-
氮氧化物(NOx)会导致光化学烟雾、酸雨、地面臭氧和细颗粒物等多种环境问题[1-2]。NOx的排放主要来自于固定源和移动源。在移动源排放中,柴油车对NOx排放贡献较大。传统NH3选择性催化还原(NH3-SCR)技术已被广泛用于NOx的去除,但其存在氨腐蚀、硫酸氢铵形成等诸多问题[3]。而柴油车尾气中除NOx外还含有大量碳氢化合物。与使用高成本NH3或尿素的NH3-SCR工艺相比,碳氢化合物选择性催化还原NOx(HC-SCR)工艺无需添加任何外源性还原剂,并且可同时去除尾气中的NOx和未燃烧的碳氢化合物[4-5]。因此,从经济、节能和安全的角度来看,HC-SCR是一种具有应用潜力的柴油车尾气控制技术[6-7]。
相较于CH4[8]、C3H8[9]和C2H6O[10],C3H6作为SCR还原剂的活性更高[11-13]。单一/复合金属氧化物及沸石基催化剂已受到广泛关注,如Sn[14-15]、In[16-17]、Co[18-19]、Cu[20-21]、Fe[22-23]等。过渡金属氧化物负载型催化剂具有较强的研究价值。然而,用于柴油车尾气的HC-SCR技术还存在诸多挑战,其中低温活性有待提高是其中之一。Cu基催化剂具有成本低和效率高的特点,其在SCR反应中具有明显低温优势[24-25]。Cu负载到Al2O3、Ti0.5Zr0.5O2-δ等载体表面后,在≤300 ℃条件下能实现NO向N2的转化[26-27]。Cu基催化剂的低温催化性能主要取决于催化剂表面Cu的价态和分散状态[28],而相比于低价Cu+和Cu0物质,Cu2+被证明是SCR的活性位点[29-31]。SHIMIZU等[32]发现Cu-铝酸盐催化剂表现出比Cu-ZSM-5更优的脱硝活性和水热稳定性,这是由于其中高度分散的Cu2+离子起到了作用。因此,通过调控催化剂表面Cu物质的分布以提高活性Cu含量是提升Cu基催化剂低温SCR性能的关键。助剂掺杂是一种催化剂改性的常用手段[33-34],In作为一种d10系主族金属元素,被广泛用作催化剂助剂,可调控活性位点的反应性能。KHARAT等[35]发现In的添加对三元CuO-ZnO-Al2O3催化剂结构和催化性能产生了影响,增加催化剂比表面积并减小CuOx晶粒尺寸可使催化剂在250 °C的活性得到显著提升。In3+离子具有较大离子半径,掺杂后可能导致Co3O4晶格结构变形,并形成氧空位,进而促进催化氧化反应进行[36];此外,掺杂In能改变载体[37]或负载物质的结构[38],使得其催化性能得以提升。尽管Cu基催化剂表现出一定的C3H6-SCR活性,但其低温NOx转化率还有待提升。而In2O3较弱的氧化性能可抑制碳氢化合物的过度燃烧,使更多碳氢化合物可用作还原剂,进而使得In/Al催化剂在高温区间表现出较高的NOx去除效率[39]。
基于此,本研究以γ-Al2O3为载体,采用浸渍法制备CuO-In2O3/γ-Al2O3催化剂用于C3H6-SCR反应,拟通过添加In来改善催化剂表面Cu物质的分布,以期提高Cu基催化剂的低温活性,再进一步通过X射线光电子谱(XPS)、氢气程序升温还原(H2-TPR)等表征方法,探明助剂In对Cu离子价态和反应中间产物的影响,以揭示C3H6-SCR的反应机理。本研究可为应用于柴油车尾气控制技术的低温SCR催化剂开发提供参考。
铟掺杂促进铜铝催化剂低温C3H6-SCR反应的机理
Reaction mechanism of enhanced activity for C3H6-SCR at low temperature by indium-doped on CuO/Al2O3 catalyst
-
摘要: CuO/Al2O3催化剂为低温SCR催化剂,在其表面添加In组分,并用于丙烯选择性催化还原(C3H6-SCR)氮氧化物(NOx)的研究。结果表明,负载CuIn的催化剂表现出最好的反应活性,在350 °C时NOx转化率可达到62%。XPS表征结果显示,同时负载In改变了Cu的化合价态和表面氧的分布,提高了催化剂表面Cu2+和化学吸附氧的比例。H2-TPR和NO+O2-TPD结果表明,同时负载CuIn能提高催化剂氧化还原性,也促进了NOx的吸附,催化剂表面生成大量的亚硝酸盐/硝酸盐。反应机理研究表明,C3H6-SCR过程沿着L-H反应路径进行,同时负载CuIn能促进C3H6的快速氧化,并有助于催化剂表面甲酸盐和乙酸盐的形成。因此,Cu2+和化学吸附氧比例的提高,会增强催化剂的氧化还原性能,从而加速甲/乙酸盐的形成,这可能是促进C3H6-SCR低温活性得以提高的主要原因。本研究可为应用于柴油车尾气控制技术的低温SCR催化剂开发提供参考。Abstract: CuO/Al2O3 catalyst was a low-temperature SCR catalyst. In this paper, In was added to the surface of CuO/Al2O3 catalyst and used for selective catalytic reduction of nitrogen oxides (NOx) by propylene (C3H6-SCR). The results showed that the catalyst supported with CuIn exhibited the best activity, with NOx conversion up to 62% at 350 °C. XPS characterization results showed that the loading of In changed the valence state of Cu and the distribution of oxygen on the surface, and increased the ratio of Cu2+ and chemisorbed oxygen on the catalyst surface. The results of H2-TPR and NO+O2-TPD showed that loading CuIn could improve the reducibility of the catalyst and promote the adsorption of NOx, and a large number of nitrite/nitrate species were formed on the catalyst surface. Studies of reaction mechanism showed that C3H6-SCR process followed L-H reaction mechanism. Doping CuIn promoted the rapid oxidation of C3H6 and contributed to the formation of formate and acetate on the catalyst surface. Therefore, the increase of the ratio of Cu2+ and chemisorbed oxygen would enhance redox performance of the catalyst and accelerate the rapid formation of formate/acetate, which might be the main reasons for the improvement of activity of C3H6-SCR in low temperature range. This study can provide reference for the development of low temperature SCR catalyst applied in diesel vehicle exhaust control technology.
-
Key words:
- copper-based catalyst /
- selective catalytic reduction /
- C3H6 /
- NOx /
- Al2O3
-
表 1 Cu-In/Al、Cu/Al和In/Al催化剂的NOx吸附量
Table 1. The NOx adsorption capacity of Cu-In/Al, Cu/Al and In/Al catalysts
催化剂 NO吸附量/
(μmol·g−1)NO2吸附量/
(μmol·g−1)NOx吸附量/
(μmol·g−1)Cu-In/Al 274.00 441.52 715.52 Cu/Al 86.74 528.61 615.35 In/Al 108.59 336.88 445.47 -
[1] IWAMOTO M, ZENYO T, HERNANDEZ A M, et al. Intermediate addition of reductant between an oxidation and a reduction catalyst for highly selective reduction of NO in excess oxygen[J]. Applied Catalysis B:Environmental, 1998, 17: 259-266. doi: 10.1016/S0926-3373(98)00018-6 [2] CHANG H Z, QIN X, MA L, et al. Cu/SAPO-34 prepared by a facile ball milling method for enhanced catalytic performance in the selective catalytic reduction of NOx with NH3[J]. Physical Chemistry Chemical Physics, 2019, 21(39): 22113-22120. doi: 10.1039/C9CP04519H [3] 荆国华, 李俊华, 杨栋, 等. 固体超强酸和金属氧化物类催化剂上CH4-SCR还原NOx研究进展[J]. 环境工程学报, 2010, 4(7): 1441-1447. [4] HALPOTO A, KASHIF M, Su Y X, et al. Preparations and characterization on Fe based catalyst supported on coconut shell activated carbon CS(AC) and SCR of NOx-HC[J]. Catalysis Surveys from Asia, 2020, 24(2): 123-133. doi: 10.1007/s10563-020-09293-6 [5] ZHAO L, ZHANG Y, BI S N, et al. Metal-organic framework-derived CeO2–ZnO catalysts for C3H6-SCR of NO: an in situ DRIFTS study[J]. RSC Advances, 2019, 9(33): 19236-19242. doi: 10.1039/C9RA03103K [6] PAN H, GUO Y H, Bi H T. NOx adsorption and reduction with C3H6 over Fe/zeolite catalysts: effect of catalyst support[J]. Chemical Engineering Journal, 2015, 280: 66-73. doi: 10.1016/j.cej.2015.05.093 [7] YANG W, ZHANG R D, CHEN B H, et al. New aspects on the mechanism of C3H6 selective catalytic reduction of NO in the presence of O2 over LaFe1-x(Cu, Pd)xO3-delta perovskites[J]. Environmental Science & Technology, 2012, 46(20): 11280-11288. [8] 林睿, 苏亚欣, 程江浩, 等. Fe/Ga2O3-Al2O3催化甲烷还原NO的性能[J]. 环境工程学报, 2020, 14(6): 1592-1604. doi: 10.12030/j.cjee.201908001 [9] ADAMOWSKA-TEYSSIER M, KRZTOŃ A, COSTA P D, et al. SCR NOx mechanistic study with a mixture of hydrocarbons representative of the exhaust gas from coal combustion over Rh/Ce0.62Zr0.38O2 catalyst[J]. Fuel, 2015, 150: 21-28. doi: 10.1016/j.fuel.2015.01.017 [10] WU Q, YU Y B, HE H. Mechanistic study of selective catalytic reduction of NOx with C2H5OH and CH3OCH3 over Ag/Al2O3 by in situ DRIFTS[J]. Chinese Journal of Catalysis, 2006, 27(11): 993-997. doi: 10.1016/S1872-2067(06)60052-1 [11] CAMPA M C, PIETROGIACOMI D, SCARFIELLO C, el al. CoOx and FeOx supported on ZrO2 for the simultaneous abatement of NOx and N2O with C3H6 in the presence of O2[J]. Applied Catalysis B:Environmental, 2019, 240: 367-372. doi: 10.1016/j.apcatb.2017.04.041 [12] 周皞, 苏亚欣, 邓文义, 等. 金属氧化物类催化剂上HC-SCR研究进展[J]. 环境科学与技术, 2016, 39(1): 93-100. [13] BURCH R, BREEN J P, MEUNIER F C. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts[J]. Applied Catalysis B:Environmental, 2002, 39: 283-303. doi: 10.1016/S0926-3373(02)00118-2 [14] LIU Z M, LI J H, HAO J M. Selective catalytic reduction of NOx with propene over SnO2/Al2O3 catalyst[J]. Chemical Engineering Journal, 2010, 165(2): 420-425. doi: 10.1016/j.cej.2010.09.009 [15] LIU Y Q, LAI Q, SUN Y, el al. SnO2/Al2O3 catalysts for selective reduction of NOx by propylene: on the promotional effects of plasma treatment in air atmosphere[J]. Catalysis Today, 2019, 337: 171-181. doi: 10.1016/j.cattod.2019.04.013 [16] PERDIGON-MELON J A, GERVASINI A, AUROUX A. Study of the influence of the In2O3 loading on γ-alumina for the development of de-NOx catalysts[J]. Journal of Catalysis, 2005, 234(2): 421-430. doi: 10.1016/j.jcat.2005.07.001 [17] LIU Z M, HAO J M, FU L X, el al. Activity enhancement of bimetallic Co-In/Al2O3 catalyst for the selective reduction of NO by propene[J]. Applied Catalysis B:Environmental, 2004, 48(1): 37-48. doi: 10.1016/j.apcatb.2003.09.005 [18] HE C H, PAULUS M, CHU W, et al. Selective catalytic reduction of NO by C3H8 over CoOx/Al2O3: An investigation of structure–activity relationships[J]. Catalysis Today, 2008, 131(1/2/3/4): 305-313. [19] CARLO G D, LIOTTA L F, PANTALEO G, et al. Alumina and alumina-baria supported cobalt catalysts for deNOx: Influence of the support and cobalt content on the catalytic performance[J]. Topics in Catalysis, 2009, 52(13/14/15/16/17/18/19/20): 1826-1831. [20] 王琪莹, 刘自力, 邹汉波, 等. 焙烧温度对层柱粘土催化剂Cu/Ti-PILCs催化丙烯还原NO反应的影响[J]. 环境工程学报, 2015, 9(11): 5527-5530. doi: 10.12030/j.cjee.20151163 [21] AMIN N A S, TAN E F, MANAN Z A. SCR of NOx by C3H6: Comparison between Cu/Cr/CeO2 and Cu/Ag/CeO2 catalysts[J]. Journal of Catalysis, 2004, 222(1): 100-106. doi: 10.1016/j.jcat.2003.10.005 [22] ZHOU H, GE M Y, WU S G, et al. Iron based monolithic catalysts supported on Al2O3, SiO2, and TiO2: A comparison for NO reduction with propane[J]. Fuel, 2018, 220: 330-338. doi: 10.1016/j.fuel.2018.01.077 [23] 袁旻昊, 钱文燕, 邓文义, 等. 铁修饰铝柱撑黏土催化剂(Fe/Al-PILC)的制备及其对C3H6-SCR活性的影响[J]. 环境工程学报, 2020, 14(4): 1022-1032. doi: 10.12030/j.cjee.201911027 [24] ROY S, VISWANATH B, HEGDE M S, et al. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu)[J]. Journal of Physical Chemistry C, 2008, 112: 6002-6012. doi: 10.1021/jp7117086 [25] ZHANG R D, TEOH W Y, AMAL R, et al. Catalytic reduction of NO by CO over Cu/CexZr1−xO2 prepared by flame synt hesis[J]. Journal of Catalysis, 2010, 272(2): 210-219. doi: 10.1016/j.jcat.2010.04.001 [26] KUMAR P A, REDDY M P, JU L K, et al. Low temperature propylene SCR of NO by copper alumina catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2008, 291(1/2): 66-74. [27] Liu J, Zhao Q D, LI X Y, et al. Structure sensitivity of selective catalytic reduction of NO with propylene over Cu-doped Ti0.5Zr0.5O2-catalysts[J]. Applied Catalysis B:Environmental, 2015, 165: 519-528. doi: 10.1016/j.apcatb.2014.10.038 [28] LU G, LI X Y, QU Z P, et al. Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene[J]. Chemical Engineering Journal, 2011, 168(3): 1128-1133. doi: 10.1016/j.cej.2011.01.095 [29] VALVERD J L, DELUCAS A, SÁNCHEZ P, et al. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene[J]. Applied Catalysis B:Environmental, 2003, 43(1): 43-56. doi: 10.1016/S0926-3373(02)00274-6 [30] VALVERDE J L, DELUCAS A, DORADO F, et al. Study by in situ FTIR of the SCR of NO by propene on Cu2+ ion-exchanged Ti-PILC[J]. Journal of Molecular Catalysis A:Chemical, 2005, 230(1/2): 23-28. [31] DORADO F, ROMERO R, CRUZ J, et al. Selective catalytic reduction of NO by propene in the presence of oxygen and water over catalysts prepared by the modified sol–gel method[J]. Catalysis Communications 2007, 8(4): 736-740. [32] SHIMIZU K, KAWABATA H, MAESHIMA H, et al. Intermediates in the selective reduction of NO by propene over Cu-Al2O3 catalysts: Transient in-Situ FTIR study[J]. Journal of Physical Chemistry B, 2000, 104: 2885-2893. doi: 10.1021/jp9930705 [33] YADAV D, KAVAIYA A R, MOHAN D, et al. Low temperature selective catalytic reduction (SCR) of NOx emissions by Mn-doped Cu/Al2O3 catalysts[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2017, 12(3): 415-429. [34] PANAHI P N, SALARI D, NIAEI A, et al. NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1793-1799. doi: 10.1016/j.jiec.2013.02.022 [35] SADEGHINIA M, REZAEI M, KHARAT A N, et al. Effect of In2O3 on the structural properties and catalytic performance of the CuO/ZnO/Al2O3 catalyst in CO2 and CO hydrogenation to methanol[J]. Molecular Catalysis, 2020, 484: 110776. doi: 10.1016/j.mcat.2020.110776 [36] MA L, SEO C Y, CHEN X Y, et al. Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust[J]. Applied Catalysis B:Environmental, 2018, 222: 44-58. doi: 10.1016/j.apcatb.2017.10.001 [37] BERSANI D, LOTTICI P P, RANGEL G, et al. Micro-Raman study of indium doped zirconia obtained by sol–gel[J]. Journal of Non-Crystalline Solids, 2004, 345-346: 116-119. doi: 10.1016/j.jnoncrysol.2004.08.006 [38] SHENDE A G, GHUGAL S G, VIDYASAGAR D, et al. Magnetically separable indium doped ZnS NiFe2O4 heterostructure photocatalyst for mineralization of acid violet 7 dye[J]. Materials Chemistry and Physics, 2019, 221: 483-492. doi: 10.1016/j.matchemphys.2018.09.032 [39] LI J H, HAO J M, CUI X Y, et al. Influence of preparation methods of In2O3/Al2O3 catalyst on selective catalytic reduction of NO by propene in the presence of oxygen[J]. Catalysis Letters, 2005, 103(1/2): 75-82. [40] LI J H, HAO J M, FU L X, et al. Cooperation of Pt/Al2O3 and In/Al2O3 catalysts for NO reduction by propene in lean burn condition[J]. Applied Catalysis A:General, 2004, 265(1): 43-52. doi: 10.1016/j.apcata.2004.01.001 [41] HU S Y, XIAO W, YANG W W, et al. Molecular O2 activation over Cu(I)-mediated C identical with N bond for low-temperature CO oxidation[J]. ACS Applied Materials & Interfaces, 2018, 10(20): 17167-17174. [42] LUO Z, CETEGEN S A, MIAO R, et al. Structure–property relationships of copper modified mesoporous TiO2 materials on alkyne homocoupling reactions[J]. Journal of Catalysis, 2016, 338: 94-103. doi: 10.1016/j.jcat.2016.03.009 [43] FANG Y R, LI L, YANG J, et al. Engineering the nucleophilic active oxygen species in CuTiOx for efficient low-temperature propene combustion[J]. Environment Science & Technology, 2020, 54(23): 15476-15488. [44] CHANG H Z, LI M G, LI Z G, et al. Design strategies of surface basicity for NO oxidation over a novel Sn–Co–O catalyst in the presence of H2O[J]. Catalysis Science & Technology, 2017, 7(10): 2057-2064. [45] AMANO F, SUZUKI S, YAMAMOTO T, et al. One-electron reducibility of isolated copper oxide on alumina for selective NO–CO reaction[J]. Applied Catalysis B:Environmental, 2006, 64(3/4): 282-289. [46] PARK P W, RAGLE C S, BOYER C L, et al. In2O3/Al2O3 Catalysts for NOx Reduction in Lean Condition[J]. Journal of Catalysis, 2002, 210(1): 97-105. doi: 10.1006/jcat.2002.3667 [47] HE H, ZHANG C B, YU Y B. A comparative study of Ag/Al2O3 and Cu/Al2O3 catalysts for the selective catalytic reduction of NO by C3H6[J]. Catalysis Today, 2004, 90: 191-197. doi: 10.1016/j.cattod.2004.04.026 [48] HANEDA M, KINTAICHI Y, HAMADA H. Promotional effect of H2O on the activity of In2O3-doped Ga2O3–Al2O3 for the selective reduction of nitrogen monoxide[J]. Catalysis Letters, 1998, 55: 47-55. doi: 10.1023/A:1019002105560 [49] CUI X Y, LI J H, HAO J M, et al. Enhancement of activity of SnO2-doped In2O3/Al2O3 catalyst for NO reduction with propene in the presence of H2O and SO2[J]. Chinese Chemical Letters, 2005, 16(11): 1535-1538. [50] HADJIIVANOV K. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catalysis Reviews, 2000, 42(1/2): 71-144. [51] TAMM S, INGELSTEN H H, PALMQVIST A E C. On the different roles of isocyanate and cyanide species in propene-SCR over silver/alumina[J]. Journal of Catalysis, 2008, 255(2): 304-312. doi: 10.1016/j.jcat.2008.02.019 [52] LIU Z M, OH K S, WOO S I. Promoting Effect of CeO2 on NOx reduction with Propene over SnO2/Al2O3 catalyst studied with in situ FT-IR spectroscopy[J]. Catalysis Letters, 2007, 120(1/2): 143-147. [53] NGUYEN L Q, SALIM C, HINODE H. Roles of nano-sized Au in the reduction of NOx by propene over Au/TiO2: An in situ DRIFTS study[J]. Applied Catalysis B:Environmental, 2010, 96(3/4): 299-306. [54] PIETRZYK P, DUJARDIN C, GÓRA-MAREK K, et al. Spectroscopic IR, EPR, and operando DRIFT insights into surface reaction pathways of selective reduction of NO by propene over the Co-BEA zeolite[J]. Physical Chemistry Chemical Physics, 2012, 14(7): 2203-15. doi: 10.1039/C1CP23038G [55] GÓRA-MAREK K, GIL B, DATKA J. Quantitative IR studies of the concentration of Co2+ and Co3+ sites in zeolites CoZSM-5 and CoFER[J]. Applied Catalysis A:General, 2009, 353(1): 117-122. doi: 10.1016/j.apcata.2008.10.034