-
我国是抗生素生产和使用大国,抗生素产量约占全球总产量的20%~30%[1]。与此同时,会产生大量的抗生素菌渣,据统计,我国每年菌渣总产量高达2×106 t[2]。此外,新鲜的菌渣含水率高达90%以上,极易腐败发臭,其中残留的抗生素会造成水土环境的污染,加剧细菌耐药性,危害人群健康[3-4]。
目前,抗生素菌渣的处理处置技术主要包括焚烧、填埋和堆肥等[5]。2021年新版《国家危险废物名录》[6]禁止将菌渣作为肥料和饲料的添加剂。因此,寻找适合的菌渣处理处置方法是亟待解决的问题。厌氧消化是一种可将高有机质废弃物资源化利用的处理方式。经过厌氧消化后的沼渣不再具有生物毒性,可进一步被处理加工成高品质的肥料。因此,菌渣的厌氧消化处理更能实现其减量化、资源化和无害化[7-8]。含固率(TS)对系统内pH、挥发性脂肪酸(VFAs)、氨氮、微生物群落结构及抗生素抗性基因都有一定的影响[9-10],是厌氧消化的重要影响因素。PELLERA等[11]研究表明,不同底物的TS对厌氧发酵进程有较大影响。近年来,针对TS对污泥、粪便、秸秆以及厨余垃圾厌氧消化影响的研究已相对广泛[12-13],但针对TS对抗生素菌渣厌氧消化影响的研究相对较少。
邹书娟等[14]的研究表明,菌渣中挥发分含量较高,主要以C、O、N和H为主,含有蛋白质和糖类等化合物。土霉素具有广谱性,在医疗和动物养殖方面均有较为广泛的应用[15],故本研究以土霉素菌渣为研究对象。研究TS对土霉素菌渣厌氧消化系统稳定性以及残留抗生素去除的影响,并对最佳TS下系统优势菌群进行分析。以期为抗生素菌渣的减量化、资源化和无害化处理提供参考。
体系含固率对土霉素菌渣厌氧消化的影响
Effect of system solids content on anaerobic digestion of oxytetracycline residues
-
摘要: 针对抗生素菌渣危害性大、处理处置困难等的问题,采用厌氧消化技术可在降低污染物的同时产生清洁能源,是实现抗生素菌渣减量化、资源化和无害化处理的重要途径。含固率(TS)是厌氧消化的重要影响因素之一,通过改变体系的含固率,研究其对土霉素菌渣厌氧消化系统的影响。结果表明,系统内氨氮、挥发性脂肪酸(VFAs)均随TS的增加而增加,当氨氮浓度大于2 000 mg·L−1、VFAs大于4 000 mg·L−1时,会对系统产生明显的抑制作用。系统稳定性能、产气效率以及有机物去除效率均随TS的增加而降低。TS为4%的反应组在各方面均优于其他组,且其中残留的土霉素去除效率最高,可基本实现菌渣的无害化处理。对体系内优势微生物群落进行分析发现,产甲烷菌的优势菌群以Methanosarcinaceae和Methanosaetaceae为主,可知,土霉素菌渣的厌氧发酵以乙酸型发酵为主。本研究结果可为厌氧消化技术在抗生素菌渣处理处置中的应用提供理论参考。Abstract: In response to the problems of hazardous antibiotic residues and difficulties in treatment and disposal, the use of anaerobic digestion technology can reduce pollutants while generating clean energy, which is an important way to achieve the reduction, resourcefulness and harmless treatment of antibiotic residues. Solids content (TS) is one of the important influencing factors of anaerobic digestion, and its effect on the anaerobic digestion system of oxytetracycline residue was investigated by varying the solids content of the system. The results showed that the content of ammonia nitrogen and volatile fatty acids (VFAs) in the system increased with the increase of TS, and when the ammonia nitrogen was more than 2,000 mg·L−1 and VFAs was more than 4,000 mg·L−1, it would have a significant inhibitory effect on the system. System stability performance, gas production efficiency and organic removal efficiency all decrease with increasing TS. The reaction with TS of 4% outperformed the other groups in all aspects, and the highest efficiency of residual hygromycin removal was achieved, which could basically realize the harmless treatment of bacterial residue. Analysis of the dominant microbial community within its system revealed that the dominant methanogenic bacteria were dominated by Methanosarcinaceae and Methanosaetaceae, according to this analysis, the anaerobic digestion of oxytetracycline residue may be mainly acetic acid fermentation. The results of this study can provide a theoretical reference for the application of anaerobic digestion technology in the treatment and disposal of antibiotic residues.
-
表 1 厌氧污泥及土霉素菌渣初始理化性质
Table 1. Initial physical and chemical property of anaerobic sludge and oxytetracycline residue
供试样品 pH TS VS SCOD/(mg·L−1) 氨氮/(mg·L−1) 土霉素残留/(mg·kg−1) 厌氧污泥 6.4~7.2 2.65% 1.12% — — 2.33 土霉素菌渣 2.3-2.8 46.5% 36.75% 787.67 21.03 2 106.47 表 2 不同含固率下厌氧消化系统土霉素残留及其去除率变化
Table 2. Residual oxytetracycline content and its removal rate in anaerobic digestion system with different solid content
含固率 初始土霉素的
质量浓度/(mg·L−1)结束后土霉素的
质量浓度/(mg·L−1)去除率 4% 110.56 11.22 89.85% 8% 219.77 37.10 87.29% 12% 472.50 123.45 73.87% 16% 654.39 131.45 79.91% 20% 835.38 269.21 67.78% -
[1] 钟为章, 冯卫博, 许彬, 等. 抗生素菌渣中活性物质的提取及应用现状[J]. 科学技术与工程, 2021, 21(33): 14049-14055. doi: 10.3969/j.issn.1671-1815.2021.33.003 [2] 陈黎, 孔祥生, 刘秋新, 等. 抗生素菌渣生物炭的制备及特性[J]. 环境科学与技术, 2019, 42(6): 128-133. [3] YANG G, WANG J, SHEN Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: Performance evaluation and microbial community analysis[J]. Bioresource Technology, 2019, 292: 122012. doi: 10.1016/j.biortech.2019.122012 [4] CAI C, HUA Y, LI H, et al. Hydrothermal treatment of erythromycin fermentation residue: Harmless performance and bioresource properties[J]. Resources, Conservation and Recycling, 2020, 161: 104952. doi: 10.1016/j.resconrec.2020.104952 [5] 陈冠益, 刘环博, 李健, 等. 抗生素菌渣处理技术研究进展[J]. 环境化学, 2021, 40(2): 459-473. doi: 10.7524/j.issn.0254-6108.2020061302 [6] 生态环境部, 国家发展和改革委员会, 公安部, 交通运输部, 国家卫生健康委员会. 国家危险废物名录(2021年版)[EB/OL]. [2020-11-25]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html. [7] 孔祥娟, 魏亮亮, 姜珺秋, 等. 有机固废厌氧产沼气产业发展现状及政策需求[J]. 中国给水排水, 2013, 29(20): 26-29. [8] ALVAREZ J A, OTERO L, LEMA J M, et al. The effect and fate of antibiotics during the anaerobic digestion of pig manure[J]. Bioresource Technology, 2010, 101(22): 8581-8586. doi: 10.1016/j.biortech.2010.06.075 [9] SUI Q, MENG X, WANG R, et al. Effects of endogenous inhibitors on the evolution of antibiotic resistance genes during high solid anaerobic digestion of swine manure[J]. Bioresource Technology, 2018, 270: 328-336. doi: 10.1016/j.biortech.2018.09.043 [10] 宋云鹏, 刘吉宝, 陈梅雪, 等. 餐厨垃圾干式厌氧消化工艺中甲烷转化率及其限制性因素[J]. 环境工程学报, 2021, 15(5): 1697-1707. doi: 10.12030/j.cjee.202101031 [11] PELLERA F M, GIDARAKOS E. Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agro-industrial waste[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3217-3229. doi: 10.1016/j.jece.2016.05.026 [12] 陈欣, 涂德浴, 隋倩雯, 等. 固体浓度对猪粪厌氧消化甲烷产出特性的影响[J]. 中国农业气象, 2014, 35(2): 149-155. doi: 10.3969/j.issn.1000-6362.2014.02.005 [13] ARELLI V, MAMINDLAPELLI N K, BEGUM S, et al. Solid state anaerobic digestion of food waste and sewage sludge: Impact of mixing ratios and temperature on microbial diversity, reactor stability and methane yield[J]. Science of the Total Environment, 2021, 793: 148586. doi: 10.1016/j.scitotenv.2021.148586 [14] 邹书娟, 王一迪, 张均雅, 等. 抗生素菌渣理化性质分析[J]. 环境科学与技术, 2018, 41(S1): 47-52. [15] 宁高阳. 土霉素菌渣的减量化及菌渣溶液的生物处理研究[D]. 兰州: 兰州交通大学, 2020. [16] 徐文倩, 董红敏, 斌尚, 等. 典型畜禽粪便厌氧发酵产甲烷潜力试验与计算[J]. 农业工程学报, 2021, 37(14): 228-234. doi: 10.11975/j.issn.1002-6819.2021.14.026 [17] 杨祎楠, 强虹, 裴梦富, 等. 进料浓度对鸡粪连续中温厌氧消化的影响[J]. 环境工程学报, 2019, 13(12): 2963-2972. doi: 10.12030/j.cjee.201902117 [18] 刘中军, 丁岳峰, 于钦, 等. 不同粒径玉米秸秆与猪粪混合厌氧发酵特性研究[J]. 可再生能源, 2020, 38(10): 1301-1306. doi: 10.3969/j.issn.1671-5292.2020.10.004 [19] 王乐乐, 郑讯涛, 张寓涵, 等. 总固体浓度对猪粪厌氧消化的影响及菌群结构分析[J]. 江苏农业科学, 2019, 47(5): 244-248. [20] MICOLUCCI F, GOTTARDO M, CAVINATO C, et al. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery[J]. Waste Management, 2016, 48: 227-235. doi: 10.1016/j.wasman.2015.09.031 [21] 孟晓山. 高含固率猪粪污厌氧消化特征及其氨氮抑制的研究[D]. 徐州: 中国矿业大学, 2019. [22] XU Y, LU Y, ZHENG L, et al. Perspective on enhancing the anaerobic digestion of waste activated sludge[J]. Journal of Hazardous Materials, 2020, 389: 121847. doi: 10.1016/j.jhazmat.2019.121847 [23] 徐颂, 吴铎, 吕凡, 等. 含固率和接种比对林可霉素菌渣厌氧消化的影响[J]. 中国环境科学, 2010, 30(3): 362-368. [24] JIANG Y, MCADAM E, ZHANG Y, et al. Ammonia inhibition and toxicity in anaerobic digestion: A critical review[J]. Journal of Water Process Engineering, 2019, 32: 100899. doi: 10.1016/j.jwpe.2019.100899 [25] 詹瑜. 高含固剩余污泥厌氧消化过程中氮素转化规律研究[D]. 无锡: 江南大学, 2018. [26] 孟晓山, 张玉秀, 隋倩雯, 等. 氨氮浓度对猪粪厌氧消化及产甲烷菌群结构的影响[J]. 环境工程学报, 2018, 12(8): 2346-2356. doi: 10.12030/j.cjee.201802064 [27] 周富春. 基于VS的有机固体废物厌氧消化的趋势分析[J]. 环境科学与技术, 2009, 32(6): 121-122. doi: 10.3969/j.issn.1003-6504.2009.06.027 [28] 张涛. 高压均质/碱预处理-强化厌氧处理土霉素菌渣试验研究[D]. 石家庄: 河北科技大学, 2018. [29] 高妍. 基于厌氧消化的青霉素菌渣无害化处理技术研究[D]. 石家庄: 河北科技大学, 2015. [30] 朱晓磊, 田在锋, 王路光, 等. 土霉素对厌氧生物处理的抑制作用研究[J]. 中国给水排水, 2010, 26(1): 93-95. [31] 马清佳, 田哲, 员建, 等. 9种抗生素对污泥高温厌氧消化的急性抑制[J]. 环境工程学报, 2018, 12(7): 2084-2093. doi: 10.12030/j.cjee.201712098 [32] 朱晓磊. 厌氧处理中抗生素残留抑制因子的控制研究[D]. 保定: 河北大学, 2009. [33] SHI J C, LIAO X D, WU Y B, et al. Effect of antibiotics on methane arising from anaerobic digestion of pig manure[J]. Animal Feed Science and Technology, 2011, 166-167: 457-463. doi: 10.1016/j.anifeedsci.2011.04.033 [34] 唐涛涛, 李江, 杨钊, 等. 污泥厌氧消化功能微生物群落结构的研究进展[J]. 化工进展, 2020, 39(1): 320-328. [35] NELSON M C, MORRISON M, YU Z T. A meta-analysis of the microbial diversity observed in anaerobic digesters[J]. Bioresource Technology, 2011, 102(4): 3730-3739. doi: 10.1016/j.biortech.2010.11.119 [36] RIVIERE D, DESVIGNES V, PELLETIER E, et al. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge[J]. The ISME Journal, 2009, 3(6): 700-714. doi: 10.1038/ismej.2009.2 [37] YI J, DONG B, JIN J W, et al. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis[J]. PLOS One, 2014, 9(7): 1025-1029. [38] VRIEZE J D, HENNEBEL T, BOON N, et al. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation[J]. Bioresource Technology, 2012, 112(5): 1-9. [39] SCHATTAUER A, ABDOUN E, WEILAND P, et al. Abundance of trace elements in demonstration biogas plants[J]. Biosystems Engineering, 2011, 108(1): 57-65. doi: 10.1016/j.biosystemseng.2010.10.010