[1] |
聂宇, 陈娅婷, 孙照勇, 等. 污水/城市污泥中抗生素对厌氧消化的影响研究进展[J]. 应用与环境生物学报, 2020, 26: 479-488.
|
[2] |
NI B J, ZENG S T, WEI W, et al. Impact of roxithromycin on waste activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic resistance genes[J]. Science of The Total Environment, 2020: 703.
|
[3] |
FU S F, DING J N, ZHANG Y, et al. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system[J]. Science Of the Total Environment, 2018, 625: 64-70. doi: 10.1016/j.scitotenv.2017.12.158
|
[4] |
ZHI S L, ZHANG K Q. Antibiotic residues may stimulate or suppress methane yield and microbial activity during high-solid anaerobic digestion[J]. Chemical Engineering Journal, 2019, 359: 1303-1315. doi: 10.1016/j.cej.2018.11.050
|
[5] |
WEI W, HUANG Q S, SUN J, et al. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A[J]. Environmental Science & Technology, 2019, 53(5): 2509-2517.
|
[6] |
WEI W, HAO Q, CHEN Z J, et al. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater[J]. Water Research, 2020, 182: 116041. doi: 10.1016/j.watres.2020.116041
|
[7] |
MENG Y, LIU W Y, FIEDLER H, et al. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Frontiers of Environmental Science & Engineering volume 2021, 15(5): 104.
|
[8] |
LUO J Y, ZHANG Q, ZHAO J, et al. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: A review[J]. Journal of Hazardous Materials, 2020, 383: 121176. doi: 10.1016/j.jhazmat.2019.121176
|
[9] |
SU Y, ZHANG Z, ZHU J, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process[J]. Environmental Pollution, 2021, 270: 116278. doi: 10.1016/j.envpol.2020.116278
|
[10] |
HOLLIGER C, ALVES M, ANDRADE D, et al. Towards a standardization of biomethane potential tests[J]. Water Science and Technology, 2016, 74(11): 2515-2522. doi: 10.2166/wst.2016.336
|
[11] |
河北省环境监测中心站. 水质 化学需氧量的测定 快速消解分光光度法[S]. 行业标准-环保. 2007: 12P. ;A14
|
[12] |
LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the Folin phenol reagent[J]. The Journal of biological chemistry, 1951, 193(1): 265-275. doi: 10.1016/S0021-9258(19)52451-6
|
[13] |
MADHUSUDANAN NAIR P, VAIDYANATHAN C S. A colorimetric method for determination of pyrocatechol and related substances[J]. Analytical Biochemistry, 1964, 7(3): 315-321. doi: 10.1016/0003-2697(64)90136-8
|
[14] |
XIE S B, MA J W, LI L, et al. Anaerobic caproate production on carbon chain elongation: Effect of lactate/butyrate ratio, concentration and operation mode[J]. Bioresource Technology, 2021, 329: 124893. doi: 10.1016/j.biortech.2021.124893
|
[15] |
WANG H, CAI W W, LIU W Z, et al. Application of sulfate radicals from ultrasonic activation: Disintegration of extracellular polymeric substances for enhanced anaerobic fermentation of sulfate-containing waste-activated sludge[J]. Chemical Engineering Journal, 2018, 352: 380-388. doi: 10.1016/j.cej.2018.07.029
|
[16] |
BATSTONE D J, TORRIJOS M J, RUIZ C, et al. Use of an anaerobic sequencing batch reactor for parameter estimatiorr in modelling of anaerobic digestion[J]. Water Science and Technology, 2004, 50(10): 295-303. doi: 10.2166/wst.2004.0663
|
[17] |
方慧莹, 王端立, 陈皓, 等. 纳米零价铁对厌氧消化影响的反应动力学模型[J]. 化工学报, 2017, 68: 2042-2048+2217.
|
[18] |
FENG Y, FENG L J, LIU S C, et al. Emerging investigator series: inhibition and recovery of anaerobic granular sludge performance in response to short-term polystyrene nanoparticle exposure[J]. Environmental Science:Water Research & Technology, 2018, 4(12): 1902-1911.
|
[19] |
QIAN J, HE X X, WANG P F, et al. Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups[J]. Environmental Pollution, 2021, 279: 116904. doi: 10.1016/j.envpol.2021.116904
|
[20] |
KAFLE G K, CHEN L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models[J]. Waste Management, 2016, 48: 492-502. doi: 10.1016/j.wasman.2015.10.021
|
[21] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
|
[22] |
WANG D B, DUAN Y Y, YANG Q, et al. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge[J]. Water Research, 2018, 133: 272-281. doi: 10.1016/j.watres.2018.01.051
|
[23] |
REYNOLDS D M. The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy[J]. Journal of Chemical Technology & Biotechnology, 2002, 77(8): 965-972.
|
[24] |
刘旭冉. 聚丙烯酰胺对剩余污泥厌氧消化过程影响行为的解析与调控[D]. 长沙: 湖南大学, 2019.
|
[25] |
LI J, HAO X D, VAN LOOSDRECHT M C M, et al. Relieving the inhibition of humic acid on anaerobic digestion of excess sludge by metal ions[J]. Water Research, 2021, 188: 116541. doi: 10.1016/j.watres.2020.116541
|
[26] |
ZHANG J J, ZHAO M X, LI C, et al. Evaluation the impact of polystyrene micro and nanoplastics on the methane generation by anaerobic digestion[J]. Ecotoxicology and Environmental Safety, 2020: 205.
|
[27] |
FERNANDES T V, VAN LIER J B, ZEEMAN G. Humic Acid-Like and Fulvic Acid-Like Inhibition on the Hydrolysis of Cellulose and Tributyrin[J]. BioEnergy Research, 2015, 8(2): 821-831. doi: 10.1007/s12155-014-9564-z
|
[28] |
WANG X Q, LYU T, DONG R J, et al. Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion[J]. Journal of Environmental Management, 2022, 301: 113914. doi: 10.1016/j.jenvman.2021.113914
|
[29] |
JIANG X R, LYU Q Y, BI L F, et al. Improvement of sewage sludge anaerobic digestion through synergistic effect combined trace elements enhancer with enzyme pretreatment and microbial community response[J]. Chemosphere, 2022, 286: 131356. doi: 10.1016/j.chemosphere.2021.131356
|
[30] |
WEI W, HUANG Q S, SUN J, et al. Revealing the Mechanisms of Polyethylene Microplastics Affecting Anaerobic Digestion of Waste Activated Sludge[J]. Environmental Science & Technology, 2019, 53(16): 9604-9613.
|
[31] |
SONG H L, LU Y X, YANG X L, et al. Degradation of sulfamethoxazole in low-C/N ratio wastewater by a novel membrane bioelectrochemical reactor[J]. Bioresource Technology, 2020, 305: 123029. doi: 10.1016/j.biortech.2020.123029
|
[32] |
LI J J, LI C X, LI Y L, et al. Elucidation of high removal efficiency of dichlorophen wastewater in anaerobic treatment system with iron/carbon mediator[J]. Journal of Cleaner Production, 2022, 330: 129854. doi: 10.1016/j.jclepro.2021.129854
|
[33] |
CHE L X, YANG B, TIAN Q, et al. Iron-based biochar derived from waste-activated sludge enhances anaerobic digestion of synthetic salty organic wastewater for methane production[J]. Bioresource Technology, 2022, 345: 126465. doi: 10.1016/j.biortech.2021.126465
|