A2O-MBR反应器处理景区粪污废水工程

颜建国, 苗时雨, 兰华春, 彭剑峰, 汪诚文, 余刚. A2O-MBR反应器处理景区粪污废水工程[J]. 环境工程学报, 2022, 16(9): 2895-2900. doi: 10.12030/j.cjee.202202136
引用本文: 颜建国, 苗时雨, 兰华春, 彭剑峰, 汪诚文, 余刚. A2O-MBR反应器处理景区粪污废水工程[J]. 环境工程学报, 2022, 16(9): 2895-2900. doi: 10.12030/j.cjee.202202136
YAN Jianguo, MIAO Shiyu, LAN Huachun, PENG Jianfeng, WANG Chengwen, YU Gang. A2O-MBR reactor for the treatment of faecal wastewater in scenic spots[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 2895-2900. doi: 10.12030/j.cjee.202202136
Citation: YAN Jianguo, MIAO Shiyu, LAN Huachun, PENG Jianfeng, WANG Chengwen, YU Gang. A2O-MBR reactor for the treatment of faecal wastewater in scenic spots[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 2895-2900. doi: 10.12030/j.cjee.202202136

A2O-MBR反应器处理景区粪污废水工程

    作者简介: 颜建国(1971—),男,工程博士,yanjg18@tsinghua.edu.cn
    通讯作者: 兰华春(1980—),男,博士,特别研究员,hclan@tsinghua.edu.cn
  • 基金项目:
    国家自然科学基金面上资助项目(51978373)
  • 中图分类号: X703.1

A2O-MBR reactor for the treatment of faecal wastewater in scenic spots

    Corresponding author: LAN Huachun, hclan@tsinghua.edu.cn
  • 摘要: 旅游景区粪污废水水质复杂且有机负荷波动大,在实际工程中实现长期稳定达标排放具有一定的挑战。为此,研究了A2O-MBR工艺在旅游景区厕所高浓度粪污废水处理工程中的应用,重点对启动条件及运行工艺参数等进行了研究。结果表明,A2O-MBR工艺用于处理旅游景区厕所粪污废水,缺氧池回流比为100%、好氧池回流比为200%,控制缺氧池及好氧池溶解氧质量浓度分别为0.4~0.6 mg·L−1和1.5~3.0 mg·L−1,反应器出水COD、NH3-N及TP平均质量浓度可分别达到为40.39、3.64和0.39 mg·L−1,最终出水满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。
  • 印制电路板行业在生产印制电路板(PCB)过程中涉及大量有机溶剂、醚类有机物以及表面活性剂等,产生的废液中包含的有机污染物组成复杂、浓度高、毒性大且难以降解[1-2]。目前,企业针对高浓度难降解PCB有机废液的处理方法主要是Fenton氧化法,但该方法存在有机物降解不彻底、Fenton试剂不能循环利用且处理费用高等问题。因此,急需寻找高效、安全且低成本的处理技术来对该类废液进行治理。

    高级氧化工艺(AOP)主要包括Fenton/photo-Fenton[3-4]、湿法氧化[5-6]、光催化氧化[7-8]以及臭氧氧化[9-10]等技术。其中,催化臭氧氧化技术克服了臭氧氧化法中存在的不足,能在常温常压下高效降解大部分有机污染物且无二次污染[11-14],从而备受关注。大部分研究[15-17]表明,催化剂的加入会促进活性自由基的产生。其中,羟基自由基( · OH)是催化臭氧氧化过程的主要活性自由基,对有机物的降解起关键性作用。目前,使用较为广泛的是非均相催化剂,主要包括金属和金属氧化物负载、金属氧化物,活性炭以及其他多孔材料等[18-19]。金属氧化物催化剂(如MnO2[20-21]、MgO[22-24]、ZnO[25-26]、TiO2[27-28]、Al2O3[29-30]和CeO2[31]等)、金属氧化物载体的材料(如Al2O3[32]、TiO2[33]等)、多孔材料载体(如石墨烯[34]、碳纳米管[35]等)都已经用于催化臭氧氧化过程,并且已经被证明具有良好的催化活性。然而,很多催化剂在制备及应用时存在一些缺点,如制备工艺复杂、成本较高、重复利用率低等,这些因素限制了催化臭氧氧化技术在实际高浓度难降解工业废液的应用。在催化臭氧化过程中,氧化钙(CaO)很少用于催化臭氧化过程;但初步实验表明,CaO结合臭氧氧化法,在处理实际工业废液中有机污染物时具有很大的优势,并且CaO具有活性高、成本低、毒性低、pH稳定性好和环境友好的特点,因此,将其应用于催化臭氧氧化过程有良好的发展前景[36]

    本研究探讨了PCB废液降解过程中的催化降解机理以及有机物降解途径,考察了催化剂的循环稳定性并分析催化剂失活的可能原因;通过单纯形优化实验考察了CaO在PCB废液的臭氧氧化过程中的催化性能,包括CaO质量、pH、臭氧浓度、降解时间和废液深度对废液中有机物降解率的影响;最后,将CaO催化臭氧过程应用于实际高浓度难降解废水并探讨其应用潜能,为实际工业废水的处理提供参考。

    氧化钙(CaO)、氢氧化钠(NaOH)、硫酸(H2SO4)、异丙醇(C3H8O)、正己烷(C6H14)、乙二醇单丁醚(C6H14O2)、吐温-80、碘化钾(KI)、硫代硫酸钠(Na2S2O3)、叔丁醇(C4H10O)和水杨酸(C7H6O3)购于中国成都科隆化学试剂厂。二乙二醇单乙醚(C6H14O3),2,3-二羟基苯甲酸(C6H14O4)和2,5-二羟基苯甲酸(C6H14O4)购于梯希爱(上海)化成工业发展有限公司。所有试剂均为分析级,无须进一步处理,所有溶液均是由超纯水净化机(ATSro)获得的去离子水制备。

    PCB废液来源于某工厂制造PCB过程,PCB废液为黄色,略带刺激性气味,pH为10.10,COD高达20 246.4 mg·L−1,属于碱性高浓度有机废液,主要成分为异丙醇、正己烷、二乙二醇单乙醚、乙二醇单丁醚和吐温-80等。

    通过UV光谱(Shimadzu,Japan)检测水杨酸及其与 · OH的反应产物,波长扫描范围为260~400 nm。通过LC-MS(LCMS-8060)对水杨酸羟基化产物进行定量分析。PCB废液中的降解过程中的中间产物通过GC/MS(Agilent 7890A)检测。采用扫描电子显微镜(SEM)检测催化剂使用前后的形貌。通过X射线衍射分析仪(Empryean PANalytical B.V.)检测催化剂使用前后的组成,测定X射线为Cu靶Kα射线(λ=0.154 18 nm,加速电压为40 kV,发射电流为40 mA,扫描角度为10°~85°。用重铬酸钾法测量废液处理前后的COD。通过pH计(SevenEasyS20,Mettler Toledo)测定废液pH。

    催化臭氧化过程在半连续反应器(内径可调,总高度25 cm)中进行,该反应器盛有250 mL PCB废液和一定量的CaO用作催化剂,在常温常压条件下进行反应。臭氧由臭氧发生器产生,并通过曝气石将O3分散到废液中,并且通过磁力搅拌使废液与O3接触更充分。在实验过程中,气体流速为4 L·min−1,臭氧浓度通过靛蓝法检测,残余臭氧用20%KI溶液吸收。

    在催化臭氧化过程中,以异丙醇(IPA)、正己烷(nHA)、二乙二醇单乙醚(DGDE)、乙二醇单丁醚(EB)和吐温-80(Tween-80)为原料,模拟PCB实际废液。将3.0 g CaO加入到含有250 mL模拟废液的反应器中,然后通入一定浓度的臭氧以降解废液中的有机污染物。在此过程中,以一定的时间间隔从反应器中取出10 mL的降解液样品,加入Na2S2O3钠溶液淬灭样品中残余臭氧。将获得的样品通过0.22 μm微孔膜过滤,并将过滤的样品用于GC/MS检测分析。叔丁醇(TBA)用作 · OH淬灭剂,水杨酸(SA)用作 · OH捕获剂,添加到催化臭氧化过程中以研究催化臭氧氧化过程的主要活性自由基。使用过后的催化剂经过过滤、洗涤、50 ℃干燥后,用于催化剂的稳定性实验。

    臭氧与有机物的反应主要有2种途径,即直接反应和间接反应。直接反应是指O3直接氧化有机物,间接反应主要是通过O3分解产生的活性自由基对有机物进行氧化[37-38]。通过研究 · OH淬灭剂的影响进行对比实验,研究 · OH对有机物的降解作用。TBA是一种常见的 · OH淬灭剂,它与臭氧分子基本不反应,反应速率仅3×10-3 L·(mol·s)−1,而其与 · OH的反应速率高达6×108 L·(mol·s)−1。因此,可以通过加入TBA到臭氧或催化臭氧过程,间接检测体系中是否有 · OH的产生[39]图1为单独臭氧氧化过程以及催化臭氧氧化过程加入TBA前后废液的COD去除率对比图。由此可知,CaO催化臭氧氧化过程和单独臭氧氧化过程加入TBA后,处理180 min后,COD去除率分别降低13.04%和5.71%,表明TBA的加入对2个过程降解率均造成负面影响,从而间接证明单独臭氧氧化过程与催化臭氧氧化过程都有 · OH产生。此外,从TBA对2个过程的影响程度上可以看出,CaO可以促进O3产生更多的 · OH,表明CaO催化臭氧氧化过程遵循羟基自由基机理。

    图 1  TBA对PCB废液降解率的影响
    Figure 1.  Effect of TBA on COD removal ratio of PCB effluents

    水杨酸(SA)羟基化实验是另外一种间接检测羟基自由基的方法[40]。羟基自由基具有存在时间短、不稳定的特点,但SA可以作为 · OH的捕捉剂,SA与 · OH反应后会生成较为稳定的2,3-二羟基苯甲酸(2,3-DHBA)和2,3-二羟基苯甲酸(2,5-DHBA)。本研究结合紫外-可见分光光度计跟踪SA与 · OH反应后产物,再结合液相色谱-质谱联用仪对2,3-DHBA和2,5-DHBA进行定量分析。

    图2为SA、2,3-DHBA和2,5-BHBA的紫外-可见吸收光谱图以及CaO催化臭氧氧化处理后的紫外-可见吸收光谱。可以看出,SA在302 nm处有最大吸收峰,而2,3-DHBA和2,5-DHBA分别在315 nm和330 nm处出现最大吸收峰,SA经过催化臭氧氧化处理后最大吸收峰波长向右移动,在2,3-DHBA和2,5-DHBA的大吸收峰处有一定的吸收,证明在该过程中有 · OH产生。

    图 2  SA、2,3-DHBA、2,5-DHBA以及催化臭氧氧化处理SA后混合溶液的紫外-可见吸收光谱
    Figure 2.  Absorption spectra of SA, 2,3-DHBA, 2,5-DHBA and their mixture solution after SA degradation by catalytic ozonation

    图2中可以观察到2,3-DHBA和2,5-DHBA的存在,接下来使用LC-MS联用仪对2,3-DHBA和2,5-DHBA的含量进行定量分析。图3(a)图3(b)分别表示2,3-DHBA和2,5-DHBA的液相色谱标准曲线,根据该标准曲线求得CaO催化臭氧处理不同时间溶液中2,3-DHBA和2,5-DHBA的含量,结果如表1所示。从表1中可以看出,CaO催化臭氧处理4、8和12 min后,溶液中2,3-DHBA的含量分别为0.037 3、0.022 1和0.020 mg·L−1,2,5-DHBA的含量分别为0.015 5、0.014 4和0.013 7 mg·L−1。可以看出,随着时间的增加,2,3-DHBA和2,5-DHBA的含量都不断减少,表明催化臭氧过程中SA与羟基自由基结合的同时,羟基化产物2,3-DHBA和2,5-DHBA也被氧化降解。

    图 3  2,3-DHBA和2,5-DHBA的液相色谱标准曲线
    Figure 3.  Liquid chromatography standard curves for 2,3-DHBA and 2,5-DHBA
    表 1  2,3-DHBA和2,5-DHBA不同时间的含量
    Table 1.  Contents of 2,3-DHBA and 2,5-DHBA at different times
    降解时间/min 2,3-DHBA浓度/(mg·L−1) 2,5-DHBA浓度/(mg·L−1)
    4 0.037 3 0.015 5
    8 0.022 1 0.014 4
    12 0.020 0 0.013 7
     | Show Table
    DownLoad: CSV

    为了研究废液的降解路径,以废液主要成分异丙醇和乙二醇单丁醚为例进行探讨,对2种物质进行降解并对降解产物用GC/MS进行检测。

    异丙醇降解30 min和60 min的GC/MS结果如图4所示,对应的中间产物信息如表2所示。异丙醇溶液经催化臭氧氧化降解30~60 min后,检测到的中间产物有羟基丙酮、1,2-羟基丙二醇以及乙酸,由此推测出异丙醇的可能降解路径为:异丙醇与 · OH结合形成了1,2-羟基丙二醇,1,2-羟基丙二醇再被氧化为羟基丙酮,然后再进一步被氧化为小分子酸乙酸,结果如图5所示。

    图 4  异丙醇降解30 min和60 min总离子流色谱图
    Figure 4.  GC chromatograms of isopropanol effluents at 30 min and 60 min degradation
    表 2  异丙醇降解30 min和60 min的降解产物
    Table 2.  Products of IPA at 30 min and 60 min degradation
    异丙醇降解30 min质谱结果 异丙醇降解60 min质谱结果
    保留时间/min 分子式 相对分子质量 相对峰面积/% 保留时间/min 分子式 相对分子质量 相对峰面积/%
    2.385 C2H4O2 60.05 46.014 2.278 C2H4O2 60.05 68.57
    2.775 C2H8O2Si 92.169 9.246 2.769 C2H8O2Si 92.169 2 11.175
    2.865 C3H6O2 74.08 22.436 3.170 C3H8O2 76.09 20.255
    3.257 C3H8O2 76.09 22.304
     | Show Table
    DownLoad: CSV
    图 5  异丙醇降解路径
    Figure 5.  Probable degradation pathway of isopropanol

    乙二醇单丁醚降解30 min和60 min后的总离子流色谱图如图6所示,对应的中间产物信息如表3所示。乙二醇单丁醚的降解中间产物主要有1-丁醇、乙二醇、4-羟基-2-丁酮、丁内酯和乙酸。由此可以推测乙二醇单丁醚的可能降解路径如图7所示,乙二醇单丁醚的降解一部分是被氧化断链形成乙二醇,然后再接着被氧化为乙酸。另外有一部分乙二醇单丁醚被氧化断链形成1-丁醇,1-丁醇与 · OH结合,结合产物再被氧化形成酮或酸,最后再被氧化形成小分子酸乙酸,最后形成CO2和H2O。

    图 6  乙二醇单丁醚降解液总离子流色谱图
    Figure 6.  GC chromatograms of 2-butoxyethanol effluents at 30 min and 60 min degradation
    表 3  乙二醇单丁醚降解30 min和60 min的降解产物
    Table 3.  Products of EB at 30 min and 60 min degradation
    乙二醇丁醚降解30 min质谱结果 乙二醇丁醚降解60 min质谱结果
    保留时间/min 分子式 相对分子质量 相对峰面积/% 保留时间/min 分子式 相对分子质量 相对峰面积/%
    2.184 C4H10O 74.12 7.624 2.329 C2H4O2 60.05 42.980
    2.384 C2H4O2 60.05 19.742 2.793 C2H8O2Si 92.169 7.158
    2.831 C2H8O2Si 92.169 2 1.453 2.859 (CH2OH)2 62.068 29.959
    2.898 (CH2OH)2 62.068 12.649 3.642 C4H8O2 88.105 3.316
    3.660 C4H8O2 88.105 1 2.856 4.692 C6H14O2 118.17 12.300
    4.605 C6H14O2 118.17 28.126 4.843 C6H14O2 118.17 4.287
    4.680 C6H14O2 118.17 25.537
    4.854 C4H6O2 86.09 2.013
     | Show Table
    DownLoad: CSV
    图 7  乙二醇单丁醚降解路径
    Figure 7.  Probable degradation pathway of 2-butoxyethanol

    在实际应用中,催化剂的稳定性十分重要。催化剂的多次循环使用可以节约催化剂成本,并且减少固废。本实验对催化剂进行了5次循环,每次使用后对催化剂进行过滤、洗涤、干燥后进行循环使用。如图8所示,催化剂在每一次使用时的催化效率分别是92.78%、90.67%、88.98%、86.94%和84.04%。经过多次循环,催化剂活性下降,但每次循环均没有显著下降,表明该催化剂具有良好的循环性能。

    图 8  催化剂循环稳定性
    Figure 8.  Stability test of catalyst

    为了探讨催化剂失活原因以及催化剂活化的方式,对使用前后的催化剂进行了表征,研究催化剂使用前后的形貌、组成以及比表面积变化。图9(a)显示的是催化剂使用前的形貌,图9(b)图9(c)表示催化剂使用1次和3次后的形貌。可以看出,使用后的催化剂较使用前的催化剂不易分散,产生的团聚现象更为严重,从而导致催化剂的性能降低。

    图 9  催化剂使用前后SEM形貌图
    Figure 9.  SEM images of fresh catalyst and used catalyst

    图10显示的是催化剂使用前后的XRD谱图。图10(a)得到的XRD谱图与标准JCPDS对照可知,2θ为32.3°、37.4°、53.9°对应的是CaO的特征吸收峰,2θ为18°、28.7°、34.1°、47.1°和50.9°对应的是Ca(OH)2的特征峰,表明在使用前的催化剂中Ca(OH)2的特征峰也有一定的吸收强度。使用前的催化剂中CaO的特征峰十分清晰且强度较大,表明其主要成分是CaO,但也含有少量的Ca(OH)2,说明催化剂在存放过程中或者样品测试时受到空气中水分的影响。

    图 10  催化剂使用前和使用后XRD模型
    Figure 10.  XRD patterns of fresh catalyst and used catalyst

    图10(b)为催化剂使用1次和使用3次后的XRD图。催化剂使用1次后的XRD谱图在2θ为18°、28.7°、34.1°、47.1°和50.9°处存在较强的峰,这些峰与Ca(OH)2的特征峰一致,表明其主要成分是Ca(OH)2。而使用3次的催化剂测出的2θ为23°、29.4°、39.4°、43.2°和47.1°对应的峰是CaCO3的特征峰,说明催化剂的失活过程主要是:经过多次循环后的催化剂与水结合变成了Ca(OH)2,形成的Ca(OH)2与矿化产物CO2结合从而变为CaCO3,最终由于多次反应后CaCO3含量不断增加从而导致催化剂催化效率逐渐降低。

    有研究[41-42]表明,pH变化对催化效率有很大影响,这可能会影响催化剂的表面性质和活性自由基的产生。废液深度的变化会影响O3分子与废液的接触时间,从而影响废液的降解率。O3在催化臭氧氧化过程起氧化作用。臭氧用量的增加,可以促进活性自由基的产生并且可以增加臭氧与废液的接触面积,从而促进废液中有机物的降解[43]。因此,废液pH、CaO质量(m)、废液深度(h)、降解时间(t)、臭氧用量等工艺条件的优化就显得尤为重要。考虑到CaO会造成固废以及时间成本,因此,综合考虑了CaO质量、降解时间和COD去除率(η)三者的关系,以0.7η+0.1/t+0.2/m为考察指标进行单纯形优化实验。表4显示各因素的初点和步长,即各个因素的初始值以及变化值。表5为根据均匀设计表U6(65)得到的初始实验条件,经过优化之后得到的优化结果如表6所示。可以看出,pH为12.6~13.2,降解时间为150~180 min以及臭氧量为120 ~200 mg·min−1时会取得较好的催化降解率。综合考虑固废以及时间成本,pH为12.97、CaO质量为1.0 g、废液深度为11 cm、降解时间为150 min、臭氧用量为120 mg·min−1时,COD去除率可达到90.045%,并且0.7η+0.1/t+0.2/m综合效率为0.870 3,能够满足在较短时间、较少催化剂用量下取得较高的降解率,可以应用于高浓度难降解有机废水的处理。

    表 4  因素的初始值和变化值
    Table 4.  Initial and change values of factors
    初始值与变化值 pH CaO质量/g 废液深度/cm 降解时间/min 臭氧用量/(mg·min−1)
    初始值 12.0 0 7 60 80
    变化值 0.2 1.0 2 20 20
     | Show Table
    DownLoad: CSV
    表 5  初始实验条件
    Table 5.  Initial experimental conditions
    实验序号 pH CaO质量/g 废液深度/cm 降解时间/min 臭氧用量/(mg·min−1)
    1 12.2 2.0 11 140 200
    2 12.4 4.0 13 80 180
    3 12.6 6.0 9 160 160
    4 12.8 1.0 13 100 140
    5 13.0 3.0 9 180 120
    6 13.2 5.0 11 120 100
     | Show Table
    DownLoad: CSV
    表 6  单纯形优化结果
    Table 6.  Result of simplex optimization
    实验序号 pH CaO质量/g 废液深度/cm 降解时间/min 臭氧用量/(mg·min−1) COD去除率/% 标准差 0.7η+0.1/t+0.2/m
    1 12.2 2.0 11 140 200 66.31 0.987 6 0.607 1
    2 12.4 4.0 13 80 180 66.97 0.120 2 0.552 1
    3 12.6 6.0 9 160 160 83.21 0.720 8 0.653 3
    4 12.8 1.0 13 100 140 64.26 2.716 2 0.709 7
    5 13.0 3.0 9 180 120 83.4 1.419 3 0.683 8
    6 13.2 5.0 11 120 100 62.36 1.007 0 0.526 5
    7 12.2 1.4 11 144 200 67.97 1.689 9 0.660 3
    8 12.7 1.36 9 180 150 87.24 1.225 3 0.791 1
    9 13.2 3.38 9 172 100 91.81 1.565 4 0.736 7
    10 12.9 1.0 11 150 120 90.04 0.431 3 0.870 3
    11 13.2 2.77 9 175 100 86.8 0.671 7 0.714 3
    12 13.2 1.0 11 130 120 75.72 2.517 3 0.776 2
    13 13.2 2.804 9 180 100 88.51 2.026 4 0.724 2
     | Show Table
    DownLoad: CSV

    图11显示了CaO催化臭氧氧化处理工厂的实际PCB清槽剂废液的处理效果,其工艺条件如下:pH为13.0、CaO质量为2.0 g、废液深度为11 cm、降解时间为180 min、臭氧用量为180 mg·min−1。可以看出,处理180 min后,废液COD去除率达到了94.67%,比单独臭氧氧化过程COD去除率高26.92%,CaO作为催化剂加入到臭氧氧化过程大幅度提高了有机物的降解率。上述结果表明CaO催化臭氧氧化处理实际高浓度难降解废液具有可行性,并且对有机物的降解效果显著,具有广阔的应用前景。

    图 11  CaO在实际PCB废液中的催化降解率
    Figure 11.  Catalytic degradation efficiency in actual PCB effluents by CaO

    1)自由基淬灭实验和水杨酸羟基化实验结果表明,CaO催化臭氧氧化体系中存在 · OH,主要是遵循羟基自由基机理。

    2)通过GCMS检测,废液降解后检测出了中间体,如羟基丙酮、乙二醇、正丁醇、乙酸等。因此,有机物可能降解途径是:有机物主要是先与 · OH结合,再进一步被氧化形成酮,然后被氧化为乙酸,最后形成CO2和H2O。

    3)催化剂稳定性测试表明,CaO具有优良的循环稳定性,经过5次循环后,催化剂的催化效率可以达到84.04%。SEM、XRD测试结果表明,使用后的催化剂团聚现象明显增大,其主要成分由CaO变为了Ca(OH)2和CaCO3,从而导致催化效率降低。

    4)单纯形优化实验表明,在优化条件下可以满足在较短时间,使用较少催化剂情况下,催化效率达到90.04%。最后,将CaO催化臭氧氧化技术应用到实际PCB废液中,废液COD去除率可以达到94.67%,表明CaO催化臭氧氧化技术可应用于实际高浓度难降解废液。

  • 图 1  旅游景区粪污废水A2O-MBR处理工艺流程图

    Figure 1.  A2O-MBR treatment process of faecal wastewater in scenic spots

    图 2  启动阶段工艺COD的进出水水质及去除率变化

    Figure 2.  Influent and effluent COD and its removal ratio by A2O-MBR treatment in start-up phase

    图 3  工艺COD的进出水水质及去除率变化

    Figure 3.  Influent and effluent COD and its removal ratio by A2O-MBR treatment

    图 4  处理工艺中COD的沿程变化

    Figure 4.  COD change along the treatment process

    图 5  系统NH3-N的进出水水质及去除率变化

    Figure 5.  Influent and effluent NH3-N and its removal ratio by A2O-MBR treatment

    图 6  处理工艺中NH3-N的沿程变化

    Figure 6.  NH3-N change along the treatment process

    图 7  系统TP的进出水水质及去除率变化

    Figure 7.  Influent and effluent NH3-N and its removal ratio by A2O-MBR treatment

    图 8  系统中TP的沿程变化图

    Figure 8.  TP change along the treatment process

    表 1  设计进出水水质

    Table 1.  Design water quality of the influent and effluent mg·L−1

    水质指标CODBOD5NH3-NSSTP
    进水水质<1 000<500<130<500<15
    出水水质≤50≤10≤5(8)≤10≤0.5
    水质指标CODBOD5NH3-NSSTP
    进水水质<1 000<500<130<500<15
    出水水质≤50≤10≤5(8)≤10≤0.5
    下载: 导出CSV
  • [1] 马波, 高丽鑫, 寇敏. 旅游业高质量发展的微观机理探析——以旅游性价比为中心[J]. 华中师范大学学报(自然科学版), 2021: 1-18. doi: 10.19603/j.cnki.1000-1190.2022.01.003
    [2] 苏振强, 杨晓川. 浅析厕所革命与旅游景区公共厕所[J]. 现代商贸工业, 2020, 349(17): 1115-1121.
    [3] 宋娟, 代兰海. 近30余年国内旅游厕所研究进展[J]. 旅游研究, 2017, 10(1): 74-82. doi: 10.3969/j.issn.1674-5841.2017.01.008
    [4] 曹晓月. 乡村旅游环境卫生问题及治理对策探析——以贵安新区车田景区为例[J]. 轻工科技, 2021, 37(6): 95-96.
    [5] 杨佼佼. 生态敏感景区污水深度处理工艺系统构建与优化运行[D]. 西安: 西安建筑科技大学, 2021.
    [6] 杜兵, 司亚安, 孙艳玲. 生态厕所的类型及粪污处理工艺[J]. 给水排水, 2003, 29(5): 60-62. doi: 10.3969/j.issn.1002-8471.2003.05.019
    [7] 王晓晓, 胡昕宇, 钱歙澄, 等. 城市风景区公共厕所生态设计与技术研究[J]. 北京城市学院学报, 2019(2): 26-37. doi: 10.3969/j.issn.1673-4513.2019.02.005
    [8] 沈峥, 刘洪波, 张亚雷. 中国“厕所革命”的现状、问题及其对策思考[J]. 中国环境管理, 2018, 10(2): 45-48.
    [9] 杨玉杰, 刘帅, 张五龙. 循环利用的冲厕污水处理工艺试验[J]. 净水技术, 2017, 36(9): 69-73. doi: 10.15890/j.cnki.jsjs.2017.09.015
    [10] 郑向勇, 叶海仁, 程天行, 等. 源分离尿液处理技术的研究进展[J]. 水处理技术, 2012, 38(12): 16-20. doi: 10.3969/j.issn.1000-3770.2012.12.004
    [11] 何强, 孙倩, 翟俊, 等. 高氮高浓度粪便污水处理技术研究[J]. 重庆建筑大学学报, 2007, 29(4): 104-106.
    [12] 刘国涛, 何强, 周健, 等. 重庆大溪沟粪便污水处理工程设计[J]. 中国给水排水, 2007, 23(12): 36-38. doi: 10.3321/j.issn:1000-4602.2007.12.009
    [13] 水春雨, 周怀东. 曝气生物流化床处理高氨氮粪便污水[J]. 环境工程学报, 2012, 6(8): 2677-2682.
    [14] 郭治东, 阴俊霞. 复合厌氧生物滤池处理铁路高浓度粪便污水[J]. 铁道标准设计, 2012(11): 117-119.
    [15] 苟剑飞, 李志荣, 张志, 等. 循环水冲洗生态厕所及其污水处理方法[J]. 环境污染治理技术与设备, 2006, 7(6): 69-73.
    [16] 邵嘉慧. 膜生物反应器[M]. 北京: 化学工业出版社, 2011.
    [17] 王红梅. MBR的发展及其应用分析[J]. 绿色环保建材, 2018(3): 17-18.
    [18] BIASEi A D, KOWALSKI M S, DEVLIN T R, et al. Moving bed biofilm reactor technology in municipal wastewater treatment: A review[J]. Journal of Environmental Management, 2019, 247(Oct.1): 849-866.
    [19] 黄霞, 肖康, 许颖, 等. 膜生物反应器污水处理技术在我国的工程应用现状[J]. 生物产业技术, 2015(3): 9-14.
    [20] 任乐辉, 陈妹, 王志伟. 无泡曝气膜生物反应器污水处理研究及应用进展[J]. 水处理技术, 2021, 47(11): 18-25. doi: 10.16796/j.cnki.1000-3770.2021.11.004
    [21] 王永磊, 王学琳, 吕守维, 等. 不同填料生物膜反应器的污泥减量与脱氮性能研究[J]. 环境污染与防治, 2021, 43(10): 1255-1262. doi: 10.15985/j.cnki.1001-3865.2021.10.007
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.2 %DOWNLOAD: 2.2 %HTML全文: 89.6 %HTML全文: 89.6 %摘要: 8.1 %摘要: 8.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 93.7 %其他: 93.7 %XX: 2.7 %XX: 2.7 %东莞: 0.1 %东莞: 0.1 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %兴安盟: 0.0 %兴安盟: 0.0 %内网IP: 0.0 %内网IP: 0.0 %包头: 0.0 %包头: 0.0 %北京: 1.5 %北京: 1.5 %南京: 0.1 %南京: 0.1 %厦门: 0.0 %厦门: 0.0 %咸宁: 0.0 %咸宁: 0.0 %唐山: 0.0 %唐山: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.1 %天津: 0.1 %宜宾: 0.0 %宜宾: 0.0 %宣城: 0.0 %宣城: 0.0 %广州: 0.1 %广州: 0.1 %昆明: 0.0 %昆明: 0.0 %沈阳: 0.0 %沈阳: 0.0 %河池: 0.0 %河池: 0.0 %深圳: 0.4 %深圳: 0.4 %温州: 0.0 %温州: 0.0 %盐城: 0.0 %盐城: 0.0 %绥化: 0.0 %绥化: 0.0 %芜湖: 0.0 %芜湖: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %西宁: 0.0 %西宁: 0.0 %西安: 0.1 %西安: 0.1 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.0 %运城: 0.0 %郑州: 0.1 %郑州: 0.1 %重庆: 0.0 %重庆: 0.0 %银川: 0.1 %银川: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.0 %长沙: 0.0 %阳泉: 0.0 %阳泉: 0.0 %驻马店: 0.0 %驻马店: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他XX东莞保定六安兴安盟内网IP包头北京南京厦门咸宁唐山大连天津宜宾宣城广州昆明沈阳河池深圳温州盐城绥化芜湖葫芦岛西宁西安贵阳运城郑州重庆银川长春长沙阳泉驻马店龙岩Highcharts.com
图( 8) 表( 1)
计量
  • 文章访问数:  3467
  • HTML全文浏览数:  3467
  • PDF下载数:  108
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-02-25
  • 录用日期:  2022-04-13
  • 刊出日期:  2022-09-30
颜建国, 苗时雨, 兰华春, 彭剑峰, 汪诚文, 余刚. A2O-MBR反应器处理景区粪污废水工程[J]. 环境工程学报, 2022, 16(9): 2895-2900. doi: 10.12030/j.cjee.202202136
引用本文: 颜建国, 苗时雨, 兰华春, 彭剑峰, 汪诚文, 余刚. A2O-MBR反应器处理景区粪污废水工程[J]. 环境工程学报, 2022, 16(9): 2895-2900. doi: 10.12030/j.cjee.202202136
YAN Jianguo, MIAO Shiyu, LAN Huachun, PENG Jianfeng, WANG Chengwen, YU Gang. A2O-MBR reactor for the treatment of faecal wastewater in scenic spots[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 2895-2900. doi: 10.12030/j.cjee.202202136
Citation: YAN Jianguo, MIAO Shiyu, LAN Huachun, PENG Jianfeng, WANG Chengwen, YU Gang. A2O-MBR reactor for the treatment of faecal wastewater in scenic spots[J]. Chinese Journal of Environmental Engineering, 2022, 16(9): 2895-2900. doi: 10.12030/j.cjee.202202136

A2O-MBR反应器处理景区粪污废水工程

    通讯作者: 兰华春(1980—),男,博士,特别研究员,hclan@tsinghua.edu.cn
    作者简介: 颜建国(1971—),男,工程博士,yanjg18@tsinghua.edu.cn
  • 清华大学环境学院,北京 100084
基金项目:
国家自然科学基金面上资助项目(51978373)

摘要: 旅游景区粪污废水水质复杂且有机负荷波动大,在实际工程中实现长期稳定达标排放具有一定的挑战。为此,研究了A2O-MBR工艺在旅游景区厕所高浓度粪污废水处理工程中的应用,重点对启动条件及运行工艺参数等进行了研究。结果表明,A2O-MBR工艺用于处理旅游景区厕所粪污废水,缺氧池回流比为100%、好氧池回流比为200%,控制缺氧池及好氧池溶解氧质量浓度分别为0.4~0.6 mg·L−1和1.5~3.0 mg·L−1,反应器出水COD、NH3-N及TP平均质量浓度可分别达到为40.39、3.64和0.39 mg·L−1,最终出水满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。

English Abstract

  • 近年来,随着国民经济的快速发展和人民生活水平的不断提高,国内旅游业持续快速发展[1]。其中,具有独特自然风景的山地景区、大面积的原生态自然景区和部分宗教人文景观,游客量增长率更是遥遥领先。然而与景区快速发展相对的却是景区公共服务设施的相对滞后,尤其是旅游景区厕所粪污废水处理及排放问题较为突出[2-5],简单的粪污废水收集处理设施难以实现废水处理达标排放,这不仅有损景区形象,而且易造成环境污染和疾病传播。因此,景区厕所粪污废水处理问题一直备受关注[6-10]

    景区粪污废水主要由尿液、粪便、冲厕水及冲洗水等组成,含有较高的有机物、氮、磷等物质[11],水质复杂且有机负荷波动大,单一的化学法、物理法和生物法处理难以达到高效稳定的处理效果,在实际工程中一般将几种处理技术进行组合,通常包括:一级预处理、二级主体处理工艺、三级深度处理等三级处理工艺。其中,二级主体处理工艺去除废水中的绝大部分污染物,一般采用厌氧-好氧(anaerobic/oxic, A/O)、厌氧-缺氧-好氧(anoxic/anaerobic/oxic, A2/O)、生物接触氧化、膜生物反应器(membrane bioreactor, MBR)和生物滤池等处理工艺[12-15]。MBR技术利用膜组件的拦截作用实现泥水分离,并将分离出的水排放,而活性污泥则保留在生物处理系统[16-18]。将A2O与MBR工艺组合,可以省去二沉池单元,同时膜分离可有效提高生物反应器中活性污泥的浓度,使处理效果得到有效提升,并且易于集成为一体式处理设备。一体式A2O-MBR处理工艺具有占地面积小、运行控制灵活、自动化程度高、出水效果好等一系列优点[19-21]。然而,一体式A2O-MBR工艺应用于旅游景区粪污废水集中处理的研究相对较少。

    基于上述研究,本研究将一体式A2O-MBR工艺应用于处理某景区厕所粪污废水,探索了该工艺对化学需氧量(chemical oxygen demand, COD)、氨氮(NH3-N)及总磷(total phosphorus, TP)等主要污染物的去除效果,确保出水水质满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A排放要求。

    • 废水处理工艺流程如图1所示。设计处理水量为50 m3·d−1,装置主要由调节沉淀池、厌氧池、缺氧池、好氧-MBR膜池几部分组成。化粪池出水首先进入调节沉淀池,去除大纤维类物质、悬浮物,最大限度降低废水浊度。调节池出水进入毛发过滤器,主要将废水中的头发丝、纤维等丝状物质进行分离,避免对后续膜工艺运行造成影响。毛发过滤器出水依次进入厌氧池、缺氧池、好氧-MBR膜池,经过生化处理后进入紫外消毒池处理后达标排放。

      本工艺生化单元总水力停留时间(hydraulic retention time, HRT)为21.5 h,其中,厌氧池2.5 h,缺氧池4.5 h,好氧-MBR膜池14.5 h,缺氧池到厌氧池的污泥回流比在50%~100%内调节,好氧池到缺氧池硝化液回流比在200%~400%内调节,设计污泥龄在12~15 d左右,好氧池污泥浓度(mixed liquid suspended solids, MLSS)约为8 000 mg·L−1,生化需气量0.26 m3·min−1,MBR膜组件采用PVDF材质的中空纤维膜,单支膜面积为3 m2,共60片膜组件,总装膜面积为180 m2

    • 实验用水为某景区厕所化粪池出水,设计进水水质根据项目实际情况制定,出水主要水质指标COD、NH3-N、TP等执行出水标准为一级A标准,具体见表1

    • 对COD、NH3-N、TP水质指标进行检测,设定5个取样点,分别为调节池进水、前置缺氧池末端、厌氧池末端、好氧-MBR膜池中端、出水口,每周现场取样2次,监测指标包括COD、NH3-N、TP、溶解氧(DO)及MLSS、污泥沉降性。COD检测采用重铬酸钾法;NH3-N检测采用纳氏试剂法、TP检测采用钼锑抗分光法;DO使用Q30d型溶氧仪(HACH/美国)检测;污泥浓度使用TSS Portable手持型便携式浊度和悬浮物测定仪(HACH/美国)检测。为保证各项检测数据的准确性和可重复性,每次取样时间、位置都保持一致,样品即时带回试验室测定。其中,生化池水样取混合液后静置30 min,然后对上清液进行检测。污泥浓度测试液下1.5 m左右,溶氧仪测试保证没过探头。

      进出水采样时间为6—10月,该段时间为旅游旺季,进水水质情况更具有代表性,能够更好地评价A2/O-MBR系统对COD、NH3-N和TP的去除效果。同时选取6月30日、7月10日、7月31日、8月14日、8月25日、9月15日、9月29日和10月6日分别对处理系统从进水到厌氧池、缺氧池、好氧池到出水的全流程指标分别进行了取样分析。

    • 生化工艺启动采用同步接种驯化法,固定停留时间,将较低浓度的原污水引入已投放种泥的反应器中,当去除80%可降解COD后再增加有机负荷,逐渐增大有机负荷直到设计要求,接种污泥采用市政污水厂的剩余污泥。

      启动阶段,对进出水COD进行监测,确定系统运行是否达到稳定,进水COD控制在300~400 mg·L−1,水量为50 m3·d−1,工艺运行参数如下:HRT为21.5 h,MLSS为6 000~8 000 mg·L−1,缺氧池回流比为100%,好氧池回流比为200%,DO在厌氧池、缺氧池、好氧池分别为0.1~0.3、0.4~0.6和1.5~3 mg·L−1图2为启动阶段进出水COD变化。如图2所示,当工艺运行第5天出水COD去除率达到80%以上,随后开始逐渐增加进水浓度至800~1 000 mg·L−1;在运行第12天系统出水COD去除率达到90%以上,出水COD为55.20 mg·L−1;当系统运行到第15天时,出水COD降低至50 mg·L−1以下,稳定运行5 d,出水COD基本低于50 mg·L−1

    • 监测期间,处理系统进出水COD值及去除率如图3所示。进水COD在547.45~1291.87 mg·L−1波动,平均值为767.62 mg·L−1。出水COD平均值为40.39 mg·L−1,可稳定达到一级A限值要求(≤50 mg·L−1),平均去除率稳定在95.13%。这表明该工艺表现出良好且稳定的有机物去除效果,特别是在进水COD较大波动幅度范围内,保持了较高的有机物去除率,保证了出水的稳定达标。

      图4反映了在监测期间内系统中进水、厌氧池、缺氧池、好氧-MBR膜池及出水的COD的沿程变化。由图4可见,COD值随着处理时间的延长逐渐降低,各处理单元COD平均去除量分别为65.75、8.72、170.20、454.30 mg·L−1。好氧-MBR膜池处理单元对COD的平均去除率达65.00%。这说明好氧微生物对粪污废水中的可溶解性有机物的降解效果较为明显,此外,MBR膜也可以截除废水中的绝大部分颗粒性有机物,好氧-MBR处理单元在去除废水中的有机污染物过程起主要作用。

    • 在监测期间,进水NH3-N的质量浓度相对较高,在65.23~118.26 mg·L−1波动,平均值为86.55 mg·L−1。由图5可见,经过A2O-MBR工艺处理后,出水NH3-N平均质量浓度为3.64 mg·L−1,平均去除率稳定在95.72%。最终NH3-N出水稳定达到一级A标准(≤5(8) mg·L−1),在监测期间没有出现超标现象。

      图6反映了监测期间内,处理系统中进水、厌氧池、缺氧池、好氧-MBR膜池及出水NH3-N的沿程变化。由图6可见,NH3-N浓度随着处理的深入基本呈现下降趋势,各处理单元NH3-N平均去除量分别为:18.44、0.40、28.13、32.91 mg·L−1,其中缺氧及好氧-MBR阶段对NH3-N的去除作用较为显著,平均去除率达76.41%。这说明处理系统中反硝化及硝化细菌的功能良好,废水中的NH3-N得到高效去除。

    • 图7所示,系统对TP同样具有良好的去除效果,出水也能够稳定达到一级A标准(≤ 0.5 mg·L−1),出水没有出现超标现象。在监测期间,进水TP的质量浓度总体不高,平均值为10.11 mg·L−1,但波动幅度较大,在7.41~14.57 mg·L−1波动,实验过程出水TP平均质量浓度为0.39 mg·L−1,平均去除率稳定在96.06%,稳定达到一级A排放标准。

      TP在系统中的沿程变化呈现从进水到厌氧池、缺氧池、好氧-MBR膜池出水,整体逐级下降的趋势,数据如图8所示。厌氧池由于回流稀释作用,磷浓度相对进水有较大幅度降低,从厌氧池到缺氧池TP有一定幅度的增加,表明污泥发生较为明显的释磷现象;而好氧-MBR膜池磷浓度下降迅速,表明活性污泥的吸磷效果明显,对TP的去除效果非常良好。本系统中调节池和好氧池设置了PVC加药系统,当TP相对较高时,可以通过加药的形式实现辅助去除,但试验期间仅依靠生物除磷就达到稳定的去除效果。此外,生化系统要及时排泥,使污泥浓度维持在合适的范围内,同时也能保证生物除磷的效果稳定。监测期间内,进水TP平均值为10.17 mg·L−1,经系统工艺处理后出水平均值为0.36 mg·L−1

    • 1)一体式A2O-MBR反应器对处理景区厕所粪污中的污染物有较好的去除,对COD的平均去除率为95.13%,出水平均质量浓度为40.39 mg·L−1;出水NH3-N的平均去除率为95.72%,出水平均质量浓度为3.64 mg·L−1;出水TP平均去除率为96.06%,出水平均质量浓度为0.39 mg·L−1

      2)一体式A2O-MBR反应器,厌氧池、缺氧池、好氧-MBR池水力停留时间分别为2.5、4.5和14.5 h,溶解氧浓度分别控制在0.1~0.3、0.4~0.6和1.5~3 mg·L−1,缺氧池回流比为100%,好氧池回流比为200%,好氧-MBR池污泥质量浓度控制在8 000 mg·L−1,可以确保处理系统稳定运行。

    参考文献 (21)

返回顶部

目录

/

返回文章
返回