-
目前,我国的能源结构仍然是以煤炭为主[1]。煤炭燃烧会产生大量温室气体破坏环境。煤炭的清洁高效利用是未来发展的必然趋势。煤气化是煤炭清洁高效利用的核心技术之一[2],也是现代煤化工产业的基础。但煤气化过程中会产生大量的废渣和高盐废水。目前,气化渣的处理方式主要为堆存和填埋,尚未实现大规模综合利用,造成了严重的环境污染和土地资源浪费[2]。高盐废水则主要是通过闪蒸去除水分后,富集盐分再统一固化填埋处置。这种处理方式能耗高、成本大,还容易产生二次污染。因此,实现煤气化渣和高盐废水的高效安全处置与资源化利用是煤化工产业可持续发展必须要解决的关键问题。
目前,较多学者对煤气化渣进行了深入研究。赵永彬等[3]研究了宁煤集团3种煤气化炉粗渣的化学组成及矿物相构成,发现其化学组成主要包括SiO2、Al2O3、CaO、Fe2O3。其中,矿物组成主要以非晶态玻璃体和晶相矿物为主;非晶态玻璃体的含量达到67%以上,晶相则以石英、莫来石、方铁矿和方解石为主。煤气化渣分为细渣和粗渣。粗渣具有较高的火山灰性,可作为一种辅助性胶凝材料应用于水泥混凝土中[4-7]。冀文明等[8]以矿渣微粉为胶凝材料的主要成分,将CaSO4、水玻璃、NaOH、CaCl2制成复合激发剂,得到新型复合激发矿渣胶凝材料的最优配比,复合激发剂对矿渣的火山灰性具有一定的激发效果。吴波波等[9]以低品位粉煤灰混凝土为研究对象,加入石灰、硅酸盐水泥、水玻璃激发粉煤灰,发现石灰与激发剂共同作用,可加速粉煤灰地质聚合反应,促使N-A-S-H和C-A-S-H、C-S-H等凝胶生成,从而提高混凝土强度。此外,煤化工产生的高盐废水由有机物和无机盐2大类组成,有机物种类多,同时还含有氰化物、芳香族及杂环化合物等有毒物质且处理困难[10]。高盐废水COD较高,一般在500~5 000 mg·L−1;其次,高盐废水中盐分质量浓度高,通常在3 000~15 000 mg·L−1,主要含有K+、Na+、Mg2+、Ca2+等阳离子,CO32−、NO3−、Cl−、SO42−等阴离子。其中,Na+、Cl−和SO42−占到无机离子质量分数的90%以上[11]。KABOOSI等[12]曾尝试将工业废水作为混凝土的拌合水,以节约水资源。目前,利用工业废弃物制备胶凝材料是研究的热点,但多利用粉煤灰及矿渣制备胶凝材料。这是由于煤气化渣活性低等原因,故导致针对煤气化渣直接制备胶凝材料的研究较少。
本研究以煤气化渣为原料,利用高盐废水、水玻璃及石灰复合激发剂,制备化学激发胶凝材料;研究石灰掺量、水玻璃模数与掺量及高盐废水掺量,对煤气化渣胶凝材料力学性能的影响;探讨胶凝材料水化产物的作用机制,并讨论其对环境的安全性。拟为煤化工废渣、废水的综合利用探索一条新途径。
-
所用煤气化渣为宁煤集团提供的粗渣,将其烘干后,用球磨机粉磨,比表面积为413 m2·kg−1、平均粒径为21.58 µm,其化学组成见表1。所用高盐废水也来自宁煤集团,含有高浓度的氯盐、硫酸盐、有机物,重金属质量浓度低,为淡黄色液体,其水质见表2。高盐废水中重金属的质量浓度见表3。水玻璃(Na2SiO3)利用NaOH调整其到所需模数,所用氢氧化钠(NaOH)为分析纯,生石灰(CaO)纯度大于95%。
-
确定基准配合比为:煤气化渣100%、水玻璃掺量9%、水玻璃模数1.2、石灰掺量11%、高盐废水掺量25%。在此基础上,改变石灰掺量分别为0、7%、9%、11%、13%、15%、17%,编号为A1~A7;水玻璃模数分别为0.6、0.8、1.0、1.2、1.4、1.6、1.8,编号为B1~B7;水玻璃掺量分别为0、5%、7%、9%、11%、13%、15%,编号为C1~C7;高盐废水掺量分别为0、25%、50%、75%、100%,编号为D1~D5。按配合比称取相应的原料混合,成型尺寸为20×20×20 mm的6联试块,以研究不同因素对试样性能的影响。试块在80 ℃蒸汽养护条件下养护24 h后拆模,然后置于温度为(20±3) ℃、湿度为90%以上的养护箱中,养护3、7、28 d后进行抗压强度等测试。
-
根据《建筑砂浆基本性能试验方法标准》(JGJ/T70-2009)[13],在3、7、28 d时测量立方体样品的抗压强度,每个龄期压碎3个样品,并取平均值为抗压强度。通过X射线衍射仪(D-MAX/2500PC型,日本理学公司)对养护28 d试样的物相组成进行分析。采用扫描电子显微镜(Quanta 200,美国FEI公司)对养护28 d试样的微观形貌进行分析。采用MIP(Auto pore IV 9500,美国麦克公司)测定试样的孔分布和总孔隙率。重金属浸出试验按照国家标准《固体废弃物浸出毒性浸出方法水平振荡法》(HJ 557-2010)[14]进行,采用ICP-AES(OPTIMA,美国珀金埃尔默公司)测定滤液中重金属的质量浓度。
-
1)石灰掺量对胶凝材料强度的影响。石灰掺量对试样抗压强度的影响见图1。由图1可以看出,随石灰掺量增加,试样抗压强度呈先增大后减小的趋势。在石灰掺量为15%时,试样28 d抗压强度达到23.8 MPa,比不加石灰的A1组,抗压强度提高了930%。气化渣中CaO较少,Ca2+还不足以满足其需求,只加入水玻璃仅能提高气化渣中活性硅铝的溶解,而无法形成较多的水化产物,因此强度较低。加入石灰后,为水化体系补充了Ca2+,在水玻璃-石灰-高盐废水的复合激发下,使气化渣在钠-钙-硫-氯共同作用下,形成的强碱环境能使气化渣活性物质溶出,加速活化,又提供了形成胶凝材料必要的条件Ca2+。通过共同激发所得的高活性小分子SiO2和Al2O3,与Ca( OH)2、SO42−及Cl−,生成水化硅酸钙、钙矾石及水化氯铝酸钙等水化产物,进而提高胶凝材料强度。当石灰掺量较低时,其水化生成的Ca(OH)2,虽然对气化渣颗粒内部的Al-O键和Si-O键造成一定破坏,生成活性Al2O3和SiO2,反应生成少量类沸石水化产物[15]。但是,产生的Ca(OH)2较少,且大部分气化渣还处于未活化的状态,所以石灰掺量较少时,试样强度较低。随石灰掺量提高,Ca(OH)2生成量增加,提高了OH−的浓度,使得较多气化渣颗粒释放活性成分,因此试样强度提高。直至石灰掺量在15%时,强度达到最大值。随着石灰掺量的增加,生成了过量的Ca(OH)2,然而Ca(OH)2具有膨胀性,标准养护条件下导致试件发生膨胀[16]。因此,随着石灰掺量从15%增加到17%,试样强度反而下降。
2)水玻璃模数对胶凝材料强度的影响。图2为水玻璃模数对试样抗压强度的影响,可以看出,随水玻璃模数的增加,抗压强度成先增大后减小,再增大后减小的趋势。水玻璃模数为1.4时,试样28 d抗压强度可达到26.5 MPa。随水玻璃模数的升高,Na2O质量分数降低,SiO2质量分数增加。其中,Na2O质量分数在反应过程中有2方面作用:一方面,激发剂中的Na2O的质量分数越高,pH值越大,气化渣释放出硅、铝四面单体数量越多,有利于发生生成凝胶的聚合反应,使得体系抗压强度提高;另一方面,当激发剂中碱过多时,Na+会在气化渣颗粒表面发生钝化反应,阻碍原材料的进一步溶解,导致样品强度降低[17]。激发剂中的SiO2质量分数,在反应过程中也有2方面作用:一方面,由于气化渣中Si的溶解速度较慢,激发剂掺入的SiO2能解决反应初期,灰体难以释放出足够的[SiO4]4−四面体,参与后续反应的问题,使得体系的聚合反应更充分,有效提高胶凝材料的早期强度[18];另一方面,增加激发剂中SiO2的质量分数,会导致激发剂中SiO2的聚合度大大提高,降低SiO2的反应活性,同时部分多余的SiO2,将在反应后期发生水解,生成无定型硅酸以及碱类物质,导致材料的泛碱现象[19],进而影响胶凝材料抗压强度的发展。因此,当水玻璃掺量一定时,水玻璃最佳模数值为1.4。这能够使得体系中Na2O和SiO2的质量分数对试样强度发展作用最优,制得强度最优的胶凝材料。
3)水玻璃掺量对胶凝材料强度的影响。图3为水玻璃掺量对试样抗压强度的影响,可以看出,随水玻璃掺量的增加,试样抗压强度成先增大后减小的趋势。水玻璃掺量为13%时,试样28 d抗压强度达到27 MPa,相对于不加水玻璃的C1组强度提高了260%。水玻璃的引入,促进了激发剂对煤气化渣的激发效果。仅掺石灰与高盐废水使浆体中碱度有限,大量气化渣中活性硅铝没有溶出。水玻璃可水解生成NaOH,使液相的OH−增多。同时,水玻璃还能水解生成硅胶,这些硅胶可与Ca2+反应生成C-S-H凝胶[20],进而加速气化渣与Ca(OH)2的反应,生成较多的水化产物,使得试样更加密实。不加水玻璃的C1试样,28 d强度较7 d强度增长了10.3%;加入水玻璃掺量为9%时,试样28 d强度较7 d强度增长了34.2%。水玻璃的加入,使得试样后期强度发展快。在反应初期,气化渣玻璃体中的Al-O、Si-O键发生断裂,[AlO4]5−、[SiO4]4−四面体被快速溶出形成低聚体,会在低于150 ℃的条件下发生缩聚反应,生成-Si-O-Al-O-为骨架的三维网络结构的无机高分子地质聚合物,硬化后发挥作用提高强度。随着养护龄期的增长,当试样养护到28 d时,气化渣中的氧化物原料大部分被溶解,随着解聚-缩聚反应的发生,生成了大量具有胶结作用的凝胶物质(N-A-S-H),使试样的28 d抗压强度发展较快。
4)高盐废水掺量对胶凝材料强度的影响。高盐废水掺量对试样抗压强度的影响见图4,可以看出,随高盐废水掺量的增加,试样抗压强度有不同程度的提高。当高盐废水掺量从0增加至100%时,试样28 d抗压强度,由11.6 MPa提高至38.8 MPa,提高了234%。高盐废水中含有大量SO42−、Cl−,随着高盐废水掺量的增加,SO42−浓度不断增加。一方面,SO42−在Ca2+作用下,与夹杂在颗粒表面的凝胶,及溶解于液相中的活性Al2O3,反应生成水化硫铝酸钙,即钙矾石(AFt)[21]。钙矾石具有一定的膨胀性,可以填补结构空隙,使试样密实度提高。另一方面,废水中的SO42−,能够与Na+反应生成Na2SO4,与石灰产生的Ca(OH)2反应生成NaOH,消耗其中的Ca2+,增加体系的碱度,这有助于活性SiO2、Al2O3的溶出,加速水化反应进程,从而提高试样强度[20]。其次,高盐废水中的Cl−与Ca2+,有较强扩散能力,能够穿过气化渣颗粒表面的水化层,与内部被激发后释放的活性Al2O3反应,生成水化氯铝酸钙[22];Cl−还可以与Ca(OH)2反应,生成氧氯化钙复盐,不溶于水,使得试样中固相增多,从而试样的抗压强度得到了提高。因此,随高盐废水掺量增加,试样强度不断增加,高盐废水有利于激发煤气化渣胶凝材料的活性。
-
图5为复合激发剂激发煤气化渣水化28 d的XRD图。由图5(a)可以看出,加石灰的D2中,有C-S-H和N-A-S-H的特征峰的出现。这与刘江等[23]的研究结果一致。不加石灰的A1中,C-S-H的特征峰几乎没有,因此,试样强度最低。由图5(b)可以看出,加入水玻璃的D2试样,与不加水玻璃的C1试样相比,C-S-H和N-A-S-H的特征峰增强。不加水玻璃的C1试样,有Ca(OH)2与水化氯铝酸钙(3CaO·Al2O3·CaCl2·10H2O)的特征峰出现。D2试样中无水化氯铝酸钙的特征峰出现。这可能是由于水玻璃的加入,使胶凝材料中形成很多的N-A-S-H,消耗了活性Al2O3。因此,活性Al2O3剩余量少,生成的水化氯铝酸钙的量就变少。首先,水玻璃中的Na2O为体系提供了更多的OH−,使硅铝玻璃体迅速溶解,产生大量[SiO4]4−、[AlO4]5−,使水化产物增多。其次,水玻璃中SiO2可降低水化产物的钙硅比,使水化产物的聚合度升高,体系的后期强度明显增大。此外,不加水玻璃的C1试样,生成了过量的Ca(OH)2,导致试样体积膨胀,强度降低。C1试样中没有出现氧氯化钙复盐的特征峰。这可能是,氯离子浓度低,因此其生成量少。由图5(c)可以看出,加高盐废水的D2试样,相比于不加高盐废水的D1试样,C-S-H特征峰增强。高盐废水的加入,促进了水化反应的进行,使水化产物种类增加,复合激发剂激发效果明显。邱轶兵等[21]发现,水化产物中有一定量的钙矾石,但图5(c)中没有发现钙矾石的衍射峰。这可能是由于高盐废水中硫酸根离子浓度低,故导致钙矾石的生成量较少。此外,加入高盐废水的D2试样中,有NaCl的特征峰出现,氯离子在胶凝材料中会发生迁移,这可能会对胶凝材料的耐久性产生不利影响,后续研究应考虑胶凝材料的抗冻融性等。综上,煤气化渣在复合激发剂作用下,生成较多的Ca(OH)2参与反应,促进煤气化渣中的Si-O和Al-O发生解聚-缩聚反应,形成化学激发胶凝材料。其中,生成C-S-H、N-A-S-H、水化氯铝酸钙等产物,这些产物胶结在一起,有利于提高试样结构的密实度。
-
为进一步分析复合激发剂对气化渣激发机理,分别对A1、C1、D1、D2试样的28 d水化产物进行微观分析,结果如图6所示。从图6(a)、图6(b)、图6(d)可以看出,D2试样中有较多的水化产物,堆积在被激发的气化渣颗粒表面以及颗粒间,有絮状C-S-H及网状N-A-S-H等凝胶生成。相比于A1、C1试样,D2试样中水化产物更加密集且孔隙较少,A1、C1中有较多的气化渣颗粒未被激发。D2中水玻璃水解后生成OH−,使气化渣中活性硅铝溶出。并且,水玻璃为体系提供了较多的活性SiO2,使水化产物聚合度提高,生成了较多的水化产物,使得结构更加密实。C1中未加水玻璃,气化渣中活性物质溶出较少,没有足够的SiO2参与水化反应,使得水化产物聚合度低,且生成量较少,导致试样强度较低。因此,水玻璃的加入,可明显增加水化产物种类及数量,进而提高复合激发剂对煤气化渣的激发效果。
此外,从图6(c)、图6(d)中可以看出,D2试样中有少量针棒状的钙矾石产生,水化产物之间黏结紧,结构密实度较好。相比于D1,加入了高盐废水的D2试样,废水中SO42−、Cl−,使气化渣中更多的活性物质溶出,促进水化产物的生成。并且,生成的钙矾石等产物,能够填充结构中的孔隙,使试样密实度提高。
-
图7为复合激发剂激发煤气化渣水化28 d孔结构的测试结果。由图7可以看出,加水玻璃的D2试样,孔径分布的峰值明显向孔径小的方向移动,且总孔隙率由不加水玻璃的C1试样35.6%,降低至22.1%。水玻璃中的Na2O水解后,产生的OH−能够与水及CaO反应生成Ca(OH)2,提高体系的碱度,促进了煤气化渣中活性硅铝的溶出。生成较多的C-S-H、N-A-S-H等物质,可填充于试样的孔结构,进而提高其力学性能。不加高盐废水的D1试样,孔径分布明显向孔径大的方向移动,且孔隙率相比于加高盐废水的D2有所提高。不加高盐废水的试样中没有SO42−及Cl−的作用。因此,水化产物生成量少,试样孔径大、孔隙率高。这导致试样结构不够密实,强度较低。A1试样的孔隙率最高,强度最低。
-
对不同高盐废水掺量下,制备的煤气化渣胶凝材料试样(D1、D3、D5),进行了浸出毒性检测。通过判断其是否满足《危险废物鉴别标准浸出毒性鉴别》(GB 5085.3-2007)[24]中规定的限值,来判断高盐废水加入煤气化渣胶凝材料中,对环境有无污染。各试样重金属的毒性浸出结果如表4所示。
国家标准中规定,Cr、Ni、Cu、Zn、As、Cd、Pb的浸出限值,分别不能高于5、5、100、100、5、1、5 mg·L−1。由表4可以看出,各试样中各重金属元素浸出浓度,远低于标准中的限值。利用高盐废水制备煤气化渣胶凝材料的浸出液,与原废水相比,Cr、Ni、Cu、Zn、As、Cd质量浓度均降低,而Pb质量浓度有所增加。随高盐废水掺量的增加,Ni、Cu、Zn、As、Pb浸出浓度增加,Cd浸出浓度降低,Cr的浸出浓度不变。利用复合激发剂激发煤气化渣制备的胶凝材料,对高盐废水中的重金属有一定的固化作用。因此,各元素浸出浓度得到降低。Pb浸出浓度增加可能是在激发剂作用下,煤气化渣中的活性物质释放的同时,Pb元素被释放出来,因此,其浸出浓度增加。随高盐废水掺量增加,胶凝材料中的重金属元素引入的就越多,因此,Ni、Cu、Zn、As、Pb浸出浓度增加。Cd浸出浓度降低,Cr的浸出浓度不变。这说明,在复合激发剂作用下,胶凝材料对Cd、Cr元素的固化效果好。此外,高盐废水中还存在一些铵盐,在碱性环境下会生成氨气,后续研究应考虑挥发出的氨会对大气产生的二次污染。综上所述,利用复合激发剂激发煤气化渣制备的胶凝材料,对高盐废水中的重金属元素,有一定的固化作用,且所制备的胶凝材料浸出毒性均低于国家标准中的限值。
-
1)复合激发剂中石灰掺量、水玻璃模数与掺量及高盐废水掺量,对煤气化渣胶凝材料的抗压强度,均有一定的影响。其中,当高盐废水掺量为100%时,试样的28 d抗压强度,最高可达38.8 MPa。
2)水玻璃中的Na2O为体系提供了OH−,使煤气化渣中活性物质溶出,产生大量[SiO4]4−、[AlO4]5−,使水化产物增多;水玻璃中的SiO2可降低水化产物的钙硅比,硅氧四面体链变长,提高产物的聚合度,生成较多C-S-H、N-A-S-H等水化产物,使试样结构更加密实,体系的后期强度明显增大。
3)复合激发剂对煤气化渣激发效果显著。这主要因为激发剂提供了较多的SO42−、Cl−及OH−,使气化渣活性被激发,并且引入Ca2+,促进Ca(OH)2、C-S-H、N-A-S-H、钙矾石和水化氯铝酸钙等物质的生成,使试样孔隙率降低,故本研究所制备的胶凝材料能固化高盐废水中的部分重金属。
复合激发煤气化渣基胶凝材料的制备
Preparation of composite activated coal gasification slag-based cementitious materials
-
摘要: 为提高煤化产业废渣、废水的综合利用,以煤气化渣为原料,高盐废水、水玻璃及石灰为复合激发剂制备胶凝材料。探究了复合激发剂中石灰掺量、水玻璃模数、水玻璃掺量及高盐废水掺量对胶凝材料力学性能的影响;借助XRD、SEM、MIP、ICP-AES等分析手段对激发剂作用下煤气化渣胶凝产物及其微观形貌进行表征,并讨论了胶凝材料对环境安全性的影响。结果表明,当石灰掺量为15%时,试样28 d抗压强度可达到23.8 Mpa;水玻璃模数为1.4时激发效果最好,水玻璃最佳掺量为13%;高盐废水掺量为100%时,试样28 d抗压强度为38.8 MPa。微观观察结果表明,水玻璃可促进煤气化渣硅铝玻璃体的溶解,提高水化产物聚合度,生成C-S-H、N-A-S-H使得体系的结构更加密实,后期强度增大。此外,复合激发剂在SO42-、Cl-、OH-、Ca2+的共同作用下,可显著提高气化渣活性并加速其水化反应,生成Ca(OH)2、C-S-H、钙矾石和水化氯铝酸钙等物质,使试样孔隙率降低,强度提高。并且,胶凝材料可固化高盐废水中的重金属。本研究结果可为煤气化渣制备胶凝材料提供参考。Abstract: In order to improve the comprehensive utilization of the waste slag and wastewater produced by the coal chemical industry, the cementitious material was prepared with coal gasification slag as raw material and high salt wastewater, water glass and lime as composite activator. The activated effects of lime content, sodium silicate modulus, sodium silicate content and high salt wastewater content in the composite activator on the mechanical properties of the cementitious materials were explored, and the cementitious products of coal gasification slag and their microscopic structure were tested by XRD, SEM, MIP, ICP-AES and other methods. Finally, the environment safety of the cementitious materials was discussed. The results showed that the 28 d compressive strength can reach 23.8 MPa when the lime content was 15%. When the sodium silicate modulus was 1.4, activation effect is the best, and the optimum content of water glass was 13%. When the high salt wastewater content was 100%, the 28 d compressive strength of the specimen was 38.8 MPa. Microscopic results showed that sodium silicate can promote the dissolution of silicon-aluminum glass in coal gasification slag, improve the polymerization of hydration products. The generation of C-S-H, N-A-S-H made the structure of the system denser, which leaded to the later strength increases. In addition, the composite activator can significantly increase the activity of gasification slag and accelerate its hydration reaction under the joint action of SO42-, Cl-, OH-, and Ca2+ to produce Ca(OH)2, C-S-H, ettringite, and hydrated calcium chloroaluminate. The increased hydration products reduced the porosity of the samples, which improving the strength of the samples. And, cementitious material can solidify heavy metals in high-salt wastewater. The results of this study can provide theoretical reference for the preparation of cementitious materials from coal gasification slag.
-
Key words:
- coal gasification slag /
- composite activated /
- high salt wastewater /
- sodium silicate /
- strength /
- hydration products
-
精神活性物质是指对人类中枢神经系统具有强烈兴奋或抑制作用的成瘾性物质,主要包括:阿片类,可卡因、海洛因和美沙酮等;安非他命类,苯丙胺、甲基苯丙胺和摇头丸等;大麻类,大麻酚和四氢大麻酚等[1]。《2021年世界毒品形势报告》显示,全球超过约2.75亿(15—64岁)人口,在过去一年中至少使用过一次精神活性物质,比2010年增加22%,每年约50万人直接死于精神活性物质的滥用[2],精神活性物质的滥用已经成为全球关注的问题。精神活性物质进入人体后,经过肌体的新陈代谢,以药物母体及其代谢产物的形式排出体外,经由下水道进入污水处理系统。Christian[3]在2001年首次提出,通过检测市政污水中目标物质的浓度与人体药物代谢动力学相结合,可以反推评估该地区精神活性物质的滥用情况及流行率。目前对市政污水中低浓度精神活性物质定性定量检测的主流方法为液相色谱质谱联用法[4]及气相色谱质谱联用法[5]。美国[6-7]、意大利[8]、西班牙[9]、澳大利亚[10]等多个国家已经利用Christian提出的方法开展了多种精神活性物质滥用情况的调查研究。
目标覆盖区域的服务人口数是利用精神活性物质滥用情况反推其滥用量及流行率过程中一个非常重要的参数,其数值的合理性和准确程度极大影响着推算结果的准确度。目前,目标覆盖区域服务人口数的推算方法主要有静态法和动态法,静态法有设计容量法和人口普查法等;动态法有水质参数法,常用的水质参数包括氨氮(NH4-N)、化学需氧量(COD)和总氮(TN)等[11],生物标志物法,常用的生物标志物包括可替宁、肌酸酐和咖啡因等[12]。其中设计容量法更偏向污水处理厂初建时设计的服务人口数,水质参数法和人均用水量法受工业污水占比影响较大,生物标志物法会受到年龄和身体状况等参数的影响,造成吸收和代谢的比例不一致。每种推算方法都有自身的特点和局限性,会给调查结果带来不确定性。因此,服务人口数的估算直接影响目标物滥用量和流行率的反演推算结果。
本研究使用层次分析法,综合多种目标覆盖区域服务人口数的估算方法,建立多参数人口模型,以此获得更为准确的服务人口数,并应用于精神活性物质滥用量和流行率的评估。
1. 材料与方法(Materials and methods)
1.1 实验材料
实验试剂与耗材:甲基苯丙胺(METH)、苯丙胺(AMP)、吗啡(MOR)、O6乙酰吗啡(6MAM)、可替宁(CTN)(1 mg·mL−1,美国Cerilliant公司);甲基苯丙胺-d8(METH-d8)、苯丙胺-d8(AMP-d8)、吗啡-d3(MOR-d3)、O6乙酰吗啡-d3(6MAM-d3)、可替宁-d3(CTN-d3)(100 μg·mL−1,美国Cerilliant公司);甲醇、二氯甲烷、氨水(色谱纯,上海安谱实验科技股份有限公司);盐酸(分析纯,国药集团化学试剂有限公司)、MCX固相萃取柱(3mL, 60 mg,美国Waters公司),玻璃纤维滤膜(0.45 μm,Whatman GF/F);
实验设备:Thermo Scientific TSQ Endura型高效液相色谱质谱仪(美国Thermo Scientific公司),WD-12型氮吹仪(杭州奥盛仪器有限公司),12孔配真空抽干装置固相萃取仪(美国Supelco公司),XW-80A型旋涡混合器(上海精科实业有限公司)。
1.2 样品采集
样品采集于我国西北部某城市主城区污水处理厂(S1、S2、S3、S4)和县(市、区)污水处理厂(X1、X2、X3、X4),以上8个污水处理厂基本覆盖该市所有行政区,覆盖人口数约占全市人口总数的89%。使用自动取样器于2019年冬季和2020年夏季,在污水处理厂进水口采集24 h混合水样约400 mL,样品连续采集一周。精神活性物质的吸食频率存在一定的周期性,连续采集样品一周基本能反映一个地区精神活性物质的滥用情况。样品采集后存放于聚酯(PET)瓶内,加盐酸调节pH≤2,冷冻运输至实验室,待后续分析。
1.3 样品前处理
样品在常温下解冻,经0.45 μm的玻璃纤维滤膜过滤,振荡混合均匀,量取50 mL滤液并添加氘代内标为待测样,固相萃取富集目标物:分别用甲醇、超纯水和pH 2的盐酸水溶液充分活化并平衡固相萃取柱,固相萃取待测样,样品流速控制在每滴1—2 s。富集完成后真空干燥固相萃取柱,依次用甲醇和5%氨水/甲醇溶液(M/M)淋洗洗脱并收集洗脱液。洗脱液在柔和氮气吹至近干后用20%(V/V)甲醇水复溶,转移至色谱瓶进行二次氮吹,最后用200 μL 20%(V/V)甲醇水溶液定容。
1.4 样品分析
使用Thermo Scientific TSQ Endura型高效液相色谱-质谱联用仪进行分析。色谱条件为:Waters XTerra MS C18反相色谱柱(100 mm×2.1 mm, 3.5 μm),流动相A为0.12%甲酸和30 mmol·L−1甲酸铵水溶液,B相为甲醇,流速0.3 mL·min−1,柱温30℃,进样量5 μL。质谱选用电喷雾离子源(ESI),采用ESI(+)模式。目标物特征选择离子、质谱条件及回收率如表1所示。
表 1 目标物特征选择离子、质谱条件及回收率Table 1. Target feature selection ions, mass spectrometry conditions and recovery rate物质Compound 母离子Parent ionm/z 定量离子Quantitative ion 定性离子Qualitative ion 保留时间/minRetention time 回收率/%Recovery rate m/z DP/V CE/V m/z DP/V CE/V MOR 286.0 152.1 82.0 55.0 165.0 82.0 32.0 2.73 88.45±5.22 MOR-d3 289.2 152.1 80.0 55.0 165.0 80.0 41.0 2.72 — 6MAM 328.1 165.3 90.0 36.0 211.3 90.0 36.0 4.35 84.61±3.40 6MAM-d3 331.1 165.1 90.0 38.3 211.2 90.0 25.0 4.36 — METH 150.1 91.1 30.0 16.0 119.1 30.0 16.0 4.62 101.65±4.95 METH-d8 158.2 93.2 40.0 19.0 124.2 40.0 10.3 4.59 — AMP 136.1 91.1 40.0 21.0 119.1 40.0 21.0 4.51 99.00±4.90 AMP-d8 144.2 127.2 40.0 10.3 97.2 40.0 16.0 4.44 — CTN 177.2 80.2 30.0 24.0 101.2 30.0 11.0 3.09 98.31±4.78 CTN-d3 180.1 80.2 30.0 25.0 101.2 30.0 22.4 3.08 — 1.5 质量控制
配制浓度分别为:1.56、3.13、6.25、12.50、25.00、50.00、100.00、150.00、200.00、250.00、300.00 μg·L−1的混合标准溶液,绘制标准曲线,线性良好(R2≥0.999)。
为确定目标物回收率在合理范围内,每12个样品添加一组浓度为100.00 μg·L−1的混合标准溶液为质控样品,结果显示目标物的回收率均在85%—105%之间。同时每12个样品添一组空白实验。
1.6 计算方法
利用水质参数法、生物标志物法和人均用水量法计算服务人口数,具体计算方法如式所示:
PT=CT×FmT (1) 式(1)中,PT是通过水质参数T计算后得到的服务人口数(万人);CT为水质参数T的浓度(mg·L−1);mT是水质参数T的人均产生量(g·d−1);F为污水处理厂日均处理量(104 m3·d−1)。
本文选用的水质参数T为氨氮(NH4-N),由于地区、生活习惯、年龄和性别比例的不同,人均排放量的比例亦不相同,结合文献调查结果[13-14]和该市具体情况,人均排放量mT取值为10 g·d−1。
PS=CS×FmS (2) 式(2)中,PS是通过生物标志物S计算后得到的服务人口数(万人);CS为生物标志物S的浓度(mg·L−1);mS是生物标志物的日产生量(g·d−1);F为污水处理厂日均处理量(104 m3·d−1)。
本文选用的生物标志物为可替宁,根据该市的烟草消耗、尼古丁含量及其在人体内代谢比例,运用水晶球软件模拟得到该市人均可替宁日产生量为1.47 mg·d−1。
PQ=Q10−3¯Q (3) 式(3)中,PQ是通过人均用水量法计算得到的服务人口数(万人);Q为污水处理厂日均处理污水量(104 m3·d−1);
为该市人均用水量(L·d−1)。¯Q 该市2019年水资源利用公报显示,城镇居民和农村居民人均用水量分别为123 L·d−1和52.9 L·d−1。
检验层次分析法建立模型的合理性与可靠性,需要对判断矩阵一致性进行检验,公式为:
C.I.=λmax−nn−1 (4) C.R.=C.I.R.I. (5) 式(4)和(5)中,C.I.为计算一致性指标;λmax为判断矩阵的最大特征值;n为矩阵阶数;R.I.是判断矩阵特征值的算术平均数,当n=4时取值0.90;C.R.为计算一致性比例。
精神活性物质滥用量及流行率的具体计算公式如下:
Ci,1=Ci,2×Mi,1E×Mi,2 (6) 式(6)中,Ci,1是精神活性物的浓度(μg·L−1);Ci,2是精神活性物质标志物的浓度(μg·L−1);Mi,1和Mi,2分别是精神活性物及其标志物的分子质量;E是精神活性物质标志物的代谢率,甲基苯丙胺的生物标志物为母体,代谢率为42%,海洛因的生物标志物为吗啡,代谢率为77%[15]。
mi=Ci,1×F'P (7) 式(7)中,mi是精神活性物质的人均滥用量(μg·d−1);Ci,1是精神活性物的浓度(10−3 μg·L−1);F'是污水处理厂进水流量(104 m3·d−1);P是服务人口数(万人)。
PR(%)=miR18—60×D×n×100\% (8) 式(8)中,PR为特定时间内,使用某种精神活性物质的人群数量占18——60岁总人数数量的比例;R18—60是该市居民中18—60岁的成年人口比例,经调查该市居民18—60岁成年人口的比例为62.4%;D是精神活性物质使用的典型剂量大小(mg·次−1),n是每天的平均使用频率(次·d−1)。
Bao等[16]研究发现,甲基苯丙胺的典型剂量为(135±80)mg·次−1,平均使用频率为0.31 次·d−1;陈小波,乔静等[17-18]研究发现,海洛因的典型剂量为44 mg·次−1,平均使用频率为2.40 次·d−1。
2. 结果与讨论(Results and discussion)
2.1 污水处理厂服务人口数计算模型
计算所需相关参数大小如表2所示。通过各方法获得的污水处理厂服务人口数,相关数据如表3所示。
表 2 各方法相关参数Table 2. Correlation parameters of each method污水处理厂Sewage treatment plant 日处理污水量/万tDaily amount of sewage treated NH4-N/(mg·L−1) 可替宁/(μg·L−1)Cotinine concentration S1 7.50 67.50 5.88 S2 15.00 60.72 5.29 S3 7.50 49.98 6.21 S4 5.50 49.57 6.07 X1 1.00 107.93 8.05 X2 0.50 30.97 4.46 X3 0.30 50.45 6.34 X4 2.00 28.39 4.14 表 3 污水处理厂服务人口数(万人)Table 3. Population served by sewage treatment plant (ten thousand people)污水处理厂Sewagetreatment plant 专家估算人口Expert estimates of population 设计容量法Design capacity method 水质参数法Water quality parameter method 生物标志物法Biomarker method 人均用水量法Per capita water consumption 多参数模型法Multi-parameter model method S1 41.1 30.0 50.6 30 48.8 37.2 S2 52.1 70.0 91.1 54 85.4 68.1 S3 40.7 50.0 37.5 32 42.7 36.3 S4 22.0 27.0 27.3 23 44.7 27.2 X1 4.70 6.00 11.0 5.5 15.3 8.08 X2 2.00 2.30 1.50 1.5 4.80 2.00 X3 1.54 3.00 1.50 1.3 4.00 1.85 X4 5.72 8.00 5.70 5.6 30.7 9.10 专家估算人口是以该市统计年鉴人口数为基础,结合污水处理厂日内污水流量波动、日间污水处理量波动和污水来源组成等因素综合推算得到的污水处理厂服务人口数。Castiglioni等[19]认为专家估算人口是最可靠的服务人口数的估算方法,因此以专家估算人口数为标准判断各方法推算服务人口数的准确度。但是该方法耗时耗力且经济成本较高。设计容量法是一种较为方便和简单获得服务人口数的方法,但是设计容量法获得的人口数更偏向污水处理厂初建设计的服务人口数,获得的服务人口数往往高于实际人口数。但也存在一些污水处理厂满负荷运行,甚至高于污水处理厂初建设计的服务人口数,如S1。而通过水质参数法推算的服务人口数,会受到工业污水的影响,导致主城区服务人口数偏高。主要是因为主城区4个污水处理厂的工业污水业占比较高,导致氨氮数据偏高,从而影响服务人口数的估算。生物标志物法推算的服务人口数也会与真实服务人口数有所差异,这是因为可替宁是尼古丁通过细胞色素P450(CYP)亚型2A6介导产生的代谢物[20],年龄和身体状况的差异,会导致尼古丁代谢为可替宁的比例不同。人均用水量法推算得到的服务人口数明显偏高,主要原因有两个方面,一是污水处理厂的人均用水量数据比实际值高;二是污水处理厂的工业污水占比比登记值高,从而导致推算结果的偏高。
由此可见,使用不同方法推算污水处理厂的服务人口数会得到不同的数据,每种方法都有其自身的特点和局限性,为减小单个计算方法带来的不确定性,本文使用层次分析法对不同参数所占的权重进行计算,建立污水处理厂服务人口数多参数计算模型。
在层次分析中,以可替宁计算得到的服务人口数为基础,其他方法推算的服务人口数与可替宁推算人口的相关系数矩阵(表4)作为依据,使用1—9标度法对重要性进行对比打分,将服务人口数相关系数矩阵转为服务人口数判断矩阵(表5),对不同方法的权重进行赋值。
表 4 服务人口数相关系数矩阵Table 4. Correlation coefficient matrix of service population设计容量人口Design capacity population 水质参数法Water quality parameter method 生物标志物法Biomarker method 人均用水量法Per capita water consumption 设计容量人口 1 0.55 0.43 0.83 水质参数法 1 0.53 0.77 生物标志物法 1 0.57 人均用水量法 1 表 5 服务人口数判断矩阵Table 5. Judgment matrix of service population设计容量人口Design capacity population 水质参数法Water quality parameter method 生物标志物法Biomarker method 人均用水量法Per capita water consumption 设计容量人口 1 1/4 1/5 1 水质参数法 4 1 1/4 2 生物标志物法 5 4 1 3 人均用水量法 1 1/2 1/3 1 计算得到的多参数人口模型公式为:
P=0.09×P设计容量法+0.23×P水质参数法+0.55×P生物标志物法+0.13×P人均用水量法 (9) 对矩阵的一致性进行检验,得到C.R.为0.078<0.1,认为矩阵的一致性是可以接受的。
各方法计算得到的服务人口数与专家估算服务人口数相关性分析如图1所示。相关性分析中,设计容量法的R2=0.9037,水质参数法的R2=0.8850,生物标志物法的R2=0.9238,人均用水量法的R2=0.8238,多参数模型法的R2=0.9472,其中多参数模型法得到的服务人口数与专家估算的服务人口数相关性最强,更能够准确反映服务人口数。
2.2 全市精神活性物滥用情况
该市2019和2020年甲基苯丙胺和海洛因人均滥用量如图2所示。在2019年和2020年两次精神活性物质滥用调查中,每个样品均检出甲基苯丙胺和吗啡,甲基苯丙胺的人均滥用量分别为(112.60±25.20)μg·d−1和(92.81±28.41)μg·d−1;海洛因的人均滥用量分别为(31.70±10.93)μg·d−1和(25.65±11.42)μg·d−1。以《2019年中国毒品形势报告》、《2020年中国毒情形势报告》和该市公安部门提供的吸食精神活性物质信息为基础,从图2可以看出,该市主要吸食的传统精神活性物质为甲基苯丙胺,这也与《2020年中国毒情形势报告》相一致,同时该地区海洛因滥用量水平低于全国滥用量水平[21-22]。与2019年相比,2020年精神活性物质滥用量有所减小。我国传统精神活性物质以甲基苯丙胺和海洛因为主,因此精神活性物质总滥用量多采用两种物质加和的形式[21-22],该市精神活性物质总滥用情况为2019年(144.30±30.56)μg·d−1和2020年(118.46±37.34)μg·d−1。这与该市公安部门自2019年起加强对精神活性物质制造、贩售和吸食等行为的打击力度有着密不可分的关系。同时考虑到我国有近85%的毒品来源于金三角、金新月和北美等境外地区,2020年新冠疫情致使国内涉毒行为和境外流动受限也是导致精神活性物质滥用量下降的一个原因。对该市八个主城区及县(市、区)的精神活性物质滥用调查发现该市S2和S3的AMP/METH比值高于苯丙胺全部由甲基苯丙胺代谢的理论比值0.05—0.24[23](S2比值为0.99±0.17,S3比值为0.83±0.19),说明这两个地区苯丙胺存在其他来源。我国临床禁止使用苯丙胺类药物,因此可以推断这两个地区存在苯丙胺的滥用。同时该市的滥用量均小于北京、广州和大连等地[24-26],主城区高于县(市、区),说明精神活性物质的滥用情况与经济发展程度有关。这也与Bishop等[27]对小城市和农村精神活性物质的滥用量调查结果相一致,城市化水平和经济发展程度更高以及富裕人口更多的小城市,精神活性物质的滥用量高于农村精神活性物质的滥用量。经济的迅速发展导致人们生活节奏变快,在心理上,人们往往会选择吸食精神活性物质来释放压力,从而使得经济条件发达的地区精神活性物质的滥用情况更严重。
2.3 全市精神活性物质流行率
该市2019和2020年精神活性物质流行率,如表6所示。该市2019和2020年甲基苯丙胺的流行率分别为0.49%±0.17%和0.34%±0.11%,2019和2020年海洛因的流行率分别为0.48‰±0.17‰和0.39‰±0.18‰。该市18—60岁成年人甲基苯丙胺的流行率在Shao等[28]调查的全国15—65岁成年人甲基苯丙胺流行率0.08%—1.25%范围内,低于Pei等[29]对北京甲基苯丙胺流行率的估算。海洛因流行率低于Du等[26]调查的全国主要城市海洛因的平均流行率1.01‰。甲基苯丙胺的流行率与海洛因的流行率相比处于较高水平,这也与近年来甲基苯丙胺缉获量远高于海洛因缉获量这一事实相符合。造成以上现象的主要原因是甲基苯丙胺在中国更容易获得,其合成几乎不受地理位置的限制,从而导致甲基苯丙胺的流行率在某种程度上远高于海洛因的流行率。
表 6 精神活性物质流行率Table 6. Epidemic rate of psychoactive substances污水处理厂Sewage treatment plant 2019年 2020年 METH流行率/%Prevalence rate MOR流行率/‰Prevalence rate METH流行率/%Prevalence rate MOR流行率/‰ Prevalence rate S1 0.46 0.48 0.57 0.56 S2 0.60 0.48 0.41 0.55 S3 0.49 0.39 0.37 0.23 S4 0.45 0.43 0.28 0.35 X1 0.30 0.54 0.24 0.44 X2 0.26 0.19 0.19 0.05 X3 0.50 0.52 0.32 0.60 X4 0.83 0.83 0.35 0.35 3. 结论(Conclusion)
利用设计容量法、水质参数法、生物标志物法和人均用水量法对污水处理厂的服务人口数进行推算,使用层次分析法对权重进行赋值,建立了更合理的污水处理厂服务人口数估算模型,同时评估了2019和2020年该市精神活性物质的滥用量和流行率。结果显示,该市2019和2020年甲基苯丙胺的人均滥用量为(112.60±25.20)μg·d−1和(92.81±28.41)μg·d−1,流行率为0.49%±0.17%和0.34%±0.11%;海洛因的人均滥用量(31.70±10.93)μg·d−1和(25.65±11.42)μg·d−1,流行率为0.43‰±0.10‰和0.41‰±0.18‰。该市2020年较2019年精神活性物质的滥用量有所下降,不仅是因为公安机关加大了对毒品制造、贩卖、吸食的打击力度,也是新冠疫情防疫措施导致毒品的流通受阻所带来的结果,同时经济发展水平在一定程度上也影响了精神活性物质的滥用程度。
-
表 1 煤气化渣的化学成分组成
Table 1. Chemical composition of coal gasification slag
% SiO2 Al2O3 CaO Fe2O3 MgO Na2O K2O TiO2 SO3 LOI 49.85 17.4 13.43 9.98 3.18 1.95 1.68 0.83 0.65 2.39 表 2 高盐废水水质
Table 2. High-salt wastewater quality
mg·L−1 COD 硫酸盐 氯盐 磷酸盐 总磷 硝氮 亚硝氮 氨氮 总氨 13 153.50 7 650.80 24 060.80 21.10 25.96 1 145.00 92.34 25.58 1 283.00 表 3 高盐废水中重金属的质量浓度
Table 3. Mass concentration of heavy metals in high-salt wastewater
mg·L−1 Cr Ni Cu Zn As Cd Pb 0.12 0.33 0.47 0.17 0.56 0.02 — 表 4 各试样重金属的毒性浸出
Table 4. Toxic leaching of heavy metals for each sample
mg·L−1 高盐废水掺量 Cr Ni Cu Zn As Cd Pb 0 0.008 0.024 0.011 0.018 — 0.006 0.013 50% 0.008 0.025 0.013 0.028 — 0.005 0.019 100% 0.008 0.027 0.014 0.031 — 0.004 0.033 -
[1] 张鸿宇, 周丽, 张希良. 我国现代煤化工产业现状及政策综述[J]. 现代化工, 2018, 38(5): 1-5. [2] 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193. [3] 赵永彬, 吴辉, 蔡晓亮, 等. 煤气化残渣的基本特性研究[J]. 洁净煤技术, 2015, 21(3): 110-113+74. [4] WU S Y, HUANG S, JI L Y, et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel, 2014, 122: 64-65. [5] RADOSLAW P. The mechanical properties of coal gasification slag as a component of concrete and binding mixtures[J]. Polish Journal of Environmental Studies, 2014, 23(4): 1403-1406. [6] 盛燕萍, 冀欣, 徐刚, 等. 煤气化渣水泥稳定碎石基层材料性能研究[J]. 应用化工, 2020, 49(6): 1407-1412+1417. doi: 10.3969/j.issn.1671-3206.2020.06.018 [7] 刘开平, 赵红艳, 李祖仲, 等. 煤气化渣对水泥混凝土性能的影响[J]. 建筑科学与工程学报, 2017, 34(5): 190-195. doi: 10.3969/j.issn.1673-2049.2017.05.021 [8] 冀文明, 梁冰, 金佳旭, 等. 复合激发矿渣胶凝材料配比优选试验研究[J]. 非金属矿, 2020, 43(5): 95-98. doi: 10.3969/j.issn.1000-8098.2020.05.028 [9] 吴波波, 彭小芹, 李实, 等. 钙质掺合料对碱激发低品位粉煤灰混凝土性能的影响[J]. 混凝土, 2019(3): 101-105. doi: 10.3969/j.issn.1002-3550.2019.03.025 [10] 王香莲, 湛含辉, 刘浩. 煤化工废水处理现状及发展方向[J]. 现代化工, 2014, 34(3): 1-4. [11] 朱秋楠. 煤化工高盐废水分质提盐基础与结晶工艺研究[D]. 银川: 宁夏大学, 2019. [12] KABOOSI K, EMAMI K. Interaction of treated industrial wastewater and zeolite on compressive strength of plain concrete in different cement contents and curing ages[J]. Case Studies in Construction Materials, 2019, 11: e00308. doi: 10.1016/j.cscm.2019.e00308 [13] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70-2009[S]. 北京: 中国建筑工业出版社, 2009. [14] 中华人民共和国环境保护部. 固体废弃物浸出毒性浸出方法水平振荡法: HJ 557-2010[S]. 北京: 中国环境科学出版社, 2010. [15] DOYGLAS E, BRANDSTETR J. A preliminary study on the alkali activation of ground granulated blast-furnace slag[J]. Cement & Concrete Research, 1990, 20(5): 746-756. [16] 张佩. 粉煤灰活性激发及其机理研究[D]. 石家庄: 石家庄铁道大学, 2018. [17] 梁健俊. 水玻璃模数与矿渣掺量对碱激发粉煤灰/矿渣复合体系的影响[D]. 广州: 广州大学, 2017. [18] PANIAS D, GIANNOPULOIU I, PERRAKI T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 301(1): 246-254. [19] 黄科, 马玉玮, 郭奕群, 等. 碱激发粉煤灰/矿渣复合体系的性能研究[J]. 硅酸盐通报, 2015, 34(10): 2769-2774. [20] 柯国军, 杨晓峰, 彭红, 等. 化学激发粉煤灰活性机理研究进展[J]. 煤炭学报, 2005(3): 366-370. doi: 10.3321/j.issn:0253-9993.2005.03.022 [21] 邱轶兵, 王庆平. Na2SO4激发粉煤灰火山灰活性研究[J]. 材料导报, 2013, 27(24): 121-124. [22] 何廷树, 卫国强. 激发剂种类对不同粉煤灰掺量的水泥胶砂强度的影响[J]. 混凝土, 2009(5): 62-64. doi: 10.3969/j.issn.1002-3550.2009.05.019 [23] 刘江, 史迪, 张文生, 等. 硅钙渣制备碱激发胶凝材料的机理研究[J]. 硅酸盐通报, 2014, 33(1): 6-10. [24] 中华人民共和国国家环境保护总局, 中华人民共和国国家质量监督检验检疫总局. 危险废物鉴别标准浸出毒性鉴别: GB 5085.3-2007[S], 北京: 中国环境科学出版社, 2007. -