-
随着城市化进程的加快,各类聚集性活动 (大型体育赛事、文艺演出等) 举办的频次提高,聚集性活动造成的影响逐渐引起关注。2013年的北京马拉松,由于缺乏足够的厕所设施,导致了运动员在沿途路边就地便溺的现象,这不仅影响了城市风貌,也存在一定细菌、病毒传播的风险[1]。目前,国内的应急厕所设施一定程度上落后于其他生活设施的发展水平,在聚集性活动中常常难以妥善解决人群的生理排泄问题,亦不能充分满足群众更高层次的需求 (私密性、安全性、舒适性等) 。
目前,国内应用于聚集性活动中的应急厕所以需要连接下水管网的传统水冲厕所为主。虽然传统水冲厕所在大部分活动情景中能够满足聚集性活动中的粪污处理需求,但在部分情景中,其水资源浪费、应用灵活度较低的问题仍尤为突出。厕所的冲水量高达3~6 L·次−1[2],这不仅造成了水资源的浪费,也加剧了对氮磷资源的回收难度。此外,部分地区基础设施的缺乏还会导致厕所难以快速与排水管网连接。无下水道卫生系统的创新发展为解决此类问题提供了解决方案[3]。
应急厕所技术在基础建设、存储运输、粪污处理等各方面都出现了多样化的发展,各类应急厕所技术只有在与相应的聚集性活动情景相适配时,才能最大化地发挥技术本身的优势。并且,不恰当的厕所粪污处理方式可能会对环境造成污染,合适的厕所粪污处理系统不仅能将排泄物对环境的影响降到最低,还可以缓解资源匮乏等问题[4]。目前的应急厕所技术领域仍存在着产品技术与适用情景难以适配、缺乏粪污处理全流程统筹规划等问题。本研究通过比较分析国内外先进的应急厕所技术,对其性能特点、适用情境进行归纳总结,并对聚集性活动中应急厕所系统粪污处理的全流程进行规划研究,以期为聚集性活动中的应急厕所技术和粪污处理模式选择提供参考。
聚集性活动中应急厕所技术及适用情景分析
Analysis of emergency toilet technology and its application in gathering activities
-
摘要: 我国聚集性活动的频度和规模越来越大,活动中应急厕所的大量使用已成常态。然而,不免存在厕所基础设施不完善、粪污处理措施不合适而导致的不安全、不卫生、不环保等问题。因此,聚集性活动中应急厕所技术受到了越来越多的关注。应急厕所设施和粪污处理方式的选择,一方面与环境条件的限制有关,另一方面与使用者的需求发展有关。归纳了聚集性活动中厕所系统粪污处理流程,提出了聚集性活动中应急厕所粪污处理典型模式,以及现有模式的缺陷和未来的发展方向,以期为聚集性活动中的厕所技术和系统模式选择及技术研发方向提供参考。Abstract: At present, domestic gathering activities are held more and more frequently, but there is still a lack of scientific guidance on the necessary emergency toilet technology. The toilet infrastructures are incomplete, and the fecal treatment measures are not appropriate, resulting in imperfect, unsafe, unclean and other problems frequently. Therefore, more and more attention has been paid to the emergency toilet technology in gathering activities. The selection of emergency toilet facilities and fecal sewage treatment methods is related to the restriction of environmental conditions on the one hand, and the development of human needs on the other hand. For this reason, the treatment process of toilet system feces in the gathering activities was summarized in this paper. The typical model of emergency toilet sewage treatment in gathering activities, as well as the defects of the existing model and the future development direction were put forward for the first time in this paper. This work has important implications for toilet technology, system mode selection and technology development direction in gathering activities.
-
Key words:
- gathering activities /
- emergency toilet /
- fecal sludge /
- excreta disinfection /
- excreta recycling
-
表 1 聚集性活动中适用的厕所技术类型比较
Table 1. Comparison of appropriate toilet techniques for gathering activities
应急
程度厕所种类 是否接入
市政管网减量化
程度资源化
方向灵活性 技术成熟度 成本 适用情景 参考
文献高 坑式厕所 否 无 无 建造简便 已应用 低 市政设施不发达的地区举办的人员单一、低频小型聚集性活动 [10-11] UD厕所 根据需求调整 无 产肥料 建造简便、便携性强 已应用 较低 市政设施不发达的地区举办的人员复杂、小型聚集性活动 [12] 移动式粪便消毒厕所 否 无 无 可移动 广泛应用 中 人员复杂、涉及范围较广的小型聚集性活动 [11] 打包厕所 否 无 无 建造简便、便携性强 已应用 中 人员复杂、低频的小型聚集性活动 [13-14] 中 蠕虫厕所 否 较高 产肥料 低 已应用 中 人员单一、有一定准备时间且高频的小型聚集性活动 [11,15] 真空厕所 根据需求调整 无 无 低 广泛应用 高 人员复杂、高频的大型聚集性活动 [16-17] 电化学厕所 否 较高 产肥料和循环水 低 研发中 高 低频的大型聚集性活动 [16-17] 免水可冲
厕所否 较高 产肥料和循环水 易搭建 已应用 较高 人员复杂、临时的高频大型聚集性活动 [18] 低 纳米膜厕所 否 高 产肥料、循环水和能量 低 研发中 高 低频的大型聚集性活动 [19] 干化焚烧
厕所否 高 产能量 低 研发中 高 低频的大型聚集性活动 [20] 等离子驱动气化厕所 否 高 产肥料、循环水和能量 低 研发中 高 低频的大型聚集性活动 [21] -
[1] 陈明敏. 北京马拉松赛近几年发展态势及其影响研究[D]. 山西: 山西大学, 2021 [2] 许阳宇, 周律, 贾奇博. 厕所系统排泄物处理与资源化厕所技术发展近况[J]. 中国给水排水, 2018, 34(6): 22-29. doi: 10.19853/j.zgjsps.1000-4602.2018.06.005 [3] TROTOCHAUD L, HAWKINS B, STONER B. Non-biological methods for phosphorus and nitrogen removal from wastewater: A gap analysis of reinvented-toilet technologies with respect to ISO 30500[J]. Gates Open Research, 2019: 3. [4] 时义磊, 张鸿涛, 周律, 等. 全资源回收型厕所生命周期的环境效益分析[J]. 给水排水, 2019, 55(10): 75-80. doi: 10.13789/j.cnki.wwe1964.2019.10.014 [5] 国务院. 大型群众性活动安全管理条例[EB/OL]. [2022-04-05]. http://www.gov.cn/gongbao/content/2007/content_786234.htm [6] 胡喆. 钟南山、李兰娟院士团队从新冠肺炎患者粪便中分离出病毒[J]. 科技传播, 2020, 12(4): 9. doi: 10.16607/j.cnki.1674-6708.2020.04.002 [7] GWENZI W. Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries[J]. Science of the Total Environment, 2021, 753: 141751. doi: 10.1016/j.scitotenv.2020.141751 [8] ISO. Non-sewered sanitation systems—prefabricated integrated treatment units — general safety and performance requirements for design and testing[EB/OL]. [2022-04-05].https://www.sis.se/api/document/preview/80007104/ [9] WHO. Water, sanitation, hygiene, and waste management for the COVID-19 virus[EB/OL]. [2020-04-23].https://apps.who.int/iris/handle/10665/331846,2020 [10] REED B. Emergency excreta disposal standards and options for Haiti[J]. UK:DINEPA & Global WASH Cluster, 2010: 73. [11] GENSCH R, JENNINGS A, RENGGLI S, et al. Compendium of sanitation technologies in emergencies[M]. German WASH Network, 2018 [12] HARADA H, KOBAYASHI H, FUJIEDA A, et al. Urine-diverting system for securing sanitation in disaster and emergency situations[J]. Leadership & Management in Engineering, 2012, 12(4): 309-314. [13] 周燕, 梅小乐, 杜兵. 国内外生态厕所类型分析及其应用研究[J]. 北方环境, 2013, 25(6): 21-25. [14] GADD M H, HAS EGAWA A, HOOPER R, et al. Cut the crap; design brief to pre-production in eight weeks: rapid development of an urban emergency low-tech toilet for Oxfam[J]. Design Studies, 2015, 40: 246-268. doi: 10.1016/j.destud.2015.06.006 [15] FURLONG C, GIBSON W, TEMPLETON M, et al. The development of an onsite sanitation system based on vermifiltration: the 'Tiger Toilet'[J]. Journal of Water Sanitation and Hygiene for Development, 2015, 5(4): 608-613. doi: 10.2166/washdev.2015.167 [16] 李旻, 周敬宣. 在灾区简易房建设中使用真空排水系统的设想与建议[J]. 给水排水, 2008(10): 89-90. doi: 10.3969/j.issn.1002-8471.2008.10.022 [17] 陈朱蕾, 周磊, 江娟, 等. 粪便与厨余垃圾现场处理研究[J]. 环境科学, 2005(5): 196-199. doi: 10.3321/j.issn:0250-3301.2005.05.039 [18] 陈铁鹰. 一种固液分离免水冲厕具: CN206971331U[P]. 2018-02-06 [19] PARKER A. Membrane technology plays key role in waterless hygienic toilet[J]. Membrane Technology, 2014, 2014(12): 8. doi: 10.1016/S0958-2118(14)70255-1 [20] STOKES C, BALDASARO N, BULMAN G, et al. Thermoelectric energy harvesting for a solid waste processing toilet//Energy Harvesting and Storage: Materials, Devices, and Applications V[J]. SPIE, 2014, 9115: 54-58. [21] Bill & Melinda Gates Foundation. Reinvent the toilet fair: India[EB/OL]. [2022-04-05].https://docs.gatesfoundation.org/documents/reinvent%20the%20toilet%20fair%20india%202014%20technical%20guide.pdf [22] HARVEY P. Excreta disposal in emergencies: a field manual[M]. Water, Engineering and Development Centre (WEDC) Loughborough University of Technology, 2007 [23] HDLR S. Qué tener en cuenta antes de comprar un terreno rural en México[EB/OL]. [2022-03-31].https://www.hippiesdelandrover.com/que-tener-en-cuenta-antes-de-comprar-un-terreno-rural-en-mexico/ [24] HARADA H, SHIMIZU Y, MIYAGOSHI Y, et al. Predicting struvite formation for phosphorus recovery from human urine using an equilibrium model[J]. Water Science and Technology, 2006, 54(8): 247-255. doi: 10.2166/wst.2006.720 [25] WHO. Technical note for emergencies 14: technical options for excreta disposal in emergencies[EB/OL]. [2022-04-05].https://www.who.int/water_sanitation_health/emergencies/WHO_TN_14_Technical_options_for_excreta_disposal.pdf [26] 韩彦召, 程世昆, 严巾堪, 等. 负压排水真空便器冲水噪声的影响因素[J]. 环境工程学报, 2022, 16(4): 1400-1406. doi: 10.12030/j.cjee.202106065 [27] CANO A, CAÑIZARES P, BARRERA-DÍAZ C, et al. Use of conductive-diamond electrochemical-oxidation for the disinfection of several actual treated wastewaters[J]. Chemical Engineering Journal, 2012, 211: 463-469. [28] LI X Y, DING F, LO P, et al. Electrochemical Disinfection of Saline Wastewater Effluent[J]. Journal of Environmental Engineering, 2002, 128(8): 697-704. doi: 10.1061/(ASCE)0733-9372(2002)128:8(697) [29] CHO K, QU Y, KWON D, et al. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment[J]. Environmental Science & Technology, 2014, 48(4): 2377-2384. [30] HUANG X, QU Y, CID C, et al. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell[J]. Water Research, 2016, 92: 164-172. doi: 10.1016/j.watres.2016.01.040 [31] 三河市人民政府. 三河蓝洁士环保科技有限公司[EB/OL]. [2022-03-31]. http://www.san-he.gov.cn/content/detail?id=1582 [32] 尹文俊, 于振江, 徐悦, 等. 新型厕所系统及技术发展现状与展望[J]. 环境卫生工程, 2019, 27(5): 1-7. [33] 俞锡弟. 城市垃圾粪便无害化处理及其综合利用的研究[J]. 环境科学, 1986(4): 46-54+102. doi: 10.13227/j.hjkx.1986.04.008 [34] NYENDE J, WEST A. Tiger worm based toilets for Uganda government-aided schools: a case study of boro primary school nwoya district[J]. International Journal of Innovative Science and Research Technology, 2018, 3(8): 458-468. [35] GRANGE C. Faecal sludge management - wash in emergencies[M]. Cardiff: ELRHA: Sustainable Sanitation Alliance, 2016 [36] 尹福斌, 李子富, 王冬泠, 等. 加碱预处理对致病微生物去除效果及动力学研究[J]. 中国环境科学, 2015, 35(1): 196-203. [37] CARDUCCI A, FEDERIGI I, LIU D, et al. Making waves: coronavirus detection, presence and persistence in the water environment: state of the art and knowledge needs for public health[J]. Water Research, 2020, 179: 115907. doi: 10.1016/j.watres.2020.115907 [38] DOREMALEN N, BUSHMAKER T, MORRIS D, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. New England Journal of Medicine, 2020, 382(16): 1564-1567. doi: 10.1056/NEJMc2004973 [39] ACHAK M, BAKRI S, CHHITI Y, et al. SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies[J]. Science of the Total Environment, 2021, 761: 143192. doi: 10.1016/j.scitotenv.2020.143192 [40] FEO G, ANTONIOU G, FARDIN H, et al. The historical development of sewers worldwide[J]. Sustainability, 2014, 6(6): 3936-3974. doi: 10.3390/su6063936 [41] STARKL M, BRUNNER N, FEIL M, et al. Ensuring sustainability of non-networked sanitation technologies: an approach to standardization[J]. Environmental Science & Technology, 2015, 49(11): 6411-6418. [42] WHO. WHO guidelines for the safe use of wastewater excreta and greywater VOL IV[J]. International Journal of Environmental Studies, 2008, 65(1): 157-176. doi: 10.1080/00207230701846598 [43] KODALI R, RAMAKRISHNA P. Modern sanitation technologies for smart cities//2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC)[J]. IEEE, 2017: 706-709. [44] NAMEKAR P, KARTHIKEYAN B. Integration of the smart phone and IOT for smart public toilet hygiene monitoring system//Intelligent Embedded Systems[J]. Springer, Singapore, 2018: 77-82. [45] SHAIKH F, SHAIKH F, SAYED K, et al. Smart toilet based on IoT//2019 3rd International Conference on Computing Methodologies and Communication (ICCMC)[J]. IEEE, 2019: 248-250. [46] ZAKARIA F, ĆURKO J, MURATBEGOVIC A, et al. Evaluation of a smart toilet in an emergency camp[J]. International Journal of Disaster Risk Reduction, 2018, 27: 512-523. doi: 10.1016/j.ijdrr.2017.11.015