-
氮氧化物(NOx)会导致光化学烟雾、酸雨、地面臭氧和细颗粒物等多种环境问题[1-2]。NOx的排放主要来自于固定源和移动源。在移动源排放中,柴油车对NOx排放贡献较大。传统NH3选择性催化还原(NH3-SCR)技术已被广泛用于NOx的去除,但其存在氨腐蚀、硫酸氢铵形成等诸多问题[3]。而柴油车尾气中除NOx外还含有大量碳氢化合物。与使用高成本NH3或尿素的NH3-SCR工艺相比,碳氢化合物选择性催化还原NOx(HC-SCR)工艺无需添加任何外源性还原剂,并且可同时去除尾气中的NOx和未燃烧的碳氢化合物[4-5]。因此,从经济、节能和安全的角度来看,HC-SCR是一种具有应用潜力的柴油车尾气控制技术[6-7]。
相较于CH4[8]、C3H8[9]和C2H6O[10],C3H6作为SCR还原剂的活性更高[11-13]。单一/复合金属氧化物及沸石基催化剂已受到广泛关注,如Sn[14-15]、In[16-17]、Co[18-19]、Cu[20-21]、Fe[22-23]等。过渡金属氧化物负载型催化剂具有较强的研究价值。然而,用于柴油车尾气的HC-SCR技术还存在诸多挑战,其中低温活性有待提高是其中之一。Cu基催化剂具有成本低和效率高的特点,其在SCR反应中具有明显低温优势[24-25]。Cu负载到Al2O3、Ti0.5Zr0.5O2-δ等载体表面后,在≤300 ℃条件下能实现NO向N2的转化[26-27]。Cu基催化剂的低温催化性能主要取决于催化剂表面Cu的价态和分散状态[28],而相比于低价Cu+和Cu0物质,Cu2+被证明是SCR的活性位点[29-31]。SHIMIZU等[32]发现Cu-铝酸盐催化剂表现出比Cu-ZSM-5更优的脱硝活性和水热稳定性,这是由于其中高度分散的Cu2+离子起到了作用。因此,通过调控催化剂表面Cu物质的分布以提高活性Cu含量是提升Cu基催化剂低温SCR性能的关键。助剂掺杂是一种催化剂改性的常用手段[33-34],In作为一种d10系主族金属元素,被广泛用作催化剂助剂,可调控活性位点的反应性能。KHARAT等[35]发现In的添加对三元CuO-ZnO-Al2O3催化剂结构和催化性能产生了影响,增加催化剂比表面积并减小CuOx晶粒尺寸可使催化剂在250 °C的活性得到显著提升。In3+离子具有较大离子半径,掺杂后可能导致Co3O4晶格结构变形,并形成氧空位,进而促进催化氧化反应进行[36];此外,掺杂In能改变载体[37]或负载物质的结构[38],使得其催化性能得以提升。尽管Cu基催化剂表现出一定的C3H6-SCR活性,但其低温NOx转化率还有待提升。而In2O3较弱的氧化性能可抑制碳氢化合物的过度燃烧,使更多碳氢化合物可用作还原剂,进而使得In/Al催化剂在高温区间表现出较高的NOx去除效率[39]。
基于此,本研究以γ-Al2O3为载体,采用浸渍法制备CuO-In2O3/γ-Al2O3催化剂用于C3H6-SCR反应,拟通过添加In来改善催化剂表面Cu物质的分布,以期提高Cu基催化剂的低温活性,再进一步通过X射线光电子谱(XPS)、氢气程序升温还原(H2-TPR)等表征方法,探明助剂In对Cu离子价态和反应中间产物的影响,以揭示C3H6-SCR的反应机理。本研究可为应用于柴油车尾气控制技术的低温SCR催化剂开发提供参考。
-
以γ-Al2O3为载体,通过浸渍法分别制备CuO-In2O3/γ-Al2O3、CuO/γ-Al2O3和In2O3/γ-Al2O3催化剂(记为Cu-In/Al、Cu/Al和In/Al)。采用硝酸铜(0.228 g,Cu(NO3)2·3H2O,西亚化学工业有限公司)和硝酸铟(0.081 g,In(NO3)3·4H2O,麦克林生化科技有限公司)水溶液浸渍γ-Al2O3粉末(2.88 g),制备CuO-In2O3/γ-Al2O3催化剂。将混合后的溶液在室温下搅拌2 h,然后慢慢加热至80 °C,搅拌至糊状。最后,在110 °C下,将样品干燥12 h,并在600 ℃温度下煅烧5 h(升温速率为1 ℃·min−1)。其他催化剂的制备方法也类似。本研究所用的Cu-In/Al催化剂已在前期经过比例优化,按Cu、In最佳配比计算得到其负载量分别为:CuO负载量 (质量分数) 为2.5%;In2O3负载量 (质量分数) 为1.25%。
-
1) XRD。在Cu Kα辐射(λ=1.5418 Å)、2θ为10°~90°、扫描速率为8°·min−1的条件下,使用X射线衍射仪(Bruker, D8 ADVANCE X)测试样品的X射线衍射谱图(XRD),以确定催化剂组成。2) BET。在77 K下,采用物理吸附仪(Micromeritics, ASAP2020-M)进行N2吸附-解吸分析,以测定催化剂的比表面积(BET)。3) ICP。采用电感耦合等离子体发射光谱仪(Agilent ICP-OES 725-ES)对制备的催化剂进行元素含量分析。4) H2-TPR。为测试催化剂氧化还原性能,利用化学吸附分析仪(Micromeritics, ChemiSorb 2720 TPx)进行氢气程序升温还原(H2-TPR)实验。样品在Ar中400 ℃预处理1 h,然后冷却至30 ℃并切换至10%H2/Ar的反应气氛,流量为30 mL·min−1,以10 ℃·min−1的升温速率从30 °C升至800 ℃。5) XPS。通过光谱仪(Thermo Escalab 250-XI)进行X射线光电子能谱(XPS),分析催化剂表面元素价态,以Al Kα X射线为单色光源,并根据C1s峰(284.8 eV)校正各个元素的结合能。6) NO+O2-TPD。采用气体分析仪(Thermo Scientific Antaris IGS)进行NO+O2程序升温脱附(NO+O2-TPD)实验,以测定催化剂对NOx的吸附性能。先将100 mg样品在180 mL·min−1的N2中400 ℃预处理1 h,然后冷却至室温,通入混合气体 (NO 500×10−6+O2 5%) 吸附1 h;用N2吹扫后,程序升温至600 ℃进行脱附实验。7) in situ DRIFTS。在红外光谱仪(Nicolet iS50)上进行程序升温C3H6氧化反应和瞬态原位漫反射红外光谱(in situ DRIFTS)实验,以探明催化剂表面的反应机制。样品在500 ℃条件下充以N2预处理1 h,然后冷却至所需温度。在每个温度下采集背景光谱,并在相同温度下采集样品光谱。
-
C3H6-SCR的活性通过固定石英床连续反应器(内部直径6 mm)来测试。测试中使用150 mg催化剂,其粒径为40~60目,并以N2为平衡气。通入的气体组分及其体积分数为:C3H6 1 000×10−6、NO 500×10−6、O2 2%。通入气体的总流速为200 mL·min−1,气体空速为38 000 h−1。C3H6、NO、NO2、N2O等气体进出口浓度通过气体分析仪(Thermo Scientific, Antaris IGS)检测。NOx、C3H6的转化效率和N2选择性计算参考式 (1)~(3) 进行。
式中:
ηNOx 和ηC3H6 分别表示NOx和C3H6的转化效率,%;ψN2 表示N2的选择性,%;方括号为气体体积分数,以下标“in”和“out”分别区分进口和出口气体。 -
图1为Cu-In/Al、Cu/Al和In/Al催化剂的XRD测试结果。3种催化剂均显示出载体γ-Al2O3的衍射峰(PDF#79-1558),但未观察到CuO或In2O3的晶相。这表明Cu、In类物质的结晶度低或呈现无定形状态,并且高度分散在γ-Al2O3载体上。3种催化剂的BET测试结果较为相似,其比表面积分别为:In/Al 154 m2·g−1、Cu-In/Al 146 m2·g−1和Cu/Al 145 m2·g−1。与纯载体γ-Al2O3(比表面积为160 m2·g−1)相比,低结晶度或无定形的CuOx和InOx负载到γ-Al2O3表面后,并未显著改变载体的孔结构,对催化剂的比表面积影响亦较小,但Cu、In在表面的高度分散也将为催化反应提供更多反应位点。
催化剂对NOx的吸附性能是SCR的重要参数。利用NO+O2-TPD考察了Cu-In/Al、Cu/Al和In/Al催化剂表面NOx的吸附性能,以探讨NOx在催化剂表面的吸附强度,结果如图2所示。在低于200 ℃条件下,吸附的物质多为NO,主要来自于弱结合的亚硝酸盐(ad-NO2−)分解;而在高于300 ℃条件下,吸附的物质多为NO2,主要来自于硝酸盐(ad-NO3−)的分解[39-40]。值得注意的是,在掺杂In后,Cu-In/Al催化剂上NO脱附峰强度明显增加,这说明In的掺杂有助于催化剂表面形成更多的亚硝酸盐。NOx总吸附量(表1)表明,Cu-In/Al催化剂表现出了最大NOx吸附量。同时,相比于In/Al,Cu/Al和Cu-In/Al表面硝酸盐的脱附温度较低。这可能是由于Cu位点上的硝酸盐结合能力不强,更容易分解,并易与C3H6活化后的中间产物反应,进而提升了SCR反应活性。
-
为进一步探讨In对催化剂表面组成和氧化状态的影响,Cu/Al、In/Al和Cu-In/Al催化剂的XPS结果如图3所示。Cu-In/Al和Cu/Al催化剂的Cu 2p光谱由2p1/2、2p3/2和卫星峰(943-945 eV)组成。分峰结果表明,催化剂表面同时存在Cu2+和Cu+类物质[27,41-42]。添加In后,Cu-In/Al催化剂表面上Cu2+增多。推测Cu2+可能是丙烯分子的主要吸附位点[43],表面更多的Cu2+有利于C—H键断裂,从而促进了C3H6活化氧化反应,最终使得C3H6-SCR的性能提升。此外,相比于Cu/Al催化剂,Cu-In/Al催化剂表面Cu2+的峰向更高结合能偏移 (由934.5 eV转移至935.3 eV) 。这表明催化剂上存在电子转移,导致Cu位点的电荷密度较低、存在高价态Cu。这可能是由于Cu2+与In有较强的相互作用,从而有利于气态反应物的活化氧化。催化剂的O1s谱图如图3(b)所示。经分峰后,2个主要O1s峰分别归属于催化剂的表面化学吸附氧(记为Oα)和晶格氧(记为Oβ)[44]。定量计算结果表明,Cu-In/Al催化剂的Oα/(Oα+Oβ)比例明显高于Cu/Al。这说明掺杂In会提高Cu-In/Al催化剂上的化学吸附氧物质的含量。
采用H2-TPR进一步研究催化剂的氧化还原性能,结果如图4所示。Cu-In/Al、Cu/Al和In/Al均显示出单一的H2还原峰,分别位于256、282和400 ℃温度下。Cu-In/Al和Cu/Al催化剂的峰主要归属于高度分散的Cu2+直接还原的金属Cu0[26,45],In/Al催化剂的宽峰主要归属于高度分散的In3+直接还原的金属In0[16,46]。相比Cu/Al和In/Al催化剂,Cu-In/Al催化剂的还原峰温度更低。这表明在CuIn位点的相互作用下,Cu2+表现出更强的氧化性。这与XPS中Cu-In/Al表面存在更高价态Cu类物质的结果相一致。在C3H6-SCR反应过程中,较强的氧化还原性能是催化剂展现出优异低温活性的原因之一。
-
Cu-In/Al、Cu/Al和In/Al催化剂在200~600 ℃条件下的C3H6-SCR活性如图5所示。In/Al催化剂在超过450 ℃的高温下的NOx去除效率较高,而Cu/Al催化剂在250 ℃开始起活,并表现出低温SCR活性。在In掺杂后,Cu-In/Al催化剂不但保持Cu/Al催化剂的低温活性优势,且NOx转化率显著提高,在350 ℃达到62%的NOx转化率。常见一元或二元非贵金属氧化物催化剂仅有高温SCR活性,在C3H6-SCR低温范围内 (< 400 ℃) 活性较低。In2O3/Al2O3[39,46]、CuO/Al2O3[47]、Co3O4/Al2O3[17]、Ga2O3-Al2O3[48]在350 ℃时的NOx转化率仅为约30%,且催化剂的起活温度较高。而掺杂In后的In2O3-Co3O4/Al2O3[17]、In2O3-SnO2/Al2O3[49]、In2O3-Ga2O3-Al2O3[48]催化剂在350 ℃的NOx转化率依然不高。相比之下,Cu-In/Al催化剂具有更好的低温活性潜力,在350 ℃的活性表现值得进一步研究,这可能与Cu和In之间的相互作用有关。
值得注意的是,图5 (b) 表明Cu-In/Al和Cu/Al催化剂上C3H6转化性能显著优于In/Al催化剂,而Cu/Al在掺杂In的基础上C3H6转化率又略有提高。在350 ℃时,催化剂的C3H6转化率按由大到小排列,依次为Cu-In/Al(93%)>Cu/Al(62%)>In/Al(6%)。此外,在图5(c)和(d)中,Cu-In/Al和Cu/Al催化剂表现出相似的N2选择性及产物分布。这表明C3H6还原NO后的产物主要是N2和CO2。因此,催化剂表面的CuOx可能是C3H6活化和NOx还原的活性位点,而In在其中是作为助剂促进了C3H6的活化转化,并提高了催化剂的NOx转化效率。
-
为阐明反应中间体和C3H6-SCR机理,采用原位DRIFTS方法测定不同反应中间产物的形成和转化情况。图6表明,在350 ℃条件下, (NO+O2) 在催化剂表面预吸附后,主要以单齿硝酸盐(峰值为1 258 cm−1)和双齿硝酸盐(峰值为1 300和1 554 cm−1)的形式存在[50]。反应气体切换为 (C3H6+O2) 后,Cu-In/Al和Cu/Al催化剂表面的硝酸盐快速消失,并出现乙酸盐υas(COO)、υs(COO)的振动峰[47,51](1 587和1 459 cm−1)和甲酸盐δ(—CH3)的振动峰(1 378 cm−1)[52-53]。这说明吸附态硝酸盐能与气态C3H6或表面活化CxHyOz快速反应。当硝酸盐被完全消耗后,C3H6吸附活化后形成的甲酸盐和乙酸盐在催化剂表面逐渐积累。但在In/Al催化剂上,随着气态C3H6的持续通入,吸附态硝酸盐仍稳定存在,几乎未被消耗减少,且未观察到深度氧化生成的甲酸盐,仅有少量乙酸盐吸附在表面。
在Cu-In/Al、Cu/Al和In/Al催化剂表面先进行C3H6的预吸附活化,然后再通入混合气体 (NO+O2) ,其原位红外结果如图7所示。在Cu-In/Al和Cu/Al催化剂表面,C3H6吸附活化后形成大量乙酸盐(1 587、1 580和1 459 cm−1)和甲酸盐(1 378 cm−1)。这说明C3H6在催化剂表面吸附,能被快速氧化活化生成CxHyOz类物质。另外,在Cu/Al催化剂上观察到明显的2 235 cm−1强峰。这个峰归属于L酸吸附的CO分子伸缩振动[54-55],表明了单独的CuOx位点会导致CxHyOz进一步氧化形成吸附的CO。这可能与其较低的NOx转化率相关。而在Cu-In/Al催化剂上2 235 cm−1处的峰较弱,可忽略,则表明掺杂In后,催化剂可抑制C3H6的过度氧化,更有利于C3H6活化形成乙酸盐或甲酸盐中间产物参与SCR反应。随着反应进一步进行,Cu基催化剂表面乙酸盐和甲酸盐逐渐被消耗,桥式硝酸盐(峰值为1 600 cm−1)和双齿硝酸盐(峰值为1 300和1 553 cm−1)出现并逐渐积累。这说明C3H6吸附活化后能与气态NO或吸附态硝酸盐反应。而对于In/Al催化剂 (图7(c)),C3H6在催化剂表面催化活化后,难以与气态NO反应,即使催化剂表面开始有硝酸盐形成,吸附态CxHyOz仍未减少。这表明2种吸附物质之间没有相互反应。这也是导致In/Al催化剂在350 ℃低温条件下C3H6-SCR性能差的主要原因。
为进一步确认催化剂表面的C3H6-SCR反应路径,同时通入C3H6、NO和O2时的原位红外谱图如图8所示。在Cu-In/Al、Cu/Al和In/Al表面观察到桥式硝酸盐(峰值为1 600 cm−1)、双齿硝酸盐(峰值为1 300、1 550、1 555和1 568 cm−1)、硝基化合物(峰值为1 392 cm−1)、乙酸盐(峰值为1 587和1 459 cm−1)和甲酸盐(峰值为1 378 cm−1)等物质快速形成。结合图6和图7瞬态反应结果,C3H6和NO在催化剂表面会先形成吸附态中间产物,然后才能参与SCR反应,符合Langmuir-Hinshelwood (L-H)反应机制。在Cu-In/Al和Cu/Al催化剂上,吸附态硝酸盐仅存在于低温条件下,而In/Al催化剂上吸附态硝酸盐结合更强,这与NO-TPD结果一致。在350 ℃时,Cu-In/Al和Cu/Al表面上硝酸盐更活跃,更易于与吸附态CxHyOz反应,进而促进了SCR的低温活性。
-
NO+O2-TPD结果表明掺杂In提高了Cu-In/Al催化剂对亚硝酸盐的吸附量,但原位红外光谱中并未观察到明显的亚硝酸盐特征峰。这主要是由于在350 ℃时,亚硝酸盐已被氧化为硝酸盐。C3H6-SCR反应机理和原位实验结果表明,CuOx是Cu/Al和Cu-In/Al主要的活性位点,而L-H反应路径需要C3H6和NO同时在催化剂表面吸附活化。在350 ℃时,掺杂In对CuOx位点的NOx吸附及反应影响不大,NOx吸附性能的提高可能并不是In促进催化剂低温活性提升的主要原因。而In可能主要影响催化剂表面C3H6活化转化为中间产物甲/乙酸盐的过程。为了证明这一假设并深入探究In对C3H6-SCR过程的促进作用,采用了程序升温C3H6氧化与原位红外相结合的方法开展进一步研究。图9为混合气体 (1 000×10−6C3H6+2%O2+N2) 条件下,Cu-In/Al、Cu/Al和In/Al表面的程序升温原位红外光谱。在3种催化剂表面,C3H6在低温条件下能迅速活化氧化形成丙烯酸酯(峰值为1 643 cm−1)。随着温度的升高,丙烯酸酯开始减少,出现了更稳定的乙酸盐(峰值为1 459和1 587 cm−1)和甲酸盐(峰值为1 378 cm−1),并在400 ℃下仍稳定存在。相比于In/Al催化剂,Cu基催化剂能大量形成具有更高氧化态碳的甲酸盐,这与瞬态原位红外结果一致。在Cu-In/Al催化剂上,乙酸盐和甲酸盐的出现温度更低(图10)。这表明掺杂In后,Cu-In/Al催化剂更容易将气态C3H6氧化转化为乙酸盐和甲酸盐,从而有利于其作为吸附态中间产物参与C3H6-SCR反应。这与Cu-In/Al催化剂氧化还原性能较强有关。
综上所述,In掺杂改变了Cu-In/Al催化剂表面Cu2+的分布,提高了催化剂表面高度分散的Cu2+比例,进而导致催化剂的氧化还原性能增强,并通过C3H6实现更快速地活化氧化,在低温下即实现C3H6-SCR快速反应。通过揭示甲/乙酸盐的快速形成对C3H6-SCR低温活性提升的促进机制,强调了C3H6快速吸附活化是促进C3H6-SCR低温活性的关键步骤,可为新型低温催化剂的设计和开发提供参考。
-
1)同时负载Cu、In的催化剂表现出较好的C3H6-SCR活性,并在350 ℃达到最佳NOx和C3H6转化率。这主要是由于添加In使得Cu/Al催化剂的Cu2+和表面活性氧比例提高,从而增强其氧化还原性能和NOx吸附性能。
2)在Cu-In/Al催化剂上,C3H6能被快速活化形成乙酸盐和甲酸盐,且积累形成大量硝酸盐。两类吸附态中间产物的快速反应可能是C3H6-SCR反应活性提高的原因。
3) In掺杂可调控C3H6活化速率。Cu-In/Al催化剂的低温活性潜能与C3H6快速活化有关。C3H6活化机制是调控C3H6-SCR低温活性的一种有效方法。
铟掺杂促进铜铝催化剂低温C3H6-SCR反应的机理
Reaction mechanism of enhanced activity for C3H6-SCR at low temperature by indium-doped on CuO/Al2O3 catalyst
-
摘要: CuO/Al2O3催化剂为低温SCR催化剂,在其表面添加In组分,并用于丙烯选择性催化还原(C3H6-SCR)氮氧化物(NOx)的研究。结果表明,负载CuIn的催化剂表现出最好的反应活性,在350 °C时NOx转化率可达到62%。XPS表征结果显示,同时负载In改变了Cu的化合价态和表面氧的分布,提高了催化剂表面Cu2+和化学吸附氧的比例。H2-TPR和NO+O2-TPD结果表明,同时负载CuIn能提高催化剂氧化还原性,也促进了NOx的吸附,催化剂表面生成大量的亚硝酸盐/硝酸盐。反应机理研究表明,C3H6-SCR过程沿着L-H反应路径进行,同时负载CuIn能促进C3H6的快速氧化,并有助于催化剂表面甲酸盐和乙酸盐的形成。因此,Cu2+和化学吸附氧比例的提高,会增强催化剂的氧化还原性能,从而加速甲/乙酸盐的形成,这可能是促进C3H6-SCR低温活性得以提高的主要原因。本研究可为应用于柴油车尾气控制技术的低温SCR催化剂开发提供参考。Abstract: CuO/Al2O3 catalyst was a low-temperature SCR catalyst. In this paper, In was added to the surface of CuO/Al2O3 catalyst and used for selective catalytic reduction of nitrogen oxides (NOx) by propylene (C3H6-SCR). The results showed that the catalyst supported with CuIn exhibited the best activity, with NOx conversion up to 62% at 350 °C. XPS characterization results showed that the loading of In changed the valence state of Cu and the distribution of oxygen on the surface, and increased the ratio of Cu2+ and chemisorbed oxygen on the catalyst surface. The results of H2-TPR and NO+O2-TPD showed that loading CuIn could improve the reducibility of the catalyst and promote the adsorption of NOx, and a large number of nitrite/nitrate species were formed on the catalyst surface. Studies of reaction mechanism showed that C3H6-SCR process followed L-H reaction mechanism. Doping CuIn promoted the rapid oxidation of C3H6 and contributed to the formation of formate and acetate on the catalyst surface. Therefore, the increase of the ratio of Cu2+ and chemisorbed oxygen would enhance redox performance of the catalyst and accelerate the rapid formation of formate/acetate, which might be the main reasons for the improvement of activity of C3H6-SCR in low temperature range. This study can provide reference for the development of low temperature SCR catalyst applied in diesel vehicle exhaust control technology.
-
Key words:
- copper-based catalyst /
- selective catalytic reduction /
- C3H6 /
- NOx /
- Al2O3
-
随着人类健康越来越受到人们的重视,农用地土壤安全性问题已然成为亟待解决的关键问题之一。土壤重金属因其难降解性、易移动且具毒性的特性[1-2],直接或者间接通过土壤、动物以及植物循环到人类身体内,给广大居民的生命安全造成威胁。除大气和水体外,土壤是重金属汇集的另一个重要场所[3],土壤累积重金属达到阀值或国家给定的标准后,不仅会影响土壤的组成成分、结构以及理化性质,而且会极大地威胁到人类赖以生存的环境,并最终造成土壤重金属污染。农用地土壤污染是多要素、多尺度、多过程相互影响的结果,镉、汞、铅、砷、铬、铜、镍和锌是土壤重金属污染中最常见的8类元素。近几年,土壤中重金属的累积状况以及由此带来的生态风险,成为土壤环境研究领域的一个热点问题[4]。
在进行污染程度评价时,多数研究利用单因子指数[5]、内梅罗综合污染指数法[6-7]、地累积指数法[8-9]等方法对污染程度进行评价,在此基础上,本研究利用最新的土壤环境质量评价标准对土壤污染程度进行评价。许多的研究集中于时间或者空间上的土壤重金属含量变化,少数研究将时空叠加进行动态土壤污染状况分析,如对土壤重金属含量进行空间预测[10-12]、在时间序列下土壤重金属浓度的变化[13-14]、污染源解析[15-16]等,这些研究在一定程度上可以反映污染现状以及污染趋势。由于土壤重金属有很强的迁移性和聚集性,空间分布大多是由历史和现在的人为活动造成的,因此,在目前土壤环境问题日趋严峻的形势下,土壤环境的保护和治理迫切需要准确掌握区域土壤重金属含量的时空变化信息,将历史数据和现今数据进行比对,分析出土壤重金属污染是属于加强型、减弱型还是保持不变型,这对土壤重金属污染解析以及今后在管理控制方面均有很大的帮助。同时,土壤重金属含量是评价土壤环境质量的重要因素,掌握土壤重金属的空间分布以及变化趋势对评价土壤环境质量类别具有重要的理论和实际意义。
本研究描述了2008年和2018年研究区内土壤中8类重金属浓度的空间格局和时间变化,初步反应耒水流域土壤重金属含量分布状况;采用不同的方法评价2期土壤重金属的污染程度,从而阐明2个时间段研究区内重金属污染情况;叠加分析2期数据的时空变异情况,重点分析出研究区污染加强位置,为今后土壤污染治理以及管控提供参考。
1. 材料与方法
1.1 研究区概况
耒水流域位于湖南省的东南部,同时也位于湘江流域的东南部,地理坐标为112°38′~113°26′E,25°28′~26°21′N,流经永兴县、资兴市、苏仙区、北湖区、桂阳县和耒阳市6个行政区。湘江流域(郴州)内支流众多,由于研究尺度的原因,本研究选取西河和部分耒水流域(东江镇至塘门口镇)作为本次研究的研究区。西河为湘江的2级支流,被苏仙区人民亲切的称之为“母亲河”。其发源于北湖石鼓山,止于永兴塘市,全长136 km(都在郴州市境内),流域面积2 037 km2(郴州市境内1 618 km2)[17];耒水为湘江的一级支流,发源于湖南省桂东县烟竹堡,于衡阳市珠晖区汇入湘江。西河是耒水中重要的支流之一,耒水干流全长453 km,河道平均坡降0.077%,流域面积11 783 km2,其河道特点是坡降大,多局部弯曲,总体属于山溪性河流[18]。研究区内矿产资源丰富,其中有色金属矿包括铅、锌、铜、锡、钼、铋、锑、钨、镁等,黑色金属包括铁、锰等。西河和耒水沿河企业分布众多,主要为黑色有色金属冶炼和延压业、黑色有色金属矿采选业以及化学原料和化学制品业(图1)。第一产业的大力推进不仅为经济发展做了贡献,也推动了当地民生的发展,但排放的工业“三废”也进入土壤,使土壤环境质量发生恶化。本研究主要以研究区内西河和耒水2条河流为线索,进而比对2期土壤重金属数据的变化。
1.2 采样及测定方法
现场确定采样点位后,以确定点位为中心划定采样区域,采样范围一般为20 m×20 m;当地形地貌及土壤利用方式复杂,样点代表性差时,则扩大至100 m×100 m。以确定点位为中心,此次采样采用双对角线5点采样法,5点采样量基本一致,采样量总计不少于2 500 g,每个采样点均为土壤混合样,2008年和2018年采样点分别为157个和121个。农用地土壤的采样深度一般为0~20 cm,工矿用地以及城镇周围土壤采集深度为0~60 cm,果园林地类土壤样品采集深度也为0~60 cm。2008年和2018年2期采样点空间分布如图2所示。
所有样品均在室温下风干,去杂,研磨,然后过100目尼龙筛(孔径约0.149 mm),处理后的样品要及时放入冷藏箱,在4 ℃以下避光保存,最后封存测试。所有用来盛放样品或反应物的容器都要用4 mol·L−1的HNO3浸泡过夜,然后用超声波双频清洗机进行清洗,最后用去离子水反复清洗。所用药品全部为分析纯。本次土壤样品的测定指标为Cd、Hg、As、Pb、Cr、Cu、Ni、Zn 8类重金属全量含量。按照GB 15618-2018标准中推荐的方法[19]测定Hg和As重金属的全量含量,依据HJ 766-2015标准中推荐的方法[20]测定Cd、Pb、Ni、Cu、Zn和Cr重金属全量。
表层土壤样品测定指标包括8类重金属元素的全量含量。Hg和As元素利用原子荧光光谱法(atomic fluorescence spectrometry,AFS)进行测定,检出限分别为0.002 mg·kg−1和0.01 mg·kg−1;Cd、Pb、Ni和Cu分析元素利用电感耦合等离子体质谱法(inductively coupled plasma-mass spectrometry,ICP-MS)进行测定[21],检出限分别为0.03、2.0、0.6和0.3 mg·kg−1;Zn和Cr分析元素利用电感耦合等离子体原子发射光谱法(inductively coupled plasma atomic emission spectrometer,ICP-AES)进行测定,检出限分别为0.4 mg·kg−1和2.0 mg·kg−1;在测定过程中,每测定10个样品用重金属标准溶液进行标准曲线的校正,以保证仪器测定误差范围控制在2%以内。另外,样品分析所用试剂均为优级纯,在质量控制方面,分析测试时加入国家标准物质土壤样品GSS系列,测定结果均在误差允许范围内。属于同一批次的样品在测试时,分析元素需要满足回收率为90%~110%,均在国标标准[22]范围之内,然后进行样品测试。
1.3 研究方法
目前,应用广泛的土壤重金属污染评价方法主要有以下5种:单因子污染评价指数法;综合污染指数法(又称内梅罗综合污染指数法);地积累指数法[23];生态危害指数法[24];生态环境部国家市场监督管理总局最新发布的《土壤环境质量 农用地 土壤污染风险管控标准(试行)》(GB 15618-2018)中的评价方法。本研究选用单因子评价指数法、综合污染指数法以及土壤环境质量类别法来评价土壤污染程度。
单因子污染评价指数按式(1)计算。
Pi=CiSi (1) 式中:Pi为土壤中单项重金属i的污染指数;Ci为重金属i的实测值,mg·kg −1;Si为根据需要选取的重金属i评价标准,mg·kg −1,本研究选取湖南省土壤环境背景值为标准。将污染程度通常作如下划分[21]:Pi ≤1.00为非污染;1.00<Pi≤2.00为轻度污染;2.00<Pi≤3.00为中度污染;Pi>3.00为重度污染。
综合污染指数法(内梅罗综合污染指数法)按式(2)计算。
P=√(pi,max)2+(¯pi)22 (2) 式中:P为所有重金属元素的内梅罗综合污染指数;pi,max为单因子污染指数的最大值;
¯pi 为单因子污染指数的平均值。通常将污染程度作如下划分[25]:P≤0.70为安全;0.70<P≤1.00为警戒;1.00<P≤2.00为轻度污染;2.00<P≤3.00为中度污染;P>3.00为重度污染。依据《土壤环境质量农用地 土壤污染风险管控标准(试行)》(GB 15618-2018)中的筛选值Si和管制值Gi,基于表层土壤中Cd、Hg、As、Pb、Cr、Cu、Zn、Ni的含量Ci,评价农用地土壤污染的风险(本研究将此方法称为土壤环境质量类别评估法),Cd、Hg、As、Pb、Cr分为Ⅰ类、Ⅱ类和Ⅲ类,Cu、Zn、Ni分为Ⅰ类和Ⅱ类,土壤环境质量类别具体划分如下。
Ⅰ类:Ci ≤ Si,土壤污染风险低,可忽略,应划为优先保护类。
Ⅱ类:Si < Ci ≤ Gi,可能存在土壤污染风险,但风险可控,应划为安全利用类。
Ⅲ类:Ci > Gi,土壤存在较高污染风险,应划为严格管控类。
2. 结果与讨论
2.1 表层土壤重金属元素的统计分析
对2008年的157个历史点位数据和2018年最新采集的121个土壤样品进行重金属元素描述性统计分析,得出Cd、Hg、As、Pb、Cr、Cu、Ni、Zn等8类土壤重金属元素含量的最大值、最小值、平均值、标准偏差、峰态系数、偏度系数以及变异系数(见表1)。
表 1 2008年和2018年土壤重金属含量统计分析Table 1. Statistical analysis of soil heavy metals in 2008 and 2018采样年份 分析元素 最小值/(mg·kg−1) 最大值/(mg·kg−1) 平均值/(mg·kg−1) 标准偏差 峰态系数 偏度系数 变异系数% 湖南省土壤背景值/(mg·kg−1) 全国土壤背景值/(mg·kg−1) 2008 Cd 0.085 10.900 1.134 1.525 24.419 4.592 134.492 0.126 0.097 Hg 0.028 0.684 0.181 0.109 4.040 1.758 60.532 0.116 0.065 As 3.697 639.050 32.294 54.343 101.719 9.379 168.274 15.700 11.200 Pb 20.900 2 950.000 126.701 267.243 81.653 8.238 210.924 29.700 26.000 Cr 15.600 190.000 68.195 28.777 2.092 0.907 42.198 71.400 61.000 Cu 7.640 205.000 35.426 23.096 23.875 4.053 65.196 27.300 22.600 Zn 26.000 1 638.000 169.353 212.349 28.241 4.966 125.388 94.400 74.200 Ni 6.010 112.900 31.985 19.157 4.229 1.822 59.894 31.900 26.900 2018 Cd 0.174 19.780 1.581 2.469 29.156 4.920 156.157 0.126 0.097 Hg 0.059 0.741 0.158 0.107 9.199 2.622 67.684 0.116 0.065 As 5.175 146.157 33.900 28.052 6.664 2.445 82.751 15.700 11.200 Pb 19.100 2 794.000 165.054 331.829 39.141 5.853 201.043 29.700 26.000 Cr 26.000 156.000 70.780 20.777 2.431 1.067 29.354 71.400 61.000 Cu 12.000 323.000 40.666 34.676 40.856 5.781 85.271 27.300 22.600 Zn 41.000 2 801.000 227.016 347.409 32.226 5.319 153.033 94.400 74.200 Ni 8.115 117.400 32.395 15.886 6.316 1.900 49.040 31.900 26.900 湖南省Cd、Hg、As、Pb、Cr、Cu、Ni、Zn 8类土壤重金属元素的土壤环境背景值[26]均超过了国家土壤环境背景值[27]。除Cr外(Cr的含量平均数超过了湖南省土壤环境背景值但未超过国家土壤环境背景值),2期8类土壤重金属元素的含量平均数均超过了湖南省土壤环境背景值和国家土壤环境背景值:2008年8类土壤重金属元素的含量平均数分别是湖南省土壤环境背景值的9.00、1.56、2.06、4.27、0.96、1.30、1.79、1.00倍,是全国土壤背景值的11.69、2.78、2.88、4.87、1.12、1.57、2.28、1.19倍;2018年8类土壤重金属元素的含量平均数分别是湖南省土壤环境背景值的12.55、1.36、2.16、5.56、0.99、1.49、2.40、1.02倍,是国家土壤环境背景值的16.30、2.44、3.03、6.35、1.16、1.80、3.06、1.20倍,这说明表层土壤整体表现为以Cd和Pb为主的土壤重金属聚集。当土壤重金属元素的变异系数小于20%时,被定义为低变异度;变异系数为21%~50%,被定义为中变异度;变异系数为51%~100%,被定义为高变异度;变异系数高于100%时,被定义为极高变异度[28]。2008年,仅Cr为中度变异,Hg、Cu和Ni为高度变异,Cd、As、Pb和Zn为极高变异度,2018年,Cr和Ni属于中变异度,Hg、As和Cu属于高变异度,Cd、Pb和Zn属于极高变异度;2期变异系数比对说明,研究区8类土壤重金属含量值变化幅度较大,连续性较弱,空间变异性较大,Cd和Pb受外界因子影响较为明显。
2.2 表层土壤环境质量初步评价
由2期表层土壤重金属单因子指数(图3及表2)可知,2008年和2018年的单因子指数Pi平均值按大小排序为Cd> Pb > As >Zn > Hg > Cu > Ni >Cr和Cd> Pb > Zn >As> Cu >Hg> Ni >Cr。2期数据排前2位的均为Cd和Pb,排最后2位的均为Ni和Cr;2期数据Cd的重度污染点位均超过80%,Cr和Ni的非污染点位均超过60%。根据单因子指数平均值做出下列分级:2008年,Cd和Pb属于重度污染,As属于中度污染,Hg、Cu、Zn和Ni属于轻度污染,Cr属于非污染;2018年,Cd和Pb属于重度污染且Cd无非污染点位,As和Zn属于中度污染,Hg、Cu和Ni属于轻度污染,仅Cr属于非污染。由单因子指数法对2期数据比对可知,Cd和Pb在2008—2018年一直处于重度污染状态,且重度污染占比有所上升;Cr一直处于非污染状态,各部分比例总体上保持不变,说明Cr基本无外源输入;Zn由原来的轻度污染状态转变为中度污染状态,说明Zn可能受到了外界的影响,导致超标点位增加;其余元素的等级均未发生变化,超标点位略有波动,总体上保持稳定。
表 2 研究区土壤重金属单因子指数统计Table 2. Statistics of single factor index of heavy metals in soil of survey region采样年份 分析元素 不同评价结果所占比例/% 非污染 轻度污染 中度污染 重度污染 2008 Cd 1.27 5.10 7.64 85.99 Hg 28.66 50.32 14.01 7.01 As 29.94 38.85 21.02 10.19 Pb 4.46 35.67 24.84 35.03 Cr 63.69 34.39 1.91 0.00 Cu 38.22 54.14 4.46 3.18 Zn 30.57 50.96 9.55 8.92 Ni 61.15 31.21 5.73 1.91 2018 Cd 0.00 2.48 6.61 90.91 Hg 44.63 40.50 8.26 6.61 As 21.49 37.19 23.14 18.18 Pb 0.83 28.93 20.66 49.59 Cr 61.16 38.02 0.83 0.00 Cu 23.97 66.12 5.79 4.13 Zn 20.66 47.11 17.36 14.88 Ni 60.33 34.71 4.13 0.83 由研究区内梅罗综合污染指数评价结果(表3)可知,2008年,内梅罗综合污染指数大于3和介于1~2的样本数量最多,分别为324个和691个,说明2008年研究区污染状况总体呈轻度污染;2018年,内梅罗综合污染指数同样是大于3和介于1~2的样本数量最多,分别为248个和526个,表明研究区整体仍处于轻度污染。经过2期数据比对可知,研究区内全部采样点综合指数均超过了安全值,2008—2018年,警戒和轻度污染比例略有下降,中度污染比例明显增加,这进一步说明研究区有增强污染的趋势。
表 3 土壤重金属的内梅罗综合污染指数评价结果Table 3. Assessment of soil heavy metal pollution based on Nemerow comprehensive index年份 安全 警戒 轻度污染 中度污染 重度污染 2008 0 16.56 55.02 2.63 25.80 2018 0 15.08 54.34 4.96 25.62 以Cd、Hg、As、Pb、Cr、Cu、Ni、Zn为基础,对研究区2期表层土壤点位评判结果进行统计分析(表4)。从总体上看,2008年,除Cd以外,Hg、As、Pb、Cr、Cu、Ni、Zn优先保护类占比最大,均大于60%;仅Cd、As、Pb元素存在严格管控类,Cd严格管控类占9.55%,安全利用类占78.34%,As严格管控类占1.27%,Pb严格管控类占1.91%。2018年,除Cd和Pb外,Hg、As、Cr、Cu、Ni、Zn优先保护类占比最大,优先保护类点位均超过60%,存在严格管控类点位分别为Cd、As、Pb,其中Cd严格管控类占13.22%,安全利用类占82.64%,As严格管控类占2.48%,Pb严格管控类占3.31%。2018年较2008年,环境质量类别数据评价结果Cd、As、Pb严格管控类点位比例均变大,这与单因子指数评价的结果相吻合,出现变化较大的是Zn。2008年,Zn的安全利用类占比15.92%,2018年Zn的安全利用类占比97.54%,安全利用类比例变化幅度为81.62%,在单因子指数评价中,Zn非污染占比降低,污染占比升高,与环境质量类别法评价结果相一致,说明研究区土壤中存在Cd、As、Pb污染,也存在Zn污染趋势。
表 4 土壤重金属环境质量类别评价结果Table 4. Assessment results of soil heavy metal based on environmental quality categories采样年份 分析元素 质量类别 优先保护类 安全利用类 严格管控类 采样数量/个 比例% 采样数量/个 比例% 采样数量/个 比例% 2008 Cd 19 12.10 123 78.34 15 9.55 Hg 157 100.00 0 0 0 0 As 98 62.42 57 36.31 2 1.27 Pb 106 67.52 48 30.57 3 1.91 Cr 155 98.73 2 1.27 0 0 Cu 145 92.36 12 7.64 — — Zn 132 84.08 25 15.92 — — Ni 148 94.27 9 5.73 — — 2018 Cd 5 4.13 100 82.64 16 13.22 Hg 121 100.00 0 0 0 0 As 78 64.46 40 33.06 3 2.48 Pb 73 60.33 44 36.36 4 3.31 Cr 121 100.00 0 0 0 0 Cu 115 95.04 6 4.96 — — Zn 3 2.46 119 97.54 — — Ni 121 100.00 0 0 — — 2.3 表层土壤重金属时空变异解析
对2期数据进行空间插值得出表层土壤重金属的空间分布图(图4)。克里金插值法(Kriging)和反距离加权插值法(IDW)是2种常用插值方法。与克里金插值法不同的是,IDW不需要数据遵循正态分布[29]。IDW是一种相对简单和广泛使用的方法,它不需要基于对数据统计分布的任何假设[30]。REIMANN等[31]研究表明,不太依赖统计假设的技术应该是首选。因此,我们使用IDW来绘制研究区内土壤重金属的空间分布图。2期数据的污染分布格局基本一致,因此,本研究只将2018年的土壤重金属空间分布图列出。从整体上看,Cd和As,Hg和Pb,Cu和Zn,Cr和Ni两两空间分布格局相似。Cd和As高值区主要集中于研究区的西南部和东北部,即西河中上游地区和耒水下游以及2河交汇处,污染程度较轻的主要分布与西河上游的源头区、西河中下游以及耒水中部;Hg和Pb高值区主要分布于西河中上游地区、北湖区的西部和苏仙区的东北部;Cu和Zn除西河中上游地区有部分高值区,其余地区污染均不显著;Cr和Ni污染分布格局基本一致,西河中上游和中游地区零星地分布着几块高值区,其余地区均为非污染状态。高值区主要是由于这些区域分布了大量的重工业企业(见图1),其排放的“三废”通过大气沉降、污水倾倒以及固体废物的堆积等方式使得重金属进入土壤,造成土壤重金属超标,从而影响土壤环境质量。
空间插值可以整体反映土壤重金属含量的分布情况,而空间地图几何分析可以将2期空间插值结果进行叠加分析,本研究利用这种方法将研究区2008年和2018年反距离空间插值结果进行对比,从而分析出土壤重金属污染变化状况;利用空间地图几何分析法得出2008—2018年研究区土壤重金属的含量的时空变异图(图5)。可以看出,8类表层土壤重金属在3个高值区(西河中上游地区、耒水上游地区和耒水下游地区)均为污染增强型,说明2008—2018年3个工业聚集区土壤的污染程度进一步增加。按8类土壤重金属含量的增幅排序,结果为Pb(25.47%)>Hg(22.08%)>Ni(16.05%)>Zn(11.83%)>Cu(5.75%)>Cr(5.23%)>Cd (4.53%)>As(3.71%),重金属元素含量都存在增强的趋势,其中Pb的增幅最大,Hg次之,说明这10年间Pb和Hg在土壤中累积较为严重,研究区内以冶炼和矿物开采企业为主,矿物开采也能引起Pb、Cd和Zn在土壤中富集[32],工业区会以Cd和Pb累积为主[33],进而形成以Pb等元素为主导的污染分布。按8类土壤重金属含量面积增加的百分比排序,结果为Zn> Pb> Cu>As>Cr>Ni>Cd>Hg,其中Zn、Cu和Hg含量增加区主要位于西河上游、西河下游和耒水下游;Pb和As增长区主要位于西河中上游以及耒水西部;Cr的增加区较为分散,主要集中于西河的上中游和耒水中游的东部地区;Ni主要分布于西河和耒水东部区域;Cd主要集中于耒水下游和西河中上游区域。
3. 结论
1)研究区整体存在土壤重金属污染,研究区内除Cr外,其余7类表层土壤重金属元素均存在点位超标的情况,含量均值都超过湖南省土壤环境背景值和国家土壤环境背景值的1倍以上,其中Cd超标最严重,超过了国家土壤环境背景值10倍以上;2期数据中Cd、Pb、Zn的变异系数均大于100%,说明这3种元素受外界因素影响很大,企业影响概率较大。
2)从整体来看,有企业分布的土壤环境质量大幅下降。从单因子评价指数角度出发,除Cr外,Cd、Hg、As、Pb、Cu、Ni、Zn 7类元素均在不同程度上表现出一定的污染性,其中Cd、As、Pb尤为突出;从内梅罗综合污染指数角度出发,研究区内全部采样点综合指数均超过了安全值,中度污染比例明显增加,研究区有增强污染的趋势;从环境质量类别法角度出发,2008—2018年均只有Cd、As、Pb有严格管控类点位且点位占比均增大,其中Cd严格管控类点位占比最大,这3种元素污染程度均较高。
3) 2期数据的污染分布格局基本一致,从整体上看,Cd和As,Hg和Pb,Cu和Zn,Cr和Ni两两空间分布格局具有相似性,单个元素之间存在差异性;2期数据的空间地图几何分析表明,在企业分布密度较大的3个高值区内,Pb和Hg在10年内聚集明显,Pb污染面积进一步增大,Hg污染分布格局基本保持不变。为防止污染面积扩大,建议相关部门应引起足够重视;重金属含量是土壤环境质量评价中的一个重要指标,对土壤环境质量评价的主要目的是减弱重金属对生态以及人体的危害,因此,在进行土壤重金属污染评价时,应考虑更多的贡献因素,以准确评价土壤环境质量。
-
表 1 Cu-In/Al、Cu/Al和In/Al催化剂的NOx吸附量
Table 1. The NOx adsorption capacity of Cu-In/Al, Cu/Al and In/Al catalysts
催化剂 NO吸附量/(μmol·g−1) NO2吸附量/(μmol·g−1) NOx吸附量/(μmol·g−1) Cu-In/Al 274.00 441.52 715.52 Cu/Al 86.74 528.61 615.35 In/Al 108.59 336.88 445.47 -
[1] IWAMOTO M, ZENYO T, HERNANDEZ A M, et al. Intermediate addition of reductant between an oxidation and a reduction catalyst for highly selective reduction of NO in excess oxygen[J]. Applied Catalysis B:Environmental, 1998, 17: 259-266. doi: 10.1016/S0926-3373(98)00018-6 [2] CHANG H Z, QIN X, MA L, et al. Cu/SAPO-34 prepared by a facile ball milling method for enhanced catalytic performance in the selective catalytic reduction of NOx with NH3[J]. Physical Chemistry Chemical Physics, 2019, 21(39): 22113-22120. doi: 10.1039/C9CP04519H [3] 荆国华, 李俊华, 杨栋, 等. 固体超强酸和金属氧化物类催化剂上CH4-SCR还原NOx研究进展[J]. 环境工程学报, 2010, 4(7): 1441-1447. [4] HALPOTO A, KASHIF M, Su Y X, et al. Preparations and characterization on Fe based catalyst supported on coconut shell activated carbon CS(AC) and SCR of NOx-HC[J]. Catalysis Surveys from Asia, 2020, 24(2): 123-133. doi: 10.1007/s10563-020-09293-6 [5] ZHAO L, ZHANG Y, BI S N, et al. Metal-organic framework-derived CeO2–ZnO catalysts for C3H6-SCR of NO: an in situ DRIFTS study[J]. RSC Advances, 2019, 9(33): 19236-19242. doi: 10.1039/C9RA03103K [6] PAN H, GUO Y H, Bi H T. NOx adsorption and reduction with C3H6 over Fe/zeolite catalysts: effect of catalyst support[J]. Chemical Engineering Journal, 2015, 280: 66-73. doi: 10.1016/j.cej.2015.05.093 [7] YANG W, ZHANG R D, CHEN B H, et al. New aspects on the mechanism of C3H6 selective catalytic reduction of NO in the presence of O2 over LaFe1-x(Cu, Pd)xO3-delta perovskites[J]. Environmental Science & Technology, 2012, 46(20): 11280-11288. [8] 林睿, 苏亚欣, 程江浩, 等. Fe/Ga2O3-Al2O3催化甲烷还原NO的性能[J]. 环境工程学报, 2020, 14(6): 1592-1604. doi: 10.12030/j.cjee.201908001 [9] ADAMOWSKA-TEYSSIER M, KRZTOŃ A, COSTA P D, et al. SCR NOx mechanistic study with a mixture of hydrocarbons representative of the exhaust gas from coal combustion over Rh/Ce0.62Zr0.38O2 catalyst[J]. Fuel, 2015, 150: 21-28. doi: 10.1016/j.fuel.2015.01.017 [10] WU Q, YU Y B, HE H. Mechanistic study of selective catalytic reduction of NOx with C2H5OH and CH3OCH3 over Ag/Al2O3 by in situ DRIFTS[J]. Chinese Journal of Catalysis, 2006, 27(11): 993-997. doi: 10.1016/S1872-2067(06)60052-1 [11] CAMPA M C, PIETROGIACOMI D, SCARFIELLO C, el al. CoOx and FeOx supported on ZrO2 for the simultaneous abatement of NOx and N2O with C3H6 in the presence of O2[J]. Applied Catalysis B:Environmental, 2019, 240: 367-372. doi: 10.1016/j.apcatb.2017.04.041 [12] 周皞, 苏亚欣, 邓文义, 等. 金属氧化物类催化剂上HC-SCR研究进展[J]. 环境科学与技术, 2016, 39(1): 93-100. [13] BURCH R, BREEN J P, MEUNIER F C. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts[J]. Applied Catalysis B:Environmental, 2002, 39: 283-303. doi: 10.1016/S0926-3373(02)00118-2 [14] LIU Z M, LI J H, HAO J M. Selective catalytic reduction of NOx with propene over SnO2/Al2O3 catalyst[J]. Chemical Engineering Journal, 2010, 165(2): 420-425. doi: 10.1016/j.cej.2010.09.009 [15] LIU Y Q, LAI Q, SUN Y, el al. SnO2/Al2O3 catalysts for selective reduction of NOx by propylene: on the promotional effects of plasma treatment in air atmosphere[J]. Catalysis Today, 2019, 337: 171-181. doi: 10.1016/j.cattod.2019.04.013 [16] PERDIGON-MELON J A, GERVASINI A, AUROUX A. Study of the influence of the In2O3 loading on γ-alumina for the development of de-NOx catalysts[J]. Journal of Catalysis, 2005, 234(2): 421-430. doi: 10.1016/j.jcat.2005.07.001 [17] LIU Z M, HAO J M, FU L X, el al. Activity enhancement of bimetallic Co-In/Al2O3 catalyst for the selective reduction of NO by propene[J]. Applied Catalysis B:Environmental, 2004, 48(1): 37-48. doi: 10.1016/j.apcatb.2003.09.005 [18] HE C H, PAULUS M, CHU W, et al. Selective catalytic reduction of NO by C3H8 over CoOx/Al2O3: An investigation of structure–activity relationships[J]. Catalysis Today, 2008, 131(1/2/3/4): 305-313. [19] CARLO G D, LIOTTA L F, PANTALEO G, et al. Alumina and alumina-baria supported cobalt catalysts for deNOx: Influence of the support and cobalt content on the catalytic performance[J]. Topics in Catalysis, 2009, 52(13/14/15/16/17/18/19/20): 1826-1831. [20] 王琪莹, 刘自力, 邹汉波, 等. 焙烧温度对层柱粘土催化剂Cu/Ti-PILCs催化丙烯还原NO反应的影响[J]. 环境工程学报, 2015, 9(11): 5527-5530. doi: 10.12030/j.cjee.20151163 [21] AMIN N A S, TAN E F, MANAN Z A. SCR of NOx by C3H6: Comparison between Cu/Cr/CeO2 and Cu/Ag/CeO2 catalysts[J]. Journal of Catalysis, 2004, 222(1): 100-106. doi: 10.1016/j.jcat.2003.10.005 [22] ZHOU H, GE M Y, WU S G, et al. Iron based monolithic catalysts supported on Al2O3, SiO2, and TiO2: A comparison for NO reduction with propane[J]. Fuel, 2018, 220: 330-338. doi: 10.1016/j.fuel.2018.01.077 [23] 袁旻昊, 钱文燕, 邓文义, 等. 铁修饰铝柱撑黏土催化剂(Fe/Al-PILC)的制备及其对C3H6-SCR活性的影响[J]. 环境工程学报, 2020, 14(4): 1022-1032. doi: 10.12030/j.cjee.201911027 [24] ROY S, VISWANATH B, HEGDE M S, et al. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe, Co, Cu)[J]. Journal of Physical Chemistry C, 2008, 112: 6002-6012. doi: 10.1021/jp7117086 [25] ZHANG R D, TEOH W Y, AMAL R, et al. Catalytic reduction of NO by CO over Cu/CexZr1−xO2 prepared by flame synt hesis[J]. Journal of Catalysis, 2010, 272(2): 210-219. doi: 10.1016/j.jcat.2010.04.001 [26] KUMAR P A, REDDY M P, JU L K, et al. Low temperature propylene SCR of NO by copper alumina catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2008, 291(1/2): 66-74. [27] Liu J, Zhao Q D, LI X Y, et al. Structure sensitivity of selective catalytic reduction of NO with propylene over Cu-doped Ti0.5Zr0.5O2-catalysts[J]. Applied Catalysis B:Environmental, 2015, 165: 519-528. doi: 10.1016/j.apcatb.2014.10.038 [28] LU G, LI X Y, QU Z P, et al. Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene[J]. Chemical Engineering Journal, 2011, 168(3): 1128-1133. doi: 10.1016/j.cej.2011.01.095 [29] VALVERD J L, DELUCAS A, SÁNCHEZ P, et al. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene[J]. Applied Catalysis B:Environmental, 2003, 43(1): 43-56. doi: 10.1016/S0926-3373(02)00274-6 [30] VALVERDE J L, DELUCAS A, DORADO F, et al. Study by in situ FTIR of the SCR of NO by propene on Cu2+ ion-exchanged Ti-PILC[J]. Journal of Molecular Catalysis A:Chemical, 2005, 230(1/2): 23-28. [31] DORADO F, ROMERO R, CRUZ J, et al. Selective catalytic reduction of NO by propene in the presence of oxygen and water over catalysts prepared by the modified sol–gel method[J]. Catalysis Communications 2007, 8(4): 736-740. [32] SHIMIZU K, KAWABATA H, MAESHIMA H, et al. Intermediates in the selective reduction of NO by propene over Cu-Al2O3 catalysts: Transient in-Situ FTIR study[J]. Journal of Physical Chemistry B, 2000, 104: 2885-2893. doi: 10.1021/jp9930705 [33] YADAV D, KAVAIYA A R, MOHAN D, et al. Low temperature selective catalytic reduction (SCR) of NOx emissions by Mn-doped Cu/Al2O3 catalysts[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2017, 12(3): 415-429. [34] PANAHI P N, SALARI D, NIAEI A, et al. NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1793-1799. doi: 10.1016/j.jiec.2013.02.022 [35] SADEGHINIA M, REZAEI M, KHARAT A N, et al. Effect of In2O3 on the structural properties and catalytic performance of the CuO/ZnO/Al2O3 catalyst in CO2 and CO hydrogenation to methanol[J]. Molecular Catalysis, 2020, 484: 110776. doi: 10.1016/j.mcat.2020.110776 [36] MA L, SEO C Y, CHEN X Y, et al. Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust[J]. Applied Catalysis B:Environmental, 2018, 222: 44-58. doi: 10.1016/j.apcatb.2017.10.001 [37] BERSANI D, LOTTICI P P, RANGEL G, et al. Micro-Raman study of indium doped zirconia obtained by sol–gel[J]. Journal of Non-Crystalline Solids, 2004, 345-346: 116-119. doi: 10.1016/j.jnoncrysol.2004.08.006 [38] SHENDE A G, GHUGAL S G, VIDYASAGAR D, et al. Magnetically separable indium doped ZnS NiFe2O4 heterostructure photocatalyst for mineralization of acid violet 7 dye[J]. Materials Chemistry and Physics, 2019, 221: 483-492. doi: 10.1016/j.matchemphys.2018.09.032 [39] LI J H, HAO J M, CUI X Y, et al. Influence of preparation methods of In2O3/Al2O3 catalyst on selective catalytic reduction of NO by propene in the presence of oxygen[J]. Catalysis Letters, 2005, 103(1/2): 75-82. [40] LI J H, HAO J M, FU L X, et al. Cooperation of Pt/Al2O3 and In/Al2O3 catalysts for NO reduction by propene in lean burn condition[J]. Applied Catalysis A:General, 2004, 265(1): 43-52. doi: 10.1016/j.apcata.2004.01.001 [41] HU S Y, XIAO W, YANG W W, et al. Molecular O2 activation over Cu(I)-mediated C identical with N bond for low-temperature CO oxidation[J]. ACS Applied Materials & Interfaces, 2018, 10(20): 17167-17174. [42] LUO Z, CETEGEN S A, MIAO R, et al. Structure–property relationships of copper modified mesoporous TiO2 materials on alkyne homocoupling reactions[J]. Journal of Catalysis, 2016, 338: 94-103. doi: 10.1016/j.jcat.2016.03.009 [43] FANG Y R, LI L, YANG J, et al. Engineering the nucleophilic active oxygen species in CuTiOx for efficient low-temperature propene combustion[J]. Environment Science & Technology, 2020, 54(23): 15476-15488. [44] CHANG H Z, LI M G, LI Z G, et al. Design strategies of surface basicity for NO oxidation over a novel Sn–Co–O catalyst in the presence of H2O[J]. Catalysis Science & Technology, 2017, 7(10): 2057-2064. [45] AMANO F, SUZUKI S, YAMAMOTO T, et al. One-electron reducibility of isolated copper oxide on alumina for selective NO–CO reaction[J]. Applied Catalysis B:Environmental, 2006, 64(3/4): 282-289. [46] PARK P W, RAGLE C S, BOYER C L, et al. In2O3/Al2O3 Catalysts for NOx Reduction in Lean Condition[J]. Journal of Catalysis, 2002, 210(1): 97-105. doi: 10.1006/jcat.2002.3667 [47] HE H, ZHANG C B, YU Y B. A comparative study of Ag/Al2O3 and Cu/Al2O3 catalysts for the selective catalytic reduction of NO by C3H6[J]. Catalysis Today, 2004, 90: 191-197. doi: 10.1016/j.cattod.2004.04.026 [48] HANEDA M, KINTAICHI Y, HAMADA H. Promotional effect of H2O on the activity of In2O3-doped Ga2O3–Al2O3 for the selective reduction of nitrogen monoxide[J]. Catalysis Letters, 1998, 55: 47-55. doi: 10.1023/A:1019002105560 [49] CUI X Y, LI J H, HAO J M, et al. Enhancement of activity of SnO2-doped In2O3/Al2O3 catalyst for NO reduction with propene in the presence of H2O and SO2[J]. Chinese Chemical Letters, 2005, 16(11): 1535-1538. [50] HADJIIVANOV K. Identification of neutral and charged NxOy surface species by IR spectroscopy[J]. Catalysis Reviews, 2000, 42(1/2): 71-144. [51] TAMM S, INGELSTEN H H, PALMQVIST A E C. On the different roles of isocyanate and cyanide species in propene-SCR over silver/alumina[J]. Journal of Catalysis, 2008, 255(2): 304-312. doi: 10.1016/j.jcat.2008.02.019 [52] LIU Z M, OH K S, WOO S I. Promoting Effect of CeO2 on NOx reduction with Propene over SnO2/Al2O3 catalyst studied with in situ FT-IR spectroscopy[J]. Catalysis Letters, 2007, 120(1/2): 143-147. [53] NGUYEN L Q, SALIM C, HINODE H. Roles of nano-sized Au in the reduction of NOx by propene over Au/TiO2: An in situ DRIFTS study[J]. Applied Catalysis B:Environmental, 2010, 96(3/4): 299-306. [54] PIETRZYK P, DUJARDIN C, GÓRA-MAREK K, et al. Spectroscopic IR, EPR, and operando DRIFT insights into surface reaction pathways of selective reduction of NO by propene over the Co-BEA zeolite[J]. Physical Chemistry Chemical Physics, 2012, 14(7): 2203-15. doi: 10.1039/C1CP23038G [55] GÓRA-MAREK K, GIL B, DATKA J. Quantitative IR studies of the concentration of Co2+ and Co3+ sites in zeolites CoZSM-5 and CoFER[J]. Applied Catalysis A:General, 2009, 353(1): 117-122. doi: 10.1016/j.apcata.2008.10.034 -