计算出Bi2WO6和NiFe2O4的导带值分别为−0.71 eV和−1.77 eV。
在太阳光/NiFe-Bi-73/PMS体系中,运用自由基淬灭实验来反推降解四环素过程中的主要活性物种。根据淬灭剂和相应活性物种的反应速率常数,选择甲醇、叔丁醇、对苯醌、L-组氨酸和甲酸分别作为 SO4·−和·OH、·OH、·O2−、1O2和h+的淬灭剂[48]。由图10(c)可以看出,加入对苯醌后抑制效果最为明显,四环素的去除率下降至61.3%,说明·O2−是降解四环素的主要活性物种。L-组氨酸也表现出了较为明显的抑制作用,四环素的去除率下降至76%,因此,1O2也是反应中重要的活性物种。加入叔丁醇和甲醇后的抑制效果并不明显,四环素的去除率仍然可以分别达到82.8%和86.1%,表明·OH和SO4·−在反应过程中并不发挥主要作用。这主要是因为这2种自由基在短时间内转化成其它活性物种。
为了进一步研究反应过程中自由基的生成和转化过程,进行了ESR测试。如图10(d)所示,在加入PMS的情况下,所处体系均可以产生·OH和SO4·−,证明光照和催化剂材料均可以激活PMS。此外,在催化剂光照的情况下,可以检测到明显的·OH四重峰,证明催化剂材料可以被光照激发。对于·O2−而言(图10(e))所示,光照情况下可以观察到明显的出峰信号,而在催化剂与PMS共存的情况下,由于催化剂中的变价金属可以与PMS产生中间体并进一步生成·O2− [49]。而体系中的1O2则是来源于SO4·−、·OH和·O2−的转化过程,使得其成为主要的活性物质之一。
为了证明NiFe-Bi-XY形成了p-n异质结,分别对Bi2WO6、NiFe2O4和NiFe-Bi-73进行了Mott-Schottky 测试,结果如图11所示。可以看出,Bi2WO6谱图斜率为正向,为n型半导体;NiFe2O4谱图斜率为负向,为p型半导体。此外,NiFe-Bi-73的谱图曲线呈现出倒V型趋势,证明复合催化剂形成了p-n异质结结构[50]。
基于上述结果,提出了基于PMS活化和光催化去除四环素的反应机制(图12)。光照条件下在Bi2WO6和NiFe2O4表面产生了光生电子和空穴(式(6))。在形成p-n异质结时,由于在Bi2WO6和NiFe2O4的界面处存在内部电场(internal electric field, IEF),n型半导体Bi2WO6的价导带位置下移,而p型半导体NiFe2O4的价导带位置上移[51]。NiFe2O4处的光生电子可以转移到Bi2WO6的导带处,而空穴被继续保留在NiFe2O4的价带里。电子可以与体系中的溶解氧反应生成·O2−,也可以和PMS反应生成SO4·−,SO4·−又可以进一步与水反应生成1O2(式(7)~式(9))。虽然光生空穴不具有足够的氧化能力直接与水反应生成·OH,但·OH的生成可以通过·O2−→H2O2→·OH这一途径实现(式(10)~式(11))[52]。一般来说,1O2并不能直接反应生成,但·O2−、·OH和SO4·−在一定条件下可以转化为1O2(式(12)~式(14))[53]。此外,过渡金属离子可以与HSO5−进行络合反应形成M-SO5中间体,所形成的中间体可再与HSO5−反应产生·O2−(式(15)~式(18))。这些活性物种将四环素分子降解成小分子物质,从而实现对污染物的高效去除(式(19))。
-
1)通过自组装法成功制备了复合催化剂NiFe-Bi-XY,当Bi2WO6和NiFe2O4的质量比为7∶3时,催化剂具有最佳的太阳光利用效率及最强的催化能力。在最佳反应条件下,在30 min时NiFe-Bi-73对20 mg·L−1四环素的去除率可达91%。
2)由于体系中同时存在自由基和非自由基降解途径,复合催化剂大大提升了太阳光/NiFe-Bi-73/PMS体系对四环素的去除率。
3)复合催化剂中NiFe2O4和Bi2WO6界面紧密结合,很好地形成了p-n异质结结构,促进了光生电荷的有效分离和自由基的高效产生。
4)在该体系中,Cl−、HCO3−和H2PO4− 会抑制四环素的降解, 而NO3−对降解效果没有明显的影响。
5)在本研究降解体系中主要活性物种为1O2、·O2−和·OH,同时也证实所合成的催化剂为p-n异质结。
太阳光/NiFe-Bi-XY异质结催化剂/过一硫酸盐体系对四环素的降解性能及机理
Performance and mechanism of tetracycline degradation by sunlight/NiFe-Bi-XY heterojunctions /permonosulfate system
-
摘要: 近年来,尖晶石型铁氧体在光催化领域展现出良好的应用前景,但其团聚作用会影响催化效果,构建异质结结构可以有效提高催化效率。通过自组装法合成了一系列Bi2WO6/NiFe2O4 p-n型异质结催化剂(NiFe-Bi-XY),并将其应用于去除水体中的四环素污染物。在太阳光/NiFe-Bi-73/过一硫酸盐(PMS)体系中,在反应30 min时对20 mg·L−1四环素溶液的去除率可以达到91.1%,矿化率可以达到56.3%,所构建的反应体系在碱性环境中依然保持着对四环素良好的去除效果。通过XPS价带谱、禁带宽度计算、Mott-Schottky和ESR测试证明NiFe-Bi-XY形成了p-n型异质结结构。在所构建的体系中,四环素的降解主要是通过光催化和非光催化降解2种途径共同实现的。淬灭实验结果表明,·O2−和1O2是降解四环素的主要活性物种。以上研究结果可为合成高效的二元异质结催化剂,并将其用于环境修复提供参考。Abstract: In recent years, spinel-type ferrites have promising application prospects in the field of photocatalysis. However, its agglomeration will affect the catalytic effect, and the construction of a heterojunction structure can effectively improve the catalytic efficiency. In this study, a series of Bi2WO6/NiFe2O4 p-n type heterojunctions (NiFe-Bi-XY) by self-assemble were prepared and used to remove tetracycline in water. In the sunlight/NiFe-Bi-73/permonosulfate (PMS) systems, yhe optimal removal efficiency towards 20 mg·L−1 tetracycline could reach 91.1% at 30 min, and the mineralization rate was 56.3%. The constructed reaction system still maintained a good removal effect of tetracycline in an alkaline environment. For NiFe-Bi-XY, the formation of p-n type heterojunctions was proved by XPS valence band spectra, Kubelka-Munk plots, Mott-Schottky test and ESR measurements. In this system, the degradation of tetracycline was mainly achieved by photocatalytic and non-photocatalytic pathways. Radical trapping experiments confirmed that ·O2− and 1O2 radicals were the most critical active species during the catalytic process. This study provides a feasible approach to synthesize efficient binary heterojunction catalysts for environmental remediation.
-
Key words:
- tetracycline /
- wastewater treatment /
- photocatalysis /
- peroxymonosulfate /
- heterojunction
-
氰化提金所带来的环境污染隐患是黄金冶炼行业面临的共性关键难题。据统计,我国每年产出的氰化尾渣数量约为2.45×107 t[1]。氰化尾渣中含有大量的氰化物和有价金属,如果仅仅进行堆存或填埋处理,不仅会污染环境,而且也浪费了资源。因此,氰化尾渣的无害化处理是黄金冶炼行业节能减排及可持续发展面临的关键问题。
氰化尾渣的综合利用主要包括预处理-二次提取金银,综合回收铜、铁、锌,以及无害化处理3大类。前2类侧重于有价资源的综合回收,无害化处理则侧重于氰化物的破坏及重金属离子的去除。综合回收一般流程长、工艺较为复杂,以浮选法为主;无害化处理工艺则比较简单,是解决氰化提金高污染问题最直接最有效的方法之一。目前,氰化尾渣的无害化处理主要包括化学氧化法、电解氧化法、微生物分解法及自然净化法。采用SO2-空气氧化法处理氰化尾渣,以铜为催化剂,SO2和空气的混合物在碱性条件下能将复合氰化物(CNWAD)氧化为氰酸盐(CNO−),同时沉淀除去金属和氰化铁[2-3]。MANORANJAN等[4]的研究结果表明,硫代硫酸盐和活性炭的混合物能够去除废水中的总氰化物和CNWAD。ADJEI等[5]发现,假单胞菌属、芽孢杆菌属等菌种都对氰化物有一定的降解能力。SAARELA等[2]发现,在电化学氧化过程中,氰化物和金属氰络合物首先在阳极被氧化成氰酸根离子,然后进一步分解成无毒的CO2和N2,释放出的金属阳离子在阴极处被还原成金属单质析出。一般情况下,氰化尾渣的无害化处理主要可分为矿浆直接氧化和矿渣洗涤后含氰废水氧化2种。前者氧化剂消耗量大,金属离子以沉淀形式进入渣中,氰化尾渣中的有价金属并没有得到有效的去除;而后者增加了洗涤、液固分离程序,处理过程比较繁杂,洗水量大,处理难度相对增加。因此,研究开发一种工艺简单、成本低、效果好的处理方法是黄金行业创新发展的迫切需要。
本研究中采用矿浆电解技术无害化处理氰化尾渣,将氰化尾渣的洗涤、氰化物的电解氧化、金属离子的电解沉积和矿物的氧化分解集成在同一反应器中进行,利用阳极反应生成的氯气/次氯酸根的强氧化性,破坏含氰离子,氧化包裹矿物,提高氰化尾渣中矿物的单体解离度,以期为后续有价金属的综合利用创造有利条件。
1. 材料与方法
1.1 实验原料
本研究中所用原料为陕西省太白金矿浮选-金精矿炭浆提金后的氰化尾渣,其主要组成为CNT 1 748.00 g·t−1、CN− 327.40 g·t−1、Cu 184.80 g·t−1、Fe 3 632.04 g·t−1、Zn 15.84 g·t−1,即该氰化尾渣中总氰与铁氰络合离子含量较高。
1.2 实验装置
矿浆电解无害化处理氰化尾渣实验装置如图1所示。阴、阳极板均为TC4钛合金板,规格为20 mm×15 mm×2 mm,采用一阴两阳三极板体系。电压由直流稳压电源控制,型号为LP2002D型稳压电源,搅拌装置采用78-1型磁力搅拌器。
1.3 实验方法
室温条件下(约25 ℃),取50 g氰化尾渣、一定量的NaCl以及200 mL的去离子水加入到500 mL烧杯中,用磁力搅拌器搅拌,同时控制极板间距。电解一定时间后固液分离,取滤液测定总氰、游离氰及各金属离子含量,并计算各离子去除率,尾渣用去离子水反复冲洗使pH稳定在7左右。
1.4 分析方法
氰化尾渣中CNT、CN−的含量按照GB 5085.3-2007[6]所示硝酸银滴定法进行测定,金属离子采用化学滴定法测定,离子去除率按式(1)计算。
φ=Ca−CbCa⋅0.5×10−350×10−6×100% (1) 式中:Ca为氰化尾渣中各离子的浓度,mg∙L−1;Cb为处理后渣洗液中各离子的浓度,mg∙L−1。
实验中采用FEI MLA 250型高精度工艺矿物学参数自动测试系统(MLA)测定金属矿石的解离程度和连生关系。
2. 结果与讨论
2.1 NaCl用量对各离子去除效果的影响
矿浆电解中,Cl−在阳极氧化生成的Cl2/ClO−是主要的氧化物,NaCl的添加量是影响氰化尾渣氧化效果的重要因素之一。在极板间距10 mm、电压8 V、电解时间4 h的条件下进行矿浆电解实验,结果如图2所示。随着NaCl添加量的增加,CNT、CN−及Cu、Zn离子的去除率逐渐增大,至NaCl添加量大于0.5 g后上述离子的去除率几乎不再增加,最大去除率分别为94.05%、98.25%、85.61%、73.92%。电解过程中,Cl−定向迁移至阳极表面,发生阳极氧化反应产生有效氯(ClO−和Cl2)(式(2)~式(4))。其中,有效氯将游离氰化物、铜氰及锌氰络合离子氧化为氰酸盐及金属离子(式5~式10),氰酸盐进一步被氧化为无毒的N2和碳酸盐。同时,金属离子定向迁移至阴极附近,在阴极板上发生金属离子的沉积反应(式(11)~式(14))。随着NaCl用量的增大,各离子的氧化去除效果不断增强的原因是矿浆中的Cl−含量增加,使得电极的电流效率和有效氯浓度增大[7],能够不断氧化去除氰离子和金属氰络离子。NaCl添加量大于0.5 g后,离子去除率几乎不再变化的原因是,NaCl添加量的增大造成溶液中离子浓度增加,离子间距减小,传质作用降低[8],导致有效氯的生成量不会有大幅度提高,离子去除率便不再增加。
Cl−−2e−=Cl2 (2) Cl−+2OH−−2e−=ClO−+H2O (3) Cl2+H2O=ClO−+Cl−+2H+ (4) CN−+ClO−=CNO−+Cl− (5) CN−+Cl2+2OH−=CNO−+2Cl−+H2O (6) 2CNO−+3ClO−+H2O=2HCO−3+N2+3Cl− (7) Zn(CN)2−4+4ClO−=Zn2++4CNO−+4Cl− (8) Cu(CN)−2+2ClO−=Cu2++2CNO−+2Cl− (9) Cu(CN)2−3+3ClO−=Cu2++3CNO−+3Cl− (10) Cu2++2e=Cu (11) Zn2++2e=Zn (12) Fe3++e=Fe2+ (13) Fe2++2e=Fe (14) Fe1−xS+(2−x/2)ClO−+2xH2O=(1−x)Fe2++SO2−4+4xH++(2−x/2)Cl− (15) Fe2+−e=Fe3+ (16) 值得注意的是,Fe的去除率在NaCl添加量大于0.3 g时,随着NaCl添加量的增大而大幅度降低,最大仅为84.46%。这是因为有效氯的含量随着Cl−的增加而增加,ClO−会氧化部分黄铁矿和磁黄铁矿(式(15)~式(16)),使得矿石中的铁以离子形态再次回到矿浆液中,导致Fe3+去除率降低。
2.2 外加电压对各离子去除效果的影响
电压的大小直接影响NaCl的电解反应速率以及矿浆中CN−的迁移过程,进而影响氰化物的去除效果。在极板间距10 mm、NaCl添加量0.5 g、电解时间4 h的条件下进行矿浆电解实验,结果如图3所示。随着电压的升高,CNT、CN−的去除率先增大,在8 V之后趋于平缓,去除率最大为95.25%、98.97%;Cu、Fe、Zn离子的去除率随电压增大而增大,在10 V时达到最大值85.86%、84.76%和73.99%,随后有所下降。根据Faraday第一定律,当电流通过电解质溶液时,在电极界面上发生化学反应的物质量与通过电极的电量呈正比,这说明电压是电化学反应过程的一种驱动力[9],随着电压的增大,电流密度逐渐增大,阳极析氯量增加,氧化反应加剧,各离子的去除率均不断上升。电压大于8 V以后,随着电压的增大,各离子去除几乎不再增加的原因:一方面,是由于电压过大会导致电极表面极化现象过大[10-11],造成电流密度减小,不利于氧化反应的发生;另一方面,是难降解的铁氰络离子会与其他金属离子结合转化成更加稳定的金属铁氰络合物沉淀(式(17)~式(18)),不易被氧化去除。此外,金属离子的去除率在大于10 V时呈现降低趋势,其原因可能与尾渣中矿物的氧化溶解(式(15)、式(19)、式(20))有关。
2Zn2++Fe(CN)4−6=Zn2Fe(CN)6↓ (17) 3Cu2++2Fe(CN)3−6=Cu3[Fe(CN)6]2↓ (18) 2CuFeS2+17ClO−+2H+=2Cu2++2Fe3++4SO2−4+H2O+17Cl− (19) ZnS+4ClO−=Zn2++SO2−4+4Cl− (20) 2.3 电解时间对各离子去除效果的影响
电解时间是影响氰化尾渣中离子去除效果的一个重要因素。在极板间距10 mm、NaCl添加量0.5 g、电压8 V的条件下,改变电解时间进行矿浆电解实验,结果如图4所示。随着电解时间的增长,CNT、CN−及金属离子的去除率不断增大,CNT与CN−的去除率在4 h之后趋于平缓。随着电解时间的增长,溶液中不断生成有效氯用于氧化氰化物和金属氰化物;电解4 h时,CNT与CN−去除率已经达到93.48%、97.84%,而Cu、Zn、Fe离子去除率分别为83.74%、77.52%和90.21%;随后金属离子去除率的增幅开始变小。考虑到能耗的影响,选择4 h为最佳的电解时间。
2.4 极板间距对各离子去除效果的影响
极板间距会影响电路电流大小、电解反应速率和传质效率。在NaCl添加量0.5 g、电压8 V、电解时间4 h的条件下,改变极板间距进行矿浆电解实验,结果如图5所示。随着极板间距增大,CNT与CN−的去除率先增大后减小,在极板间距为10 mm时达到最大,分别为95.25%和98.95%;Cu、Zn、Fe的离子去除率随极板间距增大而减小。极板间距过小时,极板间的电压差增大,易形成瞬时强大的电流,从而造成短路现象。随着极板间距的逐渐增大,极板上的析气反应逐渐正常,电解液流速提升,传质作用不断增强,氧化效果和离子去除率随之增大。但有研究者报道,当极板间距过大时,会导致槽电压和电能消耗不断增加[12],电解反应速率降低;随着反应的进行,离子浓度下降,导致浓差极化作用增强,亦造成金属单质在阴极表面沉积厚度增加,使得阴极电位降低[13],H+在金属单质表面的析出电位增高,最终氧化还原效果降低,从而导致氰化物及金属离子的去除率不断降低。
2.5 氰化尾渣中矿物解离度分析
根据MLA分析结果统计所得的电解氯氧化处理前后氰化尾渣主要矿物的解离度,如图6所示。黄铁矿、磁黄铁矿与黄铜矿、闪锌矿的连生比例如表1所示。当NaCl添加量为0.1 g时,尾渣中与黄铜矿、闪锌矿连生的黄铁矿、磁黄铁矿的比例存在小幅度的下降,表明电解产生的有效氯能在一定程度上氧化矿石,添加量较少时氧化效果不太明显。随着NaCl添加量的增加,矿石的解离度不断增加,与黄铜矿、闪锌矿连生的黄铁矿、磁黄铁矿比例大幅下降,同时有部分矿物被氧化溶解,矿物自由面积百分比含量也存在一定程度的降低。NaCl添加量为1.0 g时,矿粒被氧化的程度继续加深,解离度进一步提高,但是,解离度过高使得更多的黄铁矿、磁黄铁矿、黄铜矿和闪锌矿暴露并被氧化,反而导致溶液中金属离子含量有所增加。
表 1 黄铁矿、磁黄铁矿与闪锌矿、黄铜矿之间的连生比例Table 1. Relationship between pyrite, pyrrhotite and sphalerite, chalcopyrite矿物 实验条件 连生比例/% 自由面积百分比/% 与闪锌矿 与黄铜矿 黄铁矿 原氰化尾渣 35.16 20.91 49.67 0.1 g NaCl 30.80 16.91 57.54 0.5 g NaCl 14.99 8.87 40.27 1.0 g NaCl 10.69 5.40 28.26 磁黄铁矿 原氰化尾渣 4.35 11.55 57.50 0.1 g NaCl 3.76 9.55 62.43 0.5 g NaCl 1.47 3.91 32.22 1.0 g NaCl 0.51 1.79 19.80 2.6 矿浆电解氰化尾渣平行验证实验
在极板间距10 mm、外加电压8 V、NaCl用量0.5 g、电解时间4 h的最佳工艺条件下进行了A、B、C 3组平行验证实验,结果如表2所示。由表2可以看出,最佳工艺条件下CNT、CN−以及Cu、Fe、Zn离子的去除率均值分别为94.83%、98.94%、85.65%、84.51%、73.85%,说明氰化尾渣中大部分氰化物及金属离子已被去除。氰化尾渣中游离氰含量达到了国家黄金行业氰渣污染控制技术规范(HJ 943-2018)的要求。
表 2 最佳条件下氰化尾渣中氰化物及部分金属离子的去除率Table 2. Removal rates of cyanide and some metal ions in cyanide tailings treated under best conditions离子种类 滤渣中平均离子含量/(g·t−1) 平均离子去除率/% CNT 90.31 94.83 CN- 3.34 98.94 Cu 26.52 85.65 Zn 949.78 73.85 Fe 2.45 84.51 2.7 矿浆电解氧化氰化尾渣过程分析
从热力学角度分析,氰化尾渣矿浆液中的还原性物质的氧化还原电极电位均小于氯的氧化还原电极电位,这些物质是可以被氯氧化的。各物质被氧化分解的顺序为:CN−>>
>Zn(CN)2−4 >>Cu(CN)2−3 。在有NaCl存在的电解体系中,矿浆液中的CN−、Fe(CN)4−6 、Cu(CN)2−3 、Fe(CN)4−6 等阴离子在电场的作用下向阳极定向迁移,Cl−离子在阳极上反应析出的Cl2和进一步溶解生成的ClO−在阳极附近区域将CN−、Zn(CN)3−4 、Cu(CN)2−3 等阴离子氧化,铜离子由+1价被氧化至+2价,氰离子被氧化为无害的N2和碳酸盐,Fe(CN)4−6 被氧化为Fe(CN)4−6 。Fe(CN)3−6 和Cu(CN)2−3 的氧化在阳极附近释放出溶液中的金属离子大部分在阴极发生沉积反应,只有少量Cu2+及Zn2+会与溶液中的铁氰络合离子发生沉淀反应,生成亚铁氰化铜、亚铁氰化锌以及铁氰化亚铜[14-15],沉降到矿浆渣中。Zn(CN)3−4 3. 结论
1)采用一步矿浆电解技术可有效处理氰化尾渣中的氰化物,当极板间距10 mm、外加电压8 V、NaCl添加量0.5 g、电解时间4 h时,CNT、CN−、Cu、Fe以及Zn离子的去除率分别可达到94.83%、98.94%、85.65%、84.51%和73.85%。
2)矿浆电解处理氰化尾渣过程中阳极附近主要发生的是氰化物的直接氧化与间接氧化,阴极板主要是Cu、Fe、Zn等重金属离子的电解沉积。随着电解电压、NaCl添加量以及电解时间的增大,金属矿物的解离度不断增加,矿物之间的连生比例不断降低,尾渣中黄铁矿、磁黄铁矿的大颗粒连生体被分解为小颗粒的单体态并不断被电解氧化溶解。
-
表 1 不同催化剂材料对于四环素降解的效果对比
Table 1. Comparison of different catalyst materials for photocatalytic degradation of tetracycline
表 2 某污水处理厂二沉池出水和某地表河水的水质参数
Table 2. Water quality of a secondary sedimentation tank effluent and a surface river.
水源 电导率/(μs·cm−1) TOC/(mg·L−1) ORP/mV pH 其他无机离子的质量浓度/( mg·L−1) NO3− Cl− F− SO42− K+ Ca2+ Na+ Mg2+ Al3+ 二沉池 873 3.39 154.4 7.54 10.5 160.02 0.35 51.92 23.04 30.54 97 10.08 0.08 河水 325 3.95 138.3 7.73 6.49 15.9 0.39 31 9.21 38.47 16.89 3.68 0.06 -
[1] MANAGAKI S, MURATA A, TAKADA H, et al. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: Ubiquitous occurrence of veterinary antibiotics in the Mekong Delta[J]. Environmental Science and Technology, 2007, 41(23): 8004-8010. doi: 10.1021/es0709021 [2] ZHU X D, WAND Y J, SUN R J, et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2[J]. Chemosphere, 2013, 92(8): 925-932. doi: 10.1016/j.chemosphere.2013.02.066 [3] HONG Y, LI C, YIN B, et al. Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite[J]. Chemical Engineering Journal, 2018, 338: 137-146. doi: 10.1016/j.cej.2017.12.108 [4] WERNER J J, ARNOLD W. A, MCNEILl K. Water hardness as a photochemical parameter: Tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH[J]. Environmental Science and Technology, 2006, 40: 7236-7241. doi: 10.1021/es060337m [5] CHEN X, ZHOU J b, CHEN Yi, et al. Degradation of tetracycline hydrochloride by coupling of photocatalysis and peroxymonosulfate oxidation processes using CuO-BiVO4 heterogeneous catalyst[J]. Process Safety and Environmental Protection, 2021, 145: 364-377. doi: 10.1016/j.psep.2020.08.016 [6] LU J, SUN J X, CHEN X X, et al. Efficient mineralization of aqueous antibiotics by simultaneous catalytic ozonation and photocatalysis using MgMnO3 as a bifunctional catalyst[J]. Chemical Engineering Journal, 2019, 358: 48-57. doi: 10.1016/j.cej.2018.08.198 [7] ZHANG Y, Zhou J B, Chen X, et al. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway[J]. Chemical Engineering Journal, 2019, 369: 745-757. doi: 10.1016/j.cej.2019.03.108 [8] WANG, J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [9] Xu B, Ahmed M. Zhou J, et al. Visible and UV photocatalysis of aqueous perfluorooctanoic acid by TiO2 and peroxymonosulfate: Process kinetics and mechanistic insights[J]. Chemosphere, 2020, 243: 25366. [10] TRUONG T, NGUYEN T, PHUONG La, et al. Insight into the degradation of p-nitrophenol by visible-light-induced activation of peroxymonosulfate over Ag/ZnO heterojunction[J]. Chemosphere, 2021, 268: 129291. doi: 10.1016/j.chemosphere.2020.129291 [11] QIU P. CHENG Z, XUE N, et al. The synergistic effect in metal-free graphene oxide coupled graphitic carbon nitride/light/peroxymonosulfate system: Photothermal effect and catalyst stability[J]. Carbon, 2021, 178: 81-91. doi: 10.1016/j.carbon.2021.02.088 [12] ZHU H, LI Z, YANG J. A novel composite hydrogel for adsorption and photocatalytic degradation of bisphenol A by visible light irradiation[J]. Chemical Engineering Journal, 2018, 334: 1679-1690. doi: 10.1016/j.cej.2017.11.148 [13] JIANG J J, WaANG X Y, ZHANG C J, et al. Porous 0D/ 3D NiCo2O4/g-C3N4 accelerate emerging pollutant degradation in PMS/vis system: Degradation mechanism, pathway and toxicity assessment[J]. Chemical Engineering Journal, 2020, 397: 125363. [14] JIN C Y, WANG M, LI Z L, et al. Two dimensional Co3O4/g-C3N4 Z-scheme heterojunction: Mechanism insight into enhanced peroxymonosulfate-mediated visible light photocatalytic performance[J]. Chemical Engineering Journal, 2020, 398: 125569. doi: 10.1016/j.cej.2020.125569 [15] TIAN X, TIAN C, NIE Y, et al. Controlled synthesis of dandelion-like NiCo2O4 microspheres and their catalytic performance for peroxymonosulfate activation in humic acid degradation[J]. Chemical Engineering Journal, 2018, 331: 144-151. doi: 10.1016/j.cej.2017.08.115 [16] LASSOUED A, LASSOUED M S, DKHIL B, et al. Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: Effect of varying the synthesis temperature[J]. Journal of Materials Science:Materials in Electronics, 2020, 31(13): 10943. doi: 10.1007/s10854-020-03457-w [17] GEBRESLASSIE G, BHARALI P, CHANDRA U, et al. Hydrothermal synthesis of g-C3N4/NiFe2O4 nanocomposite and its enhanced photocatalytic activity[J]. Applied Organometallic Chemistry, 2019, 33(8): e5002. [18] ZHANG L W, ZHU Y F. A Review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts[J]. Catalysis Science & Technology, 2012, 2(4): 694-76. [19] LI M, LAI C, YI H, et al. Chen. Multiple charge-carrier transfer channels of Z-scheme bismuth tungstate-based photocatalyst for tetracycline degradation: Transformation pathways and mechanism[J]. Journal of Colloid and Interface Science, 2019, 555: 770-782. doi: 10.1016/j.jcis.2019.08.035 [20] HE Z, XIA Y, TANG B, et al. Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites[J]. Materials Research Express, 2017, 4(9): 95501. doi: 10.1088/2053-1591/aa7cb8 [21] LU H, ZHU Z, ZHANG H, et al. Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide[J]. Chemical Engineering Journal, 2015, 276: 365-375. doi: 10.1016/j.cej.2015.04.095 [22] YU J, XIONG J, CHENG B, et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders[J]. Journal of Solid State Chemistry, 2005, 178(6): 1968-1972. doi: 10.1016/j.jssc.2005.04.003 [23] BAIG M, PERVAIZ E, AZAD M, et al. NiFe2O4/SiO2 nanostructures as a potential electrode material for high rated supercapacitors[J]. Ceramics International, 2021, 47(9): 12557-12566. doi: 10.1016/j.ceramint.2021.01.113 [24] ISSARAPANACHEEWIN S, WETCHAKUN K, PHANICHPHANT S, et al. Efficient photocatalytic degradation of rhodamine by a novel CeO2/Bi2WO6 composite film[J]. Catalysis Today, 2016, 278: 280-290. doi: 10.1016/j.cattod.2015.12.028 [25] ZENG J, ZENG W, ZENG H. In situ plasmonic au nanoparticle anchored nickel ferrite: An efficient plasmonic photocatalyst for fluorescein-sensitized hydrogen evolution under visible light irradiation[J]. Journal of Solid State Chemistry, 2017, 253: 294-304. doi: 10.1016/j.jssc.2017.06.005 [26] BHUVANESWARI S, PRATHEEKSHA P M, ANANDAN S, et al. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(11): 5284-5294. doi: 10.1039/c3cp54778g [27] LI X, XIN M, GUO S, et al. Yan. Insight of synergistic effect of different active metal ions in layered double hydroxides on their electrochemical behaviors[J]. Electrochimica Acta, 2017, 253: 302-310. doi: 10.1016/j.electacta.2017.09.075 [28] HE G, WANG Y, CHEN X, et al. Laser in situ synthesis of NiFe2O4 nanoparticle-anchored NiFe(OH)x nanosheets as advanced electrocatalysts for the oxygen evolution and urea oxidation reactions[J]. Electrochimica Acta, 2022, 411: 140074. doi: 10.1016/j.electacta.2022.140074 [29] CHENG M, FAN H, SONG Y, et al. Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors[J]. Dalton Transactions, 2017, 46(28): 9201-9209. doi: 10.1039/C7DT01289F [30] LI Y, SHEN J, QUAN W, et al. 2D/2D p-n heterojunctions of CaSb2O6/g-C3N4 for visible light-driven photocatalytic degradation of tetracycline[J]. European Journal of Inorganic Chemistry, 2020, 2020(40): 3852-3858. doi: 10.1002/ejic.202000635 [31] WANG Y H, DING L Z, LIU C, et al. 0D/2D/2D ZnFe2O4/Bi2O2CO3/BiOBr double Z-scheme heterojunctions for the removal of tetracycline antibiotics by permonosulfate activation: Photocatalytic and non-photocatalytic mechanisms, radical and non-radical pathways[J]. Separation and Purification Technology, 2022, 283: 120-164. [32] SHI Y L, FENG X J, GUAN H Y, et al. Porous sunflower plate-like NiFe2O4/CoNi-S heterostructure as efficient electrocatalyst for overall water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8557-566. doi: 10.1016/j.ijhydene.2020.12.062 [33] WU S H, LI H R, LI X, et al. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants[J]. Chemical Engineering Journal, 2018, 353: 533-541. doi: 10.1016/j.cej.2018.06.133 [34] NIU J, Ding S, Zhang L, et al. Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: Kinetics, mechanisms and toxicity assessment[J]. Chemosphere, 2013, 93(1): 1-8. doi: 10.1016/j.chemosphere.2013.04.043 [35] LIU H, Liang C, NIU C, et al. Facile assembly of g-C3N4/Ag2CO3/graphene oxide with a novel dual Z-scheme system for enhanced photocatalytic pollutant degradation[J]. Applied Surface Science, 2019, 475: 421-434. doi: 10.1016/j.apsusc.2019.01.018 [36] LIU W, Zhou J, LIU D, et al. Enhancing electronic transfer by magnetic iron materials and metal-organic framework via heterogeneous Fenton-like process and photocatalysis[J]. Materials Science in Semiconductor Processing, 2021, 135: 106096. doi: 10.1016/j.mssp.2021.106096 [37] ALPAY A, TUNA, SIMSEK E, et al. Deposition of perovskite-type LaFeO3 particles on spherical commercial polystyrene resin: A new platform for enhanced photo-Fenton-catalyzed degradation and simultaneous wastewater purification[J]. Environmental Technology & Innovation, 2020, 20: 101175. [38] JIN C, KANG J, LI Z, et al. Enhanced visible light photocatalytic degradation of tetracycline by MoS2/Ag/g-C3N4 Z-scheme composites with peroxymonosulfate[J]. Applied Surface Science, 2020, 514: 146076. doi: 10.1016/j.apsusc.2020.146076 [39] SHI Y, LI J, WAN D, et al. Peroxymonosulfate-enhanced photocatalysis by carbonyl-modified g-C3N4 for effective degradation of the tetracycline hydrochloride[J]. Science of the Total Environment, 2020, 749: 142313. doi: 10.1016/j.scitotenv.2020.142313 [40] YUE J, FAN A D, GUO J X, et al. Synthesis of an ultrathin MnO2 aanosheet-coated Bi2WO6 nanosheet as a heterojunction photocatalyst with enhanced photocatalytic activity[J]. Chemical Engineering Journal, 2022, 429: 132-193. [41] MAHDIAHMED M, CHIRON S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater[J]. Journal of Hazardous Materials, 2014, 265: 41-46. doi: 10.1016/j.jhazmat.2013.11.034 [42] WU S, LI X, TIAN Y, et al. Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light[J]. Chemical Engineering Journal, 2021, 406: 126747. doi: 10.1016/j.cej.2020.126747 [43] SUN H R, GUO F, PAN J J, et al. One-pot thermal polymerization route to prepare n-deficient modified G-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process[J]. Chemical Engineering Journal, 2021, 406: 126844. doi: 10.1016/j.cej.2020.126844 [44] 李立, 吴丽颖, 董正玉, 等. 高晶度Mn-Fe LDH催化剂活化过一硫酸盐降解偶氮染料RBK5[J]. 环境科学, 2020, 41(6): 2736-2745. [45] MA J, YANG Y Q, JIANG X C H, et al. Chen. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water[J]. Chemosphere, 2018, 190: 296-306. doi: 10.1016/j.chemosphere.2017.09.148 [46] DEVI P, DAS U, DALAI A. K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems[J]. The Science of the Total Environment, 2016, 571: 643-657. doi: 10.1016/j.scitotenv.2016.07.032 [47] JAAFARZADEH N, GHANBARI F, AHMADI M. Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by nano-Fe2O3 activated peroxymonosulfate: Influential factors and mechanism determination[J]. Chemosphere, 2017, 169: 568-576. doi: 10.1016/j.chemosphere.2016.11.038 [48] FANG G D, GAO J, DIONYSIOU D. D, et al. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs[J]. Environmental Science & Technology, 2013, 47: 4605-4611. [49] SHAHZAD A, ALI J, IFTHIKAR J, et al. Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides[J]. Journal of Hazardous Materials, 2020, 392: 122316. doi: 10.1016/j.jhazmat.2020.122316 [50] SHI H, FAN J, ZHAO Y, et al. Visible light driven CuBi2O4/Bi2MoO6 p-n heterojunction with enhanced photocatalytic inactivation of E. coli and mechanism insight[J]. Journal of Hazardous Materials, 2020, 381: 121006. doi: 10.1016/j.jhazmat.2019.121006 [51] SARKAR D, GHOSH C. K, MUKHERJEE S, et al. Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojunctions for superior photocatalytic activity[J]. Applied Materials & Interfaces, 2013, 5(2): 331-337. [52] MA, J Z, WANG C X, HE H. Enhanced photocatalytic oxidation of NO over G-C3N4-TiO2 under UV and visible light[J]. Applied Catalysis. B, Environmental, 2016, 184: 28-34. doi: 10.1016/j.apcatb.2015.11.013 [53] WANG A, ZHENG Z, WANG H, et al. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation[J]. Applied Catalysis. B, Environmental, 2020, 277: 119171. doi: 10.1016/j.apcatb.2020.119171 -