-
污水处理厂的能耗问题已成为关注的焦点。目前,众多研究都在优化污水处理厂的运行模式,以期实现能源的循环利用。污水处理厂存在大量有机能源和生物质可以被利用和回收。剩余污泥作为一种重要的运行副产物,具有污染物与可利用资源的双重特性。一方面,剩余污泥中含有丰富的有机质和多样的微生物群落,通过厌氧消化等处理可实现可再生清洁燃料的有效回收;另一方面,在污水处理阶段未能被清除从而迁移进入剩余污泥中的多种污染物,如重金属、无机纳米颗粒、微塑料、抗生素等,这些物质已被证实具有毒害性[1]。厌氧消化作为一项依赖多级生化反应相互关联、相互协调进行的处理技术,其发酵产能的高效性和稳定性离不开功能微生物的积极参与。研究发现,在水处理阶段,大量污染物会转移到剩余污泥中,它们的存在会不可避免地干扰厌氧消化的正常运行[2-4],这给剩余污泥的处置带来了新的挑战。基于此,部分研究探究了污染物对污泥厌氧消化的影响机制:如在污泥厌氧消化过程中,微塑料会释放浸出物以干扰系统正常运行[5, 6];罗红霉素会降低产甲烷菌的丰度,限制反应的进行[2]。然而,目前鲜有研究关注到抗生素与微塑料在剩余污泥中共存而导致的复合污染,其对厌氧消化体系的影响机理有待进一步阐明。
根据剩余污泥复杂的污染现状,多种污染物将于同一时间集中在污泥中。氧氟沙星(OFL)因其具有的特殊官能团,表现出与污泥较好的亲和力,通常是剩余污泥中检出浓度最高的抗生素[7]。与此同时,微塑料以其强大的吸附力,被证实可与环境中其他难降解污染物结合形成危害性更高的团聚体[8, 9]。本研究拟探究2种新型污染物对厌氧产甲烷系统的联合影响。选用聚苯乙烯(PS)微塑料和OFL为目标污染物,在考察其单一抑制作用的基础上,进一步考察在二者耦合影响下的复合作用,以了解复合污染负荷下厌氧消化的性能。本研究可为剩余污泥资源化过程的污染调控提供参考。
氧氟沙星与聚苯乙烯微塑料复合污染对剩余污泥厌氧消化的影响
Effects of combined ofloxacin and polystyrene microplastics on anaerobic digestion of waste activated sludge
-
摘要: 为探究抗生素与微塑料复合污染对厌氧消化的作用影响,采用BMP实验考察了不同质量浓度氧氟沙星(OFL)、聚苯乙烯(PS)微塑料对剩余污泥厌氧消化产甲烷的影响行为,并通过分析溶解性有机物(DOM)、胞外聚合物(EPS)变化规律、厌氧发酵4阶段代谢以及微生物群落探讨其影响机理。结果表明,与对照组相比,单一OFL和单一PS微塑料污染使甲烷累积产量分别下降了15.95%~81.36%、4.25%~5.78%;而在复合条件下,两者表现出协同效应,故导致产甲烷速率的进一步下降和有效产气时间的缩短,其中OFL胁迫占主导。机理探究发现,不论单一OFL还是复合污染,DOM中腐殖质类物质均明显增加,EPS组分结构趋于复杂化,厌氧消化4阶段均受到明显抑制。单一PS微塑料污染在反应初期可提高产甲烷速率,且对厌氧消化4阶段的影响相对较小。微生物群落分析发现,复合组与单一OFL组群落分布更为相近,产酸细菌与嗜乙酸产甲烷菌的相对丰度均明显下降,这导致乙酸营养型产甲烷途径受到严重抑制。本研究结果可为复杂污染情况下剩余污泥资源化处理的工艺调控提供参考。Abstract: In order to explore the influence of combined antibiotic and microplastic on anaerobic digestion, the effects of two pollutants, ofloxacin (OFL) and polystyrene (PS) microplastics, on anaerobic digestion were investigated at different mass concentrations by BMP tests. The mechanism was explored by analyzing dissolved organic matter (DOM), extracellular polymeric substance (EPS), four stages metabolic process of anaerobic digestion and microbial community. The results showed that the individual OFL and individual PS microplastics decreased the methane cumulative production by 15.95%~81.36% and 4.25%~5.78%, respectively, compared to the control. However, under the combined conditions, the two showed synergistic effects, leading to the further decrease in methane production rate and the reduction in effective gas production time, in which OFL stress was dominant. The mechanism analysis revealed that both individual OFL pollution and combined pollution greatly increased the humic substances in DOM, complicated the structure of EPS components and inhibited the efficiency of the four stages of anaerobic digestion. The individual PS microplastics pollution increased methane production rate at the beginning of the reaction, and caused relatively less effect on the four stages. Microbial community analysis indicated that the combined pollution had a more similar community distribution to the individual OFL pollution. The relative abundance of acidification bacteria and acetic acid methanogen decreased significantly, which resulted in a severe suppression of methanogenic pathway of acetic acid nutrition. The results of this study can provide a reference for the process regulation of waste sludge resource treatment under complex pollution situations.
-
Key words:
- ofloxacin /
- microplastics /
- polystyrene /
- anaerobic digestion /
- microbial community
-
表 1 实验底泥及接种污泥的理化性质
Table 1. Physicochemical properties of substrate sludge and inoculum sludge
污泥类型 pH TS/(g·L−1) VS/(g·L−1) COD/(g·L−1) SCOD/(g·L−1) 实验底泥 7.20±0.01 38.08±0.23 14.75±0.11 30.74±0.02 1.76±0.04 接种污泥 6.75±0.02 18.12±0.54 5.95±0.25 16.11±0.06 1.82±0.03 表 2 修正Gompertz动力学模型拟合参数
Table 2. Modified Gompertz kinetic model fitting parameters
反应器 Pm/(mL·g−1) Rm/(mL·(g·d)−1) λ/d R2 R0 181.07±0.66 11.78±0.15 0 0.994 3 R1 151.92±0.18 7.49±0.03 0 0.999 9 R2 31.15±0.11 3.29±0.10 0 0.989 0 R3 169.06±3.66 12.76±0.32 0 0.980 5 R4 175.26±0.72 13.32±0.21 0 0.996 5 R5 158.86±0.76 5.43±0.01 0 0.996 6 R6 28.34±0.35 5.27±0.13 0 0.988 2 表 3 DOM各区域荧光响应占比(Pi,n)
Table 3. DOM fluorescence response percentages by region
% 编号 区域I 区域II 区域III 区域IV 区域V R0 26.27 34.31 16.37 17.39 5.66 R2 26.30 34.06 19.23 13.36 7.05 R4 27.53 34.90 17.74 13.78 6.05 R6 26.17 33.33 19.99 13.01 7.50 表 4 LB-EPS与TB-EPS各区域荧光响应占比(Pi,n)
Table 4. DOM fluorescence response percentages by region
% 样品类型 编号 区域I 区域II 区域III 区域IV 区域V LB-EPS R0 37.84 42.37 6.12 12.59 1.08 R2 26.77 24.86 33.46 8.70 6.21 R4 37.12 41.90 6.07 13.75 1.16 R6 25.98 24.75 28.23 13.25 7.80 TB-EPS R0 37.49 38.32 5.81 16.74 1.64 R2 27.55 24.48 26.93 13.98 7.06 R4 38.57 38.20 5.83 15.97 1.43 R6 28.20 24.65 23.29 16.54 7.32 -
[1] 聂宇, 陈娅婷, 孙照勇, 等. 污水/城市污泥中抗生素对厌氧消化的影响研究进展[J]. 应用与环境生物学报, 2020, 26: 479-488. [2] NI B J, ZENG S T, WEI W, et al. Impact of roxithromycin on waste activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic resistance genes[J]. Science of The Total Environment, 2020: 703. [3] FU S F, DING J N, ZHANG Y, et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system[J]. Science Of the Total Environment, 2018, 625: 64-70. doi: 10.1016/j.scitotenv.2017.12.158 [4] ZHI S L, ZHANG K Q. Antibiotic residues may stimulate or suppress methane yield and microbial activity during high-solid anaerobic digestion[J]. Chemical Engineering Journal, 2019, 359: 1303-1315. doi: 10.1016/j.cej.2018.11.050 [5] WEI W, HUANG Q S, SUN J, et al. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A[J]. Environmental Science & Technology, 2019, 53(5): 2509-2517. [6] WEI W, HAO Q, CHEN Z J, et al. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater[J]. Water Research, 2020, 182: 116041. doi: 10.1016/j.watres.2020.116041 [7] MENG Y, LIU W Y, FIEDLER H, et al. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Frontiers of Environmental Science & Engineering volume 2021, 15(5): 104. [8] LUO J Y, ZHANG Q, ZHAO J, et al. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: A review[J]. Journal of Hazardous Materials, 2020, 383: 121176. doi: 10.1016/j.jhazmat.2019.121176 [9] SU Y, ZHANG Z, ZHU J, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process[J]. Environmental Pollution, 2021, 270: 116278. doi: 10.1016/j.envpol.2020.116278 [10] HOLLIGER C, ALVES M, ANDRADE D, et al. Towards a standardization of biomethane potential tests[J]. Water Science and Technology, 2016, 74(11): 2515-2522. doi: 10.2166/wst.2016.336 [11] 河北省环境监测中心站. 水质 化学需氧量的测定 快速消解分光光度法[S]. 行业标准-环保. 2007: 12P. ;A14 [12] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. The Journal of biological chemistry, 1951, 193(1): 265-275. doi: 10.1016/S0021-9258(19)52451-6 [13] MADHUSUDANAN NAIR P, VAIDYANATHAN C S. A colorimetric method for determination of pyrocatechol and related substances[J]. Analytical Biochemistry, 1964, 7(3): 315-321. doi: 10.1016/0003-2697(64)90136-8 [14] XIE S B, MA J W, LI L, et al. Anaerobic caproate production on carbon chain elongation: Effect of lactate/butyrate ratio, concentration and operation mode[J]. Bioresource Technology, 2021, 329: 124893. doi: 10.1016/j.biortech.2021.124893 [15] WANG H, CAI W W, LIU W Z, et al. Application of sulfate radicals from ultrasonic activation: Disintegration of extracellular polymeric substances for enhanced anaerobic fermentation of sulfate-containing waste-activated sludge[J]. Chemical Engineering Journal, 2018, 352: 380-388. doi: 10.1016/j.cej.2018.07.029 [16] BATSTONE D J, TORRIJOS M J, RUIZ C, et al. Use of an anaerobic sequencing batch reactor for parameter estimatiorr in modelling of anaerobic digestion[J]. Water Science and Technology, 2004, 50(10): 295-303. doi: 10.2166/wst.2004.0663 [17] 方慧莹, 王端立, 陈皓, 等. 纳米零价铁对厌氧消化影响的反应动力学模型[J]. 化工学报, 2017, 68: 2042-2048+2217. [18] FENG Y, FENG L J, LIU S C, et al. Emerging investigator series: inhibition and recovery of anaerobic granular sludge performance in response to short-term polystyrene nanoparticle exposure[J]. Environmental Science:Water Research & Technology, 2018, 4(12): 1902-1911. [19] QIAN J, HE X X, WANG P F, et al. Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups[J]. Environmental Pollution, 2021, 279: 116904. doi: 10.1016/j.envpol.2021.116904 [20] KAFLE G K, CHEN L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models[J]. Waste Management, 2016, 48: 492-502. doi: 10.1016/j.wasman.2015.10.021 [21] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [22] WANG D B, DUAN Y Y, YANG Q, et al. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge[J]. Water Research, 2018, 133: 272-281. doi: 10.1016/j.watres.2018.01.051 [23] REYNOLDS D M. The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy[J]. Journal of Chemical Technology & Biotechnology, 2002, 77(8): 965-972. [24] 刘旭冉. 聚丙烯酰胺对剩余污泥厌氧消化过程影响行为的解析与调控[D]. 长沙: 湖南大学, 2019. [25] LI J, HAO X D, VAN LOOSDRECHT M C M, et al. Relieving the inhibition of humic acid on anaerobic digestion of excess sludge by metal ions[J]. Water Research, 2021, 188: 116541. doi: 10.1016/j.watres.2020.116541 [26] ZHANG J J, ZHAO M X, LI C, et al. Evaluation the impact of polystyrene micro and nanoplastics on the methane generation by anaerobic digestion[J]. Ecotoxicology and Environmental Safety, 2020: 205. [27] FERNANDES T V, VAN LIER J B, ZEEMAN G. Humic Acid-Like and Fulvic Acid-Like Inhibition on the Hydrolysis of Cellulose and Tributyrin[J]. BioEnergy Research, 2015, 8(2): 821-831. doi: 10.1007/s12155-014-9564-z [28] WANG X Q, LYU T, DONG R J, et al. Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion[J]. Journal of Environmental Management, 2022, 301: 113914. doi: 10.1016/j.jenvman.2021.113914 [29] JIANG X R, LYU Q Y, BI L F, et al. Improvement of sewage sludge anaerobic digestion through synergistic effect combined trace elements enhancer with enzyme pretreatment and microbial community response[J]. Chemosphere, 2022, 286: 131356. doi: 10.1016/j.chemosphere.2021.131356 [30] WEI W, HUANG Q S, SUN J, et al. Revealing the Mechanisms of Polyethylene Microplastics Affecting Anaerobic Digestion of Waste Activated Sludge[J]. Environmental Science & Technology, 2019, 53(16): 9604-9613. [31] SONG H L, LU Y X, YANG X L, et al. Degradation of sulfamethoxazole in low-C/N ratio wastewater by a novel membrane bioelectrochemical reactor[J]. Bioresource Technology, 2020, 305: 123029. doi: 10.1016/j.biortech.2020.123029 [32] LI J J, LI C X, LI Y L, et al. Elucidation of high removal efficiency of dichlorophen wastewater in anaerobic treatment system with iron/carbon mediator[J]. Journal of Cleaner Production, 2022, 330: 129854. doi: 10.1016/j.jclepro.2021.129854 [33] CHE L X, YANG B, TIAN Q, et al. Iron-based biochar derived from waste-activated sludge enhances anaerobic digestion of synthetic salty organic wastewater for methane production[J]. Bioresource Technology, 2022, 345: 126465. doi: 10.1016/j.biortech.2021.126465